In this paper, a hybrid algorithm for accelerating the double series of Floquet vector modes arising in the analysis of frequency selective surfaces (FSS) is presented. The asymptotic terms with slow convergence in ...In this paper, a hybrid algorithm for accelerating the double series of Floquet vector modes arising in the analysis of frequency selective surfaces (FSS) is presented. The asymptotic terms with slow convergence in the double series are first accelerated by Poisson transformation and Ewald method, and then the remained series is accelerated by Shank transformation. It results in significant savings in memory and computing time. Numerical examples verify the validity of the hybrid acceleration algorithm.展开更多
Much attention has been focused on the use of scalar modes for space division multiplexing (SDM). Alternative vector mode bases offer another solution set for SDM, expanding the available trade-offs in system perfor...Much attention has been focused on the use of scalar modes for space division multiplexing (SDM). Alternative vector mode bases offer another solution set for SDM, expanding the available trade-offs in system performance and complexity. We present two types of ring core fiber conceived and designed to explore SDM with fibers exhibiting low interactions between supported modes. We review demonstrations of fiber data transmis- sion tbr two separate vector mode bases: one for orbital angular momentum (OAM) modes and one for linearly polarized vector (LPV) modes. The OAM mode demon- strations include short transmissions using commercially available transceivers, as well as kilometer length transmission at extended data rates. The LPV demonstra- tions span kilometer length transmissions at high data rate with coherent detection, as well as a radio over fiber experiment with direct detection of narrowband signals.展开更多
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the...There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.展开更多
The internal modes of incoherent vector solitons (IVSs) in photovoltaic photorefractive materials are investigated in the framework of coupled nonlinear Schrodinger equations. It is found that there is a pair of int...The internal modes of incoherent vector solitons (IVSs) in photovoltaic photorefractive materials are investigated in the framework of coupled nonlinear Schrodinger equations. It is found that there is a pair of internal modes corresponding to a bright-bright IVS. The propagation dynamics of the bright-bright IVS perturbed by the internal modes is simulated by numerical method.展开更多
In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S...In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively.展开更多
Many animals possess actively movable tactile sensors in their heads,to explore the near-range space.During locomotion,an antenna is used in near range orientation,for example,in detecting,localizing,probing,and negot...Many animals possess actively movable tactile sensors in their heads,to explore the near-range space.During locomotion,an antenna is used in near range orientation,for example,in detecting,localizing,probing,and negotiating obstacles.A bionic tactile sensor used in the present work was inspired by the antenna of the stick insects.The sensor is able to detect an obstacle and its location in 3 D(Three dimensional) space.The vibration signals are analyzed in the frequency domain using Fast Fourier Transform(FFT) to estimate the distances.Signal processing algorithms,Artificial Neural Network(ANN) and Support Vector Machine(SVM) are used for the analysis and prediction processes.These three prediction techniques are compared for both distance estimation and material classification processes.When estimating the distances,the accuracy of estimation is deteriorated towards the tip of the probe due to the change in the vibration modes.Since the vibration data within that region have high a variance,the accuracy in distance estimation and material classification are lower towards the tip.The change in vibration mode is mathematically analyzed and a solution is proposed to estimate the distance along the full range of the probe.展开更多
A new method for estimating significant wave height(SWH) from advanced synthetic aperture radar(ASAR) wave mode data based on a support vector machine(SVM) regression model is presented. The model is established...A new method for estimating significant wave height(SWH) from advanced synthetic aperture radar(ASAR) wave mode data based on a support vector machine(SVM) regression model is presented. The model is established based on a nonlinear relationship between σ0, the variance of the normalized SAR image, SAR image spectrum spectral decomposition parameters and ocean wave SWH. The feature parameters of the SAR images are the input parameters of the SVM regression model, and the SWH provided by the European Centre for Medium-range Weather Forecasts(ECMWF) is the output parameter. On the basis of ASAR matching data set, a particle swarm optimization(PSO) algorithm is used to optimize the input kernel parameters of the SVM regression model and to establish the SVM model. The SWH estimation results yielded by this model are compared with the ECMWF reanalysis data and the buoy data. The RMSE values of the SWH are 0.34 and 0.48 m, and the correlation coefficient is 0.94 and 0.81, respectively. The results show that the SVM regression model is an effective method for estimating the SWH from the SAR data. The advantage of this model is that SAR data may serve as an independent data source for retrieving the SWH, which can avoid the complicated solution process associated with wave spectra.展开更多
Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machi...Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machinery.With this model,the original vibration signals of training and test samples are first decomposed through the empirical mode decomposition(EMD),and Shannon entropy is constructed to achieve high-dimensional eigenvectors.In order to replace the traditional feature extraction way which does the selection manually,OLPP is introduced to automatically compress the high-dimensional eigenvectors of training and test samples into the low-dimensional eigenvectors which have better discrimination.After that,the low-dimensional eigenvectors of training samples are input into Morlet wavelet support vector machine(MWSVM) and a trained MWSVM is obtained.Finally,the low-dimensional eigenvectors of test samples are input into the trained MWSVM to carry out fault diagnosis.To evaluate our proposed model,the experiment of fault diagnosis of deep groove ball bearings is made,and the experiment results indicate that the recognition accuracy rate of the proposed diagnosis model for outer race crack、inner race crack and ball crack is more than 90%.Compared to the existing approaches,the proposed diagnosis model combines the strengths of EMD in fault feature extraction,OLPP in feature compression and MWSVM in pattern recognition,and realizes the automation and high-precision of fault diagnosis.展开更多
First, discusses some conventional modal correlation evaluation methods. And then, introduces the concepts of global modes and local modes to solve difficulties in analyzing large and complex structures with dense mod...First, discusses some conventional modal correlation evaluation methods. And then, introduces the concepts of global modes and local modes to solve difficulties in analyzing large and complex structures with dense modes like the equipment cabin, establishes a criterion with the ratio of modal strain energy to conveniently distinguish these modes. Finally, investigates the methods of modal vector reduction, error localization and model updating used to achieve a high correlation between the tested and calculated modes of the cabin, and verifies the finite element model of the equipment cabin as a foundation for further design and analysis.展开更多
In this study, a reliability index vector formula is proposed for series system with two failure modes in term of the concept of reliability index vector and equivalent failure modes. Firstly, the reliability index ve...In this study, a reliability index vector formula is proposed for series system with two failure modes in term of the concept of reliability index vector and equivalent failure modes. Firstly, the reliability index vector is introduced to determine the correlation coefficient between two failure modes, and then, the reliability index vector of a series system can be obtained. Several numerical cases and an analysis on offshore platform are performed, and the results show that this scheme provided here has better computational accuracy, and its calculation process is simpler for the series systems reliability calculations compared with the other methods. Also this scheme is more convenient for the engineering applications.展开更多
Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts ...Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts for failure modes are obtained with the Borda method. The risk indexes of failure modes are derived from the Borda matrix. Based on the support vector machine (SVM), a casing life prediction model is established. In the prediction model, eight risk indexes are defined as input vectors and casing life is defined as the output vector. The ideal model parameters are determined with the training set from 19 wells with casing failure. The casing life prediction software is developed with the SVM model as a predictor. The residual life of 60 wells with casing failure is predicted with the software, and then compared with the actual casing life. The comparison results show that the casing life prediction software with the SVM model has high accuracy.展开更多
This paper presents a new method using the damage induction vector (DIV) and the best achievable vector (BAV) by which the change of modes due to structural damage can be applied to detcrnlinc the location and scale o...This paper presents a new method using the damage induction vector (DIV) and the best achievable vector (BAV) by which the change of modes due to structural damage can be applied to detcrnlinc the location and scale of damage in structures. By the DIV, undamagc elements can be castly identified and the damage detection can be limited to a few domains of the structure. The structural damage is located by conlputing the Euclidean distance betwcen the DIV and its BAV. The loss of both stiffness and mass properties can be located and quantified.The characteristic of this method is less calculation and there is no limitation of damage scale. Finally, the effectiveness of the method is demonstrated by detecting the damages of the shallow arches.展开更多
In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo...In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.展开更多
With the full-vector plane-wave method (FVPWM) and the full-vector beam propagation method (FVBPM), the dependences of the band-gap and mode characteristics on material index and cladding structure parameter in an...With the full-vector plane-wave method (FVPWM) and the full-vector beam propagation method (FVBPM), the dependences of the band-gap and mode characteristics on material index and cladding structure parameter in anti- resonance guiding photonic crystal fibres (ARGPCFs) are sufficiently analysed. An ARGPCF operating in the near- infrared wavelength is shown. The influences of the high index cylinders, glass interstitial apexes and silica structure on the characteristics of band-gaps and modes are deeply investigated. The equivalent planar waveguide theory is used for analysing such an ARGPCF filled by the isotropic materials, and the resonance and the anti-resonance characteristics r:~n h~ w~|] r^r~dlrtpd展开更多
基金supported in part by the National High-Tech Research Plan of China(863 Plan)(Grant Nos.2002AA123031 and 2003AA123310)in part by the National Natural Science Foundation of China(Grant No.60471016).
文摘In this paper, a hybrid algorithm for accelerating the double series of Floquet vector modes arising in the analysis of frequency selective surfaces (FSS) is presented. The asymptotic terms with slow convergence in the double series are first accelerated by Poisson transformation and Ewald method, and then the remained series is accelerated by Shank transformation. It results in significant savings in memory and computing time. Numerical examples verify the validity of the hybrid acceleration algorithm.
文摘Much attention has been focused on the use of scalar modes for space division multiplexing (SDM). Alternative vector mode bases offer another solution set for SDM, expanding the available trade-offs in system performance and complexity. We present two types of ring core fiber conceived and designed to explore SDM with fibers exhibiting low interactions between supported modes. We review demonstrations of fiber data transmis- sion tbr two separate vector mode bases: one for orbital angular momentum (OAM) modes and one for linearly polarized vector (LPV) modes. The OAM mode demon- strations include short transmissions using commercially available transceivers, as well as kilometer length transmission at extended data rates. The LPV demonstra- tions span kilometer length transmissions at high data rate with coherent detection, as well as a radio over fiber experiment with direct detection of narrowband signals.
基金Project(61374140)supported by the National Natural Science Foundation of China
文摘There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574167).
文摘The internal modes of incoherent vector solitons (IVSs) in photovoltaic photorefractive materials are investigated in the framework of coupled nonlinear Schrodinger equations. It is found that there is a pair of internal modes corresponding to a bright-bright IVS. The propagation dynamics of the bright-bright IVS perturbed by the internal modes is simulated by numerical method.
基金Projects(61471370,61401479)supported by the National Natural Science Foundation of China
文摘In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively.
文摘Many animals possess actively movable tactile sensors in their heads,to explore the near-range space.During locomotion,an antenna is used in near range orientation,for example,in detecting,localizing,probing,and negotiating obstacles.A bionic tactile sensor used in the present work was inspired by the antenna of the stick insects.The sensor is able to detect an obstacle and its location in 3 D(Three dimensional) space.The vibration signals are analyzed in the frequency domain using Fast Fourier Transform(FFT) to estimate the distances.Signal processing algorithms,Artificial Neural Network(ANN) and Support Vector Machine(SVM) are used for the analysis and prediction processes.These three prediction techniques are compared for both distance estimation and material classification processes.When estimating the distances,the accuracy of estimation is deteriorated towards the tip of the probe due to the change in the vibration modes.Since the vibration data within that region have high a variance,the accuracy in distance estimation and material classification are lower towards the tip.The change in vibration mode is mathematically analyzed and a solution is proposed to estimate the distance along the full range of the probe.
基金The National Key Research and Development Program of China under contract Nos 2016YFA0600102 and2016YFC1401007the National Natural Science Youth Foundation of China under contract No.61501130the Natural Science Foundation of China under contract No.41406207
文摘A new method for estimating significant wave height(SWH) from advanced synthetic aperture radar(ASAR) wave mode data based on a support vector machine(SVM) regression model is presented. The model is established based on a nonlinear relationship between σ0, the variance of the normalized SAR image, SAR image spectrum spectral decomposition parameters and ocean wave SWH. The feature parameters of the SAR images are the input parameters of the SVM regression model, and the SWH provided by the European Centre for Medium-range Weather Forecasts(ECMWF) is the output parameter. On the basis of ASAR matching data set, a particle swarm optimization(PSO) algorithm is used to optimize the input kernel parameters of the SVM regression model and to establish the SVM model. The SWH estimation results yielded by this model are compared with the ECMWF reanalysis data and the buoy data. The RMSE values of the SWH are 0.34 and 0.48 m, and the correlation coefficient is 0.94 and 0.81, respectively. The results show that the SVM regression model is an effective method for estimating the SWH from the SAR data. The advantage of this model is that SAR data may serve as an independent data source for retrieving the SWH, which can avoid the complicated solution process associated with wave spectra.
基金supported by Fundamental Research Funds for the Central Universities of China (Grant No. CDJZR10118801)
文摘Based on feature compression with orthogonal locality preserving projection(OLPP),a novel fault diagnosis model is proposed in this paper to achieve automation and high-precision of fault diagnosis of rotating machinery.With this model,the original vibration signals of training and test samples are first decomposed through the empirical mode decomposition(EMD),and Shannon entropy is constructed to achieve high-dimensional eigenvectors.In order to replace the traditional feature extraction way which does the selection manually,OLPP is introduced to automatically compress the high-dimensional eigenvectors of training and test samples into the low-dimensional eigenvectors which have better discrimination.After that,the low-dimensional eigenvectors of training samples are input into Morlet wavelet support vector machine(MWSVM) and a trained MWSVM is obtained.Finally,the low-dimensional eigenvectors of test samples are input into the trained MWSVM to carry out fault diagnosis.To evaluate our proposed model,the experiment of fault diagnosis of deep groove ball bearings is made,and the experiment results indicate that the recognition accuracy rate of the proposed diagnosis model for outer race crack、inner race crack and ball crack is more than 90%.Compared to the existing approaches,the proposed diagnosis model combines the strengths of EMD in fault feature extraction,OLPP in feature compression and MWSVM in pattern recognition,and realizes the automation and high-precision of fault diagnosis.
文摘First, discusses some conventional modal correlation evaluation methods. And then, introduces the concepts of global modes and local modes to solve difficulties in analyzing large and complex structures with dense modes like the equipment cabin, establishes a criterion with the ratio of modal strain energy to conveniently distinguish these modes. Finally, investigates the methods of modal vector reduction, error localization and model updating used to achieve a high correlation between the tested and calculated modes of the cabin, and verifies the finite element model of the equipment cabin as a foundation for further design and analysis.
文摘In this study, a reliability index vector formula is proposed for series system with two failure modes in term of the concept of reliability index vector and equivalent failure modes. Firstly, the reliability index vector is introduced to determine the correlation coefficient between two failure modes, and then, the reliability index vector of a series system can be obtained. Several numerical cases and an analysis on offshore platform are performed, and the results show that this scheme provided here has better computational accuracy, and its calculation process is simpler for the series systems reliability calculations compared with the other methods. Also this scheme is more convenient for the engineering applications.
基金support from "973 Project" (Contract No. 2010CB226706)
文摘Eight casing failure modes and 32 risk factors in oil and gas wells are given in this paper. According to the quantitative analysis of the influence degree and occurrence probability of risk factors, the Borda counts for failure modes are obtained with the Borda method. The risk indexes of failure modes are derived from the Borda matrix. Based on the support vector machine (SVM), a casing life prediction model is established. In the prediction model, eight risk indexes are defined as input vectors and casing life is defined as the output vector. The ideal model parameters are determined with the training set from 19 wells with casing failure. The casing life prediction software is developed with the SVM model as a predictor. The residual life of 60 wells with casing failure is predicted with the software, and then compared with the actual casing life. The comparison results show that the casing life prediction software with the SVM model has high accuracy.
文摘This paper presents a new method using the damage induction vector (DIV) and the best achievable vector (BAV) by which the change of modes due to structural damage can be applied to detcrnlinc the location and scale of damage in structures. By the DIV, undamagc elements can be castly identified and the damage detection can be limited to a few domains of the structure. The structural damage is located by conlputing the Euclidean distance betwcen the DIV and its BAV. The loss of both stiffness and mass properties can be located and quantified.The characteristic of this method is less calculation and there is no limitation of damage scale. Finally, the effectiveness of the method is demonstrated by detecting the damages of the shallow arches.
文摘In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.
基金partly supported by the National Key Basic Research Special Foundation of China (Grant Nos. 2010CB327605 and 2010CB328300)the National High-Technology Research and Development Program of China (Grant No. 2009AA01Z220)+3 种基金the Key Grant of the Chinese Ministry of Education (Grant No. 109015)the Discipline Co-construction Project of Beijing Municipal Commission of Education,China (Grant No. YB20081001301)the Open Fund of Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications),Chinese Ministry of Educationthe Specialized Research Fund for the Doctoral Program of Beijing University of Posts and Telecommunications (Grant No. CX201023)
文摘With the full-vector plane-wave method (FVPWM) and the full-vector beam propagation method (FVBPM), the dependences of the band-gap and mode characteristics on material index and cladding structure parameter in anti- resonance guiding photonic crystal fibres (ARGPCFs) are sufficiently analysed. An ARGPCF operating in the near- infrared wavelength is shown. The influences of the high index cylinders, glass interstitial apexes and silica structure on the characteristics of band-gaps and modes are deeply investigated. The equivalent planar waveguide theory is used for analysing such an ARGPCF filled by the isotropic materials, and the resonance and the anti-resonance characteristics r:~n h~ w~|] r^r~dlrtpd