To track the rapidly changing temperature profiles of thermal cycling of polymerase chain reaction (PCR) accurately, an innovative feedforward variable structural proportional-integral-derivative (FVSPID) controll...To track the rapidly changing temperature profiles of thermal cycling of polymerase chain reaction (PCR) accurately, an innovative feedforward variable structural proportional-integral-derivative (FVSPID) controller was developed. Based on the step response test data of the heat block, a reduced first order model was estabfished at different operating points. Based on the reduced model, the FVSPID controller combined a feedforward path with the variable structural proportional-integral-derivative (PID) control. The modified feedforward action provided directly the optimal predictive power for the desired setpoint to speed up the dynamic response. To cooperate with the feedforward action, a variable structural PID was applied, where the P mode was used in the case of the largest errors to speed up response, whereas the PD mode was used in the case of larger errors to suppress overshoot, and finally the PID mode was applied for small error conditions to eliminate the steady state offset. Experimental results illustrated that compared to the conventional PID controller, the FVSPID controller can not only reduce the time taken to complete a standard PCR protocol, but also improve the accuracy of gene amplification.展开更多
With the development of more/all electrical aircraft technology, an electro-mechanical actuator(EMA) is more and more used in an aircraft actuation system. The motor system, as the crucial part of an EMA, usually ad...With the development of more/all electrical aircraft technology, an electro-mechanical actuator(EMA) is more and more used in an aircraft actuation system. The motor system, as the crucial part of an EMA, usually adopts the redundancy technology or fault tolerance technology to improve the reliability. To compare the performances of these two motor systems, a 10-pole/12-slot six-phase permanent magnet synchronous motor(PMSM) is designed with the concentrated single-layer winding, which is able to operate at dual-redundant and fault tolerant modes.Furthermore, the position servo performances of the six-phase PMSM at dual-redundant and fault tolerant modes are analyzed, including the normal and fault conditions. In addition, a variable structure proportional-integral-derivative(PID) control strategy is proposed to solve the performance degradation problem caused by phase current saturation. Simulation and experimental results show that the fault tolerant PMSM has a better position servo performance than the dual-redundant PMSM, and the variable structure PID control strategy is able to improve the performance due to phase current saturation.展开更多
基金Supported by the National Natural Science Foundation of China (No.60574038) and the Open Project Program of the State KeyLaboratory of Bioreactor Engineering/ECUST.
文摘To track the rapidly changing temperature profiles of thermal cycling of polymerase chain reaction (PCR) accurately, an innovative feedforward variable structural proportional-integral-derivative (FVSPID) controller was developed. Based on the step response test data of the heat block, a reduced first order model was estabfished at different operating points. Based on the reduced model, the FVSPID controller combined a feedforward path with the variable structural proportional-integral-derivative (PID) control. The modified feedforward action provided directly the optimal predictive power for the desired setpoint to speed up the dynamic response. To cooperate with the feedforward action, a variable structural PID was applied, where the P mode was used in the case of the largest errors to speed up response, whereas the PD mode was used in the case of larger errors to suppress overshoot, and finally the PID mode was applied for small error conditions to eliminate the steady state offset. Experimental results illustrated that compared to the conventional PID controller, the FVSPID controller can not only reduce the time taken to complete a standard PCR protocol, but also improve the accuracy of gene amplification.
基金supported by Aeronautical Science Foundation of China (No. 2016ZC51025)the Open Research Fund of Key Laboratory of Space Utilization, Chinese Academy of Science (No. 20161201)
文摘With the development of more/all electrical aircraft technology, an electro-mechanical actuator(EMA) is more and more used in an aircraft actuation system. The motor system, as the crucial part of an EMA, usually adopts the redundancy technology or fault tolerance technology to improve the reliability. To compare the performances of these two motor systems, a 10-pole/12-slot six-phase permanent magnet synchronous motor(PMSM) is designed with the concentrated single-layer winding, which is able to operate at dual-redundant and fault tolerant modes.Furthermore, the position servo performances of the six-phase PMSM at dual-redundant and fault tolerant modes are analyzed, including the normal and fault conditions. In addition, a variable structure proportional-integral-derivative(PID) control strategy is proposed to solve the performance degradation problem caused by phase current saturation. Simulation and experimental results show that the fault tolerant PMSM has a better position servo performance than the dual-redundant PMSM, and the variable structure PID control strategy is able to improve the performance due to phase current saturation.