A newnumerical method based on vector form intrinsic finite element(VFIFE) is proposed to simulate the integral lifting process of steel structures. First, in order to verify the validity of the VFIFE method, taking...A newnumerical method based on vector form intrinsic finite element(VFIFE) is proposed to simulate the integral lifting process of steel structures. First, in order to verify the validity of the VFIFE method, taking the steel gallery between the integrated building and the attached building of Nanjing M obile Communication Buildings for example, the static analysis was carried out and the corresponding results were compared with the results achieved by the traditional finite element method. Then, according to the characteristics of dynamic construction of steel structure integral lifting, the tension cable element was employed to simulate the behavior of dynamic construction. The VFIFE method avoids the iterative solution of the stiffness matrix and the singularity problems. Therefore, it is simple to simulate the complete process of steel structure lifting construction.Finally, by using the VFIFE, the displacement and internal force time history curves of the steel structures under different lifting speeds are obtained. The results show that the lifting speed has influence on the lifting force, the internal force, and the displacement of the structure. In the case of normal lifting speed, the dynamic magnification factor of 1. 5 is safe and reasonable for practical application.展开更多
Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static an...Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element(VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method(FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.展开更多
A cardiac vector model is presented and verified, and then the forward problem for cardiac magnetic fields and electric potential are discussed based on this model and the realistic human torso volume conductor model,...A cardiac vector model is presented and verified, and then the forward problem for cardiac magnetic fields and electric potential are discussed based on this model and the realistic human torso volume conductor model, including lungs. A torso-cardiac vector model is used for a 12-lead electrocardiographic (ECG) and magneto-cardiogram (MCG) simulation study by using the boundary element method (BEM). Also, we obtain the MCG wave picture using a compound four-channel HTc.SQUID system in a magnetically shielded room. By comparing the simulated results and experimental results, we verify the cardiac vector model and then do a preliminary study of the forward problem of MCG and ECG. Therefore, the results show that the vector model is reasonable in cardiac electrophysiology.展开更多
In this paper,a set of closed-form formulas for vector Finite Element Method(FEM) to analyze three dimensional electromagnetic problems is presented on the basis of Gaussian quadrature integration scheme.By analyzing ...In this paper,a set of closed-form formulas for vector Finite Element Method(FEM) to analyze three dimensional electromagnetic problems is presented on the basis of Gaussian quadrature integration scheme.By analyzing the open region problems,the first-order Absorbing Boundary Condition(ABC) is considered as the truncation boundary condition and the equation is carried out in a closed-form.Based on the formulas,the hybrid Expanded Cholesky Method(ECM) and MultiFrontal algorithm(MF) is applied to solve finite element equations.Using the closed-form solution,the elec-tromagnetic field of three dimensional targets can be studied sententiously and accurately.Simulation results show that the presented formulas are successfully and concise,which can be easily used to analyze three dimensional electromagnetic problems.展开更多
Our aim in this paper is to interest retinal eye specialists in preventing dry macula degeneration by a special flurry vector field through open or closed curved surfaces. The flux of vector fields through surfaces is...Our aim in this paper is to interest retinal eye specialists in preventing dry macula degeneration by a special flurry vector field through open or closed curved surfaces. The flux of vector fields through surfaces is based on vector element area and volume element. Therefore, we explain a few geometrical derivations of area and volume elements in curved orthogonal coordinate systems. We hope that by derivation of a spatial vector field flurry against drusen through open or closed surfaces due to the Gauss theorem might select drusen under eye retina cells without destroying the cells and prevent macula degeneration. A changed flurry of a magnetic or electric vector field through a closed line causes an electric or magnetic vector field on the surface closed by the line. We also hope that derivation by Stokes’ and Greens’ theorems, with the help of iron, might help eye cells to get in life.展开更多
Steel lazy-wave riser(SLWR)is one of the key technical components of offshore oil-gas production systems and is widely utilized in deepwater areas.On the basis of the vector form intrinsic finite element(VFIFE)method,...Steel lazy-wave riser(SLWR)is one of the key technical components of offshore oil-gas production systems and is widely utilized in deepwater areas.On the basis of the vector form intrinsic finite element(VFIFE)method,this study develops a reasonable numerical model for the SLWR to investigate the effects of the buoyancy section on its mechanical characteristics.In the SLWR model,the buoyancy section is simulated using an equivalent riser segment with the same outer diameter and unit weight.The riser is considered to be composed of a series of space vector particles connected by elements,and virtual reverse motions are applied to establish the fundamental equations of forces and displacements.The explicit central difference technique is used to solve the governing equations for particle motion within the riser through programming implementation.To provide a detailed explanation of the process by which the SLWR achieves a stable lazy-wave configuration,a numerical model of a 2800-m-long riser is established at a water depth of 1600 m,and the feasibility of this model for riser behavior analysis is validated.The remarkable influences of the position,length,number and spacing of the buoyancy section on the mechanical behavior of the SLWR are observed,which provides a theoretical foundation for the optimal design of the SLWR in deepwaters.展开更多
基金The National Natural Science Foundation of China(No.51308105)
文摘A newnumerical method based on vector form intrinsic finite element(VFIFE) is proposed to simulate the integral lifting process of steel structures. First, in order to verify the validity of the VFIFE method, taking the steel gallery between the integrated building and the attached building of Nanjing M obile Communication Buildings for example, the static analysis was carried out and the corresponding results were compared with the results achieved by the traditional finite element method. Then, according to the characteristics of dynamic construction of steel structure integral lifting, the tension cable element was employed to simulate the behavior of dynamic construction. The VFIFE method avoids the iterative solution of the stiffness matrix and the singularity problems. Therefore, it is simple to simulate the complete process of steel structure lifting construction.Finally, by using the VFIFE, the displacement and internal force time history curves of the steel structures under different lifting speeds are obtained. The results show that the lifting speed has influence on the lifting force, the internal force, and the displacement of the structure. In the case of normal lifting speed, the dynamic magnification factor of 1. 5 is safe and reasonable for practical application.
基金supported by the National Key Research and Development Program (No. 2016YFC0802301)the Shandong Province Science and Technology Major Project (No. 2015ZDZX04003)the Natural Science Foundation of Shandong Province (No. ZR2016GM06)
文摘Robust numerical models that describe the complex behaviors of risers are needed because these constitute dynamically sensitive systems. This paper presents a simple and efficient algorithm for the nonlinear static and dynamic analyses of marine risers. The proposed approach uses the vector form intrinsic finite element(VFIFE) method, which is based on vector mechanics theory and numerical calculation. In this method, the risers are described by a set of particles directly governed by Newton's second law and are connected by weightless elements that can only resist internal forces. The method does not require the integration of the stiffness matrix, nor does it need iterations to solve the governing equations. Due to these advantages, the method can easily increase or decrease the element and change the boundary conditions, thus representing an innovative concept of solving nonlinear behaviors, such as large deformation and large displacement. To prove the feasibility of the VFIFE method in the analysis of the risers, rigid and flexible risers belonging to two different categories of marine risers, which usually have differences in modeling and solving methods, are employed in the present study. In the analysis, the plane beam element is adopted in the simulation of interaction forces between the particles and the axial force, shear force, and bending moment are also considered. The results are compared with the conventional finite element method(FEM) and those reported in the related literature. The findings revealed that both the rigid and flexible risers could be modeled in a similar unified analysis model and that the VFIFE method is feasible for solving problems related to the complex behaviors of marine risers.
基金supported by the State Key Development Program for Basic Research of China (Grant No. 2011CBA00106)the National Natural Science Foundation of China (Grant Nos. 10674006, 81171421, and 61101046)the National High Technology Research and Development Program of China (Grant No. 2007AA03Z238)
文摘A cardiac vector model is presented and verified, and then the forward problem for cardiac magnetic fields and electric potential are discussed based on this model and the realistic human torso volume conductor model, including lungs. A torso-cardiac vector model is used for a 12-lead electrocardiographic (ECG) and magneto-cardiogram (MCG) simulation study by using the boundary element method (BEM). Also, we obtain the MCG wave picture using a compound four-channel HTc.SQUID system in a magnetically shielded room. By comparing the simulated results and experimental results, we verify the cardiac vector model and then do a preliminary study of the forward problem of MCG and ECG. Therefore, the results show that the vector model is reasonable in cardiac electrophysiology.
基金Supported by the National Science Foundation of China(No. 60801039)
文摘In this paper,a set of closed-form formulas for vector Finite Element Method(FEM) to analyze three dimensional electromagnetic problems is presented on the basis of Gaussian quadrature integration scheme.By analyzing the open region problems,the first-order Absorbing Boundary Condition(ABC) is considered as the truncation boundary condition and the equation is carried out in a closed-form.Based on the formulas,the hybrid Expanded Cholesky Method(ECM) and MultiFrontal algorithm(MF) is applied to solve finite element equations.Using the closed-form solution,the elec-tromagnetic field of three dimensional targets can be studied sententiously and accurately.Simulation results show that the presented formulas are successfully and concise,which can be easily used to analyze three dimensional electromagnetic problems.
文摘Our aim in this paper is to interest retinal eye specialists in preventing dry macula degeneration by a special flurry vector field through open or closed curved surfaces. The flux of vector fields through surfaces is based on vector element area and volume element. Therefore, we explain a few geometrical derivations of area and volume elements in curved orthogonal coordinate systems. We hope that by derivation of a spatial vector field flurry against drusen through open or closed surfaces due to the Gauss theorem might select drusen under eye retina cells without destroying the cells and prevent macula degeneration. A changed flurry of a magnetic or electric vector field through a closed line causes an electric or magnetic vector field on the surface closed by the line. We also hope that derivation by Stokes’ and Greens’ theorems, with the help of iron, might help eye cells to get in life.
基金supported by the National Natural Science Foundation of China(Grant Nos.52471275,U23A20663,51809048,51909236)the Natural Science Foundation of Fujian Province(Grant No.2022J01092)+1 种基金the Natural Science Foundation of Zhejiang Province(Grant No.LY23E090004)the Ningbo Natural Science Foundation(Grant No.2021J039).
文摘Steel lazy-wave riser(SLWR)is one of the key technical components of offshore oil-gas production systems and is widely utilized in deepwater areas.On the basis of the vector form intrinsic finite element(VFIFE)method,this study develops a reasonable numerical model for the SLWR to investigate the effects of the buoyancy section on its mechanical characteristics.In the SLWR model,the buoyancy section is simulated using an equivalent riser segment with the same outer diameter and unit weight.The riser is considered to be composed of a series of space vector particles connected by elements,and virtual reverse motions are applied to establish the fundamental equations of forces and displacements.The explicit central difference technique is used to solve the governing equations for particle motion within the riser through programming implementation.To provide a detailed explanation of the process by which the SLWR achieves a stable lazy-wave configuration,a numerical model of a 2800-m-long riser is established at a water depth of 1600 m,and the feasibility of this model for riser behavior analysis is validated.The remarkable influences of the position,length,number and spacing of the buoyancy section on the mechanical behavior of the SLWR are observed,which provides a theoretical foundation for the optimal design of the SLWR in deepwaters.