Support vector machines and a Kalman-like observer are used for fault detection and isolation in a variable speed horizontalaxis wind turbine composed of three blades and a full converter. The support vector approach ...Support vector machines and a Kalman-like observer are used for fault detection and isolation in a variable speed horizontalaxis wind turbine composed of three blades and a full converter. The support vector approach is data-based and is therefore robust to process knowledge. It is based on structural risk minimization which enhances generalization even with small training data set and it allows for process nonlinearity by using flexible kernels. In this work, a radial basis function is used as the kernel. Different parts of the process are investigated including actuators and sensors faults. With duplicated sensors, sensor faults in blade pitch positions,generator and rotor speeds can be detected. Faults of type stuck measurements can be detected in 2 sampling periods. The detection time of offset/scaled measurements depends on the severity of the fault and on the process dynamics when the fault occurs. The converter torque actuator fault can be detected within 2 sampling periods. Faults in the actuators of the pitch systems represents a higher difficulty for fault detection which is due to the fact that such faults only affect the transitory state(which is very fast) but not the final stationary state. Therefore, two methods are considered and compared for fault detection and isolation of this fault: support vector machines and a Kalman-like observer. Advantages and disadvantages of each method are discussed. On one hand, support vector machines training of transitory states would require a big amount of data in different situations, but the fault detection and isolation results are robust to variations in the input/operating point. On the other hand, the observer is model-based, and therefore does not require training, and it allows identification of the fault level, which is interesting for fault reconfiguration. But the observability of the system is ensured under specific conditions, related to the dynamics of the inputs and outputs. The whole fault detection and isolation scheme is evaluated using a wind turbine benchmark with a real sequence of wind speed.展开更多
Ⅰ. INTRODUCTION MULTILEVEL inverters are increasingly being used in high-power medium voltage applications due to their superior performance compared to two-level inverters, such as lower common-mode voltage, lower d...Ⅰ. INTRODUCTION MULTILEVEL inverters are increasingly being used in high-power medium voltage applications due to their superior performance compared to two-level inverters, such as lower common-mode voltage, lower dv/dt, lower harmonics in output voltage and current, and reduced voltage on the power switches.展开更多
This paper presents a new system identification approach using vector space base functions, and proposes two network structures based on Gamma sequence and Laguerre sequence. After analyzing and comparing these struct...This paper presents a new system identification approach using vector space base functions, and proposes two network structures based on Gamma sequence and Laguerre sequence. After analyzing and comparing these structures in detail, some simulation results to demonstrate the conclusions are given.展开更多
The size and performance of a System LSI depend heavily on the architecture which is chosen. As a result, the architecture design phase is one of the most important steps in the System LSI development process and is c...The size and performance of a System LSI depend heavily on the architecture which is chosen. As a result, the architecture design phase is one of the most important steps in the System LSI development process and is critical to the commercial success of a device. In this paper, we propose a C-based variable length and vector pipeline (VVP) architecture design methodology and apply it to the design of the output probability computation circuit for a speech recognition system. VVP processing accelerated by loop optimization, memory access methods, and application-specific cir- cuit design was implemented to calculate the Hidden Markov Model (HMM) output probability at high speed and its performance is evaluated. It is shown that designers can explore a wide range of design choices and generate complex circuits in a short time by using a C-based pipeline architecture design method.展开更多
In this article, we propose two control charts namely, the “Multivariate Group Runs’ (MV-GR-M)” and the “Multivariate Modified Group Runs’ (MV-MGR-M)” control charts, based on the multivariate normal processes, ...In this article, we propose two control charts namely, the “Multivariate Group Runs’ (MV-GR-M)” and the “Multivariate Modified Group Runs’ (MV-MGR-M)” control charts, based on the multivariate normal processes, for monitoring the process mean vector. Methods to obtain the design parameters and operations of these control charts are discussed. Performances of the proposed charts are compared with some existing control charts. It is verified that, the proposed charts give a significant reduction in the out-of-control “Average Time to Signal” (ATS) in the zero state, as well in the steady state compared to the Hotelling’s T2 and the synthetic T2 control charts.展开更多
Complex industry processes often need multiple operation modes to meet the change of production conditions. In the same mode,there are discrete samples belonging to this mode. Therefore,it is important to consider the...Complex industry processes often need multiple operation modes to meet the change of production conditions. In the same mode,there are discrete samples belonging to this mode. Therefore,it is important to consider the samples which are sparse in the mode.To solve this issue,a new approach called density-based support vector data description( DBSVDD) is proposed. In this article,an algorithm using Gaussian mixture model( GMM) with the DBSVDD technique is proposed for process monitoring. The GMM method is used to obtain the center of each mode and determine the number of the modes. Considering the complexity of the data distribution and discrete samples in monitoring process,the DBSVDD is utilized for process monitoring. Finally,the validity and effectiveness of the DBSVDD method are illustrated through the Tennessee Eastman( TE) process.展开更多
This paper presents a corner-based image alignment algorithm based on the procedures of corner-based template matching and geometric parameter estimation. This algorithm consists of two stages: 1) training phase, and ...This paper presents a corner-based image alignment algorithm based on the procedures of corner-based template matching and geometric parameter estimation. This algorithm consists of two stages: 1) training phase, and 2) matching phase. In the training phase, a corner detection algorithm is used to extract the corners. These corners are then used to build the pyramid images. In the matching phase, the corners are obtained using the same corner detection algorithm. The similarity measure is then determined by the differences of gradient vector between the corners obtained in the template image and the inspection image, respectively. A parabolic function is further applied to evaluate the geometric relationship between the template and the inspection images. Results show that the corner-based template matching outperforms the original edge-based template matching in efficiency, and both of them are robust against non-liner light changes. The accuracy and precision of the corner-based image alignment are competitive to that of edge-based image alignment under the same environment. In practice, the proposed algorithm demonstrates its precision, efficiency and robustness in image alignment for real world applications.展开更多
Vehicle tracking plays a crucial role in intelligent transportation, autonomous driving, and video surveillance. However, challenges such as occlusion, multi-target interference, and nonlinear motion in dynamic scenar...Vehicle tracking plays a crucial role in intelligent transportation, autonomous driving, and video surveillance. However, challenges such as occlusion, multi-target interference, and nonlinear motion in dynamic scenarios make tracking accuracy and stability a focus of ongoing research. This paper proposes an integrated method combining YOLOv8 object detection with adaptive Kalman filtering. The approach employs a support vector machine (SVM) to dynamically select the optimal filter (including standard Kalman filter, extended Kalman filter, and unscented Kalman filter), enhancing the system’s adaptability to different motion patterns. Additionally, an error feedback mechanism is incorporated to dynamically adjust filter parameters, further improving responsiveness to sudden events. Experimental results on the KITTI and UA-DETRAC datasets demonstrate that the proposed method significantly improves detection accuracy (mAP@0.5 increased by approximately 3%), tracking accuracy (MOTA improved by 5%), and system robustness, providing an efficient solution for vehicle tracking in complex environments.展开更多
为提高应用文编写效率,提出一种融合大语言模型(large language model,LLM)与向量知识库(vector knowledge base)的应用文自动生成框架.根据目标应用场景,以人工编写的标准应用文为范本,构建结构化辅助生成文件,并建立相应类型应用文的...为提高应用文编写效率,提出一种融合大语言模型(large language model,LLM)与向量知识库(vector knowledge base)的应用文自动生成框架.根据目标应用场景,以人工编写的标准应用文为范本,构建结构化辅助生成文件,并建立相应类型应用文的向量知识库.利用目标类型应用文的章节标题和用户输入的关键信息在知识库中进行检索,匹配相关文段;设置提示词引导LLM,以召回的参考文段及用户输入的提示信息为参考,使用末级标题作为分割标志,分章节生成应用文文本;最终按规定格式整合全文并输出完整的目标应用文.以应急预案为例,在同一评价标准下使用ChatGPT-4Turbo进行评测,自动生成的应急预案高度趋近于人工编写的质量,二者的文档质量相似度达95.87%.所提方法能够在算力资源有限的情况下突破字数限制,生成符合基本标准的长篇幅应用文,可供人工参考或直接使用,极大提高了编写人员的工作效率.展开更多
文摘Support vector machines and a Kalman-like observer are used for fault detection and isolation in a variable speed horizontalaxis wind turbine composed of three blades and a full converter. The support vector approach is data-based and is therefore robust to process knowledge. It is based on structural risk minimization which enhances generalization even with small training data set and it allows for process nonlinearity by using flexible kernels. In this work, a radial basis function is used as the kernel. Different parts of the process are investigated including actuators and sensors faults. With duplicated sensors, sensor faults in blade pitch positions,generator and rotor speeds can be detected. Faults of type stuck measurements can be detected in 2 sampling periods. The detection time of offset/scaled measurements depends on the severity of the fault and on the process dynamics when the fault occurs. The converter torque actuator fault can be detected within 2 sampling periods. Faults in the actuators of the pitch systems represents a higher difficulty for fault detection which is due to the fact that such faults only affect the transitory state(which is very fast) but not the final stationary state. Therefore, two methods are considered and compared for fault detection and isolation of this fault: support vector machines and a Kalman-like observer. Advantages and disadvantages of each method are discussed. On one hand, support vector machines training of transitory states would require a big amount of data in different situations, but the fault detection and isolation results are robust to variations in the input/operating point. On the other hand, the observer is model-based, and therefore does not require training, and it allows identification of the fault level, which is interesting for fault reconfiguration. But the observability of the system is ensured under specific conditions, related to the dynamics of the inputs and outputs. The whole fault detection and isolation scheme is evaluated using a wind turbine benchmark with a real sequence of wind speed.
文摘Ⅰ. INTRODUCTION MULTILEVEL inverters are increasingly being used in high-power medium voltage applications due to their superior performance compared to two-level inverters, such as lower common-mode voltage, lower dv/dt, lower harmonics in output voltage and current, and reduced voltage on the power switches.
基金National Natural Science FundsNatural Science Funds of Jiangsu Province
文摘This paper presents a new system identification approach using vector space base functions, and proposes two network structures based on Gamma sequence and Laguerre sequence. After analyzing and comparing these structures in detail, some simulation results to demonstrate the conclusions are given.
文摘The size and performance of a System LSI depend heavily on the architecture which is chosen. As a result, the architecture design phase is one of the most important steps in the System LSI development process and is critical to the commercial success of a device. In this paper, we propose a C-based variable length and vector pipeline (VVP) architecture design methodology and apply it to the design of the output probability computation circuit for a speech recognition system. VVP processing accelerated by loop optimization, memory access methods, and application-specific cir- cuit design was implemented to calculate the Hidden Markov Model (HMM) output probability at high speed and its performance is evaluated. It is shown that designers can explore a wide range of design choices and generate complex circuits in a short time by using a C-based pipeline architecture design method.
文摘In this article, we propose two control charts namely, the “Multivariate Group Runs’ (MV-GR-M)” and the “Multivariate Modified Group Runs’ (MV-MGR-M)” control charts, based on the multivariate normal processes, for monitoring the process mean vector. Methods to obtain the design parameters and operations of these control charts are discussed. Performances of the proposed charts are compared with some existing control charts. It is verified that, the proposed charts give a significant reduction in the out-of-control “Average Time to Signal” (ATS) in the zero state, as well in the steady state compared to the Hotelling’s T2 and the synthetic T2 control charts.
基金National Natural Science Foundation of China(No.61374140)the Youth Foundation of National Natural Science Foundation of China(No.61403072)
文摘Complex industry processes often need multiple operation modes to meet the change of production conditions. In the same mode,there are discrete samples belonging to this mode. Therefore,it is important to consider the samples which are sparse in the mode.To solve this issue,a new approach called density-based support vector data description( DBSVDD) is proposed. In this article,an algorithm using Gaussian mixture model( GMM) with the DBSVDD technique is proposed for process monitoring. The GMM method is used to obtain the center of each mode and determine the number of the modes. Considering the complexity of the data distribution and discrete samples in monitoring process,the DBSVDD is utilized for process monitoring. Finally,the validity and effectiveness of the DBSVDD method are illustrated through the Tennessee Eastman( TE) process.
文摘This paper presents a corner-based image alignment algorithm based on the procedures of corner-based template matching and geometric parameter estimation. This algorithm consists of two stages: 1) training phase, and 2) matching phase. In the training phase, a corner detection algorithm is used to extract the corners. These corners are then used to build the pyramid images. In the matching phase, the corners are obtained using the same corner detection algorithm. The similarity measure is then determined by the differences of gradient vector between the corners obtained in the template image and the inspection image, respectively. A parabolic function is further applied to evaluate the geometric relationship between the template and the inspection images. Results show that the corner-based template matching outperforms the original edge-based template matching in efficiency, and both of them are robust against non-liner light changes. The accuracy and precision of the corner-based image alignment are competitive to that of edge-based image alignment under the same environment. In practice, the proposed algorithm demonstrates its precision, efficiency and robustness in image alignment for real world applications.
文摘Vehicle tracking plays a crucial role in intelligent transportation, autonomous driving, and video surveillance. However, challenges such as occlusion, multi-target interference, and nonlinear motion in dynamic scenarios make tracking accuracy and stability a focus of ongoing research. This paper proposes an integrated method combining YOLOv8 object detection with adaptive Kalman filtering. The approach employs a support vector machine (SVM) to dynamically select the optimal filter (including standard Kalman filter, extended Kalman filter, and unscented Kalman filter), enhancing the system’s adaptability to different motion patterns. Additionally, an error feedback mechanism is incorporated to dynamically adjust filter parameters, further improving responsiveness to sudden events. Experimental results on the KITTI and UA-DETRAC datasets demonstrate that the proposed method significantly improves detection accuracy (mAP@0.5 increased by approximately 3%), tracking accuracy (MOTA improved by 5%), and system robustness, providing an efficient solution for vehicle tracking in complex environments.
文摘为提高应用文编写效率,提出一种融合大语言模型(large language model,LLM)与向量知识库(vector knowledge base)的应用文自动生成框架.根据目标应用场景,以人工编写的标准应用文为范本,构建结构化辅助生成文件,并建立相应类型应用文的向量知识库.利用目标类型应用文的章节标题和用户输入的关键信息在知识库中进行检索,匹配相关文段;设置提示词引导LLM,以召回的参考文段及用户输入的提示信息为参考,使用末级标题作为分割标志,分章节生成应用文文本;最终按规定格式整合全文并输出完整的目标应用文.以应急预案为例,在同一评价标准下使用ChatGPT-4Turbo进行评测,自动生成的应急预案高度趋近于人工编写的质量,二者的文档质量相似度达95.87%.所提方法能够在算力资源有限的情况下突破字数限制,生成符合基本标准的长篇幅应用文,可供人工参考或直接使用,极大提高了编写人员的工作效率.