The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is in...The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is introduced,which is the variable projection order Ekblom norm-promoted adaptive algorithm(VPO-EPAA).The method begins by examining the mean squared deviation(MSD)of the EPAA,deriving a formula for its MSD.Next,it compares the MSD of EPAA at two different projection orders and selects the one that minimizes the MSD as the parameter for the current iteration.Furthermore,the algorithm’s computational complexity is analyzed theoretically.Simulation results from system identification and self-interference cancellation show that the proposed algorithm performs exceptionally well in airborne radar signal self-interference cancellation,even under various noise intensities and types of interference.展开更多
Satisfactory results cannot be obtained when three-dimensional (3D) targets with complex maneuvering characteristics are tracked by the commonly used two-dimensional coordinated turn (2DCT) model. To address the probl...Satisfactory results cannot be obtained when three-dimensional (3D) targets with complex maneuvering characteristics are tracked by the commonly used two-dimensional coordinated turn (2DCT) model. To address the problem of 3D target tracking with strong maneuverability, on the basis of the modified three-dimensional variable turn (3DVT) model, an adaptive tracking algorithm is proposed by combining with the cubature Kalman filter (CKF) in this paper. Through ideology of real-time identification, the parameters of the model are changed to adjust the state transition matrix and the state noise covariance matrix. Therefore, states of the target are matched in real-time to achieve the purpose of adaptive tracking. Finally, four simulations are analyzed in different settings by the Monte Carlo method. All results show that the proposed algorithm can update parameters of the model and identify motion characteristics in real-time when targets tracking also has a better tracking accuracy.展开更多
We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponen...We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponential distributions.Whenever the server is available,it admits the retrial customers into service based on a first-come first-served rule.The service rate adjusts in real-time based on the retrial queue length.An iterative algorithm is proposed to numerically solve the personal optimal problem in the fully observable scenario.Furthermore,we investigate the impact of parameters on the social optimal threshold.The effectiveness of the results is illustrated by two examples.展开更多
A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization f...A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization factor(RF) is then employed to control the contribution made by the MD constraint in the cost function. Analysis results show that the RF can be taken as a combination of the step size and regularization parameter in the conventional NLMS. This implies that these parameters can be jointly controlled by simply tuning the RF as the proposed algorithm does. It also demonstrates that the RF can accelerate the convergence rate of the proposed algorithm and its optimal value can be obtained by minimizing the squared noise-free posteriori error. A method for automatically determining the value of the RF is also presented, which is free of any prior knowledge of the noise. While simulation results verify the analytical ones, it is also illustrated that the performance of the proposed algorithm is superior to the state-of-art ones in both the steady-state misalignment and the convergence rate. A novel algorithm is proposed to solve some problems. Simulation results show the effectiveness of the proposed algorithm.展开更多
The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and sym...The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and symbolic function and step size factor is proposed.It establishes a new updating method of step factor that is related to step factor and error signal.This work makes an analysis from 3 aspects:theoretical analysis,theoretical verification and specific experiments.The experimental results show that the proposed algorithm is superior to other variable step size algorithms in convergence speed and steady-state error.展开更多
This paper proposes a robust adaptive filter based on the exponent sin cost to improve the capability against Gaussian or multiple types of non-Gaussian noises of the adaptive filtering algorithm when dealing with tim...This paper proposes a robust adaptive filter based on the exponent sin cost to improve the capability against Gaussian or multiple types of non-Gaussian noises of the adaptive filtering algorithm when dealing with time-varying/time-invariant linear systems function exponent sin(ExpSin).Then a variable step-size(VSS)-ExpSin algorithm is extended further.Besides,the stepsize,the convergence,and the steady-state performance of the proposed algorithm are validated experimentally.The Monte Carlo simulation results of linear system identification illustrate the principle and efficiency of this proposed adaptive filtering algorithm.Results suggest that the proposed adaptive filtering algorithm has superior performance when estimating the unknown linear systems under multiple-types measurement noises.展开更多
A new variable step-size algorithm for a second-order lattice form structure adaptive infinite impulse response (IIR) notch filter to detection and estimation frequency of sinusoids in Gaussian noises is proposed. U...A new variable step-size algorithm for a second-order lattice form structure adaptive infinite impulse response (IIR) notch filter to detection and estimation frequency of sinusoids in Gaussian noises is proposed. Utilizing least square kurtosis of output signals as a cost function, the new gradient-based algorithm to update frequency of the adaptive IIR notch filter and the new variable step-size algorithm are given. The computer simulation results show that the proposed algorithm has better ability in suppressing colored Gaussian noises and better accuracy in estimating parameters at low SNR than previous algorithms.展开更多
In order to de-noise and filter the acoustic emission(AE) signal, the adaptive filtering technology is applied to AE signal processing in view of the special attenuation characteristics of burst AE signal. According t...In order to de-noise and filter the acoustic emission(AE) signal, the adaptive filtering technology is applied to AE signal processing in view of the special attenuation characteristics of burst AE signal. According to the contradiction between the convergence speed and steady-state error of the traditional least mean square(LMS) adaptive filter, an improved LMS adaptive filtering algorithm with variable iteration step is proposed on the basis of the existing algorithms. Based on the Sigmoid function, an expression with three parameters is constructed by function translation and symmetric transformation.As for the error mutation, e(k) and e(k-1) are combined to control the change of the iteration step. The selection and adjustment process of each parameter is described in detail, and the MSE is used to evaluate the performance. The simulation results show that the proposed algorithm significantly increases the convergence speed, reduces the steady-state error, and improves the performance of the adaptive filter. The improved algorithm is applied to the AE signal processing, and the experimental signal is demodulated by an empirical mode decomposition(EMD) envelope to obtain the upper and lower envelopes. Then, the expected function related to the AE signal is established. Finally, the improved algorithm is substituted into the adaptive filter to filter the AE signal. A good result is achieved, which proves the feasibility of adaptive filtering technology in AE signal processing.展开更多
This paper focuses on fixed-interval smoothing for stochastic hybrid systems.When the truth-mode mismatch is encountered,existing smoothing methods based on fixed structure of model-set have significant performance de...This paper focuses on fixed-interval smoothing for stochastic hybrid systems.When the truth-mode mismatch is encountered,existing smoothing methods based on fixed structure of model-set have significant performance degradation and are inapplicable.We develop a fixedinterval smoothing method based on forward-and backward-filtering in the Variable Structure Multiple Model(VSMM)framework in this paper.We propose to use the Simplified Equivalent model Interacting Multiple Model(SEIMM)in the forward and the backward filters to handle the difficulty of different mode-sets used in both filters,and design a re-filtering procedure in the model-switching stage to enhance the estimation performance.To improve the computational efficiency,we make the basic model-set adaptive by the Likely-Model Set(LMS)algorithm.It turns out that the smoothing performance is further improved by the LMS due to less competition among models.Simulation results are provided to demonstrate the better performance and the computational efficiency of our proposed smoothing algorithms.展开更多
In issues like hearing impairment,speech therapy and hearing aids play a major role in reducing the impairment.Removal of noise signals from speech signals is a key task in hearing aids as well as in speech therapy.Du...In issues like hearing impairment,speech therapy and hearing aids play a major role in reducing the impairment.Removal of noise signals from speech signals is a key task in hearing aids as well as in speech therapy.During the transmission of speech signals,several noise components contaminate the actual speech components.This paper addresses a new adaptive speech enhancement(ASE)method based on a modified version of singular spectrum analysis(MSSA).The MSSA generates a reference signal for ASE and makes the ASE is free from feeding reference component.The MSSA adopts three key steps for generating the reference from the contaminated speech only.These are decomposition,grouping and reconstruction.The generated reference is taken as a reference for variable size adaptive learning algorithms.In this work two categories of adaptive learning algorithms are used.They are step variable adaptive learning(SVAL)algorithm and time variable step size adaptive learning(TVAL).Further,sign regressor function is applied to adaptive learning algorithms to reduce the computational complexity of the proposed adaptive learning algorithms.The performance measures of the proposed schemes are calculated in terms of signal to noise ratio improvement(SNRI),excess mean square error(EMSE)and misadjustment(MSD).For cockpit noise these measures are found to be 29.2850,-27.6060 and 0.0758 dB respectively during the experiments using SVAL algorithm.By considering the reduced number of multiplications the sign regressor version of SVAL based ASE method is found to better then the counter parts.展开更多
A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in...A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in conventional models and algorithms for the optimization of the structural topology. Its application to truss topological optimization with stress and displacement constraints is satisfactory, with convergence faster than that of sectional optimizations.展开更多
A novel adaptive non-linear mapping (ANLM), integrating an adaptive mapping error (AME) with a chaosgenetic algorithm (CGA) including chaotic variable, was proposed to overcome the deficiencies of non-linear map...A novel adaptive non-linear mapping (ANLM), integrating an adaptive mapping error (AME) with a chaosgenetic algorithm (CGA) including chaotic variable, was proposed to overcome the deficiencies of non-linear mapping (NLM). The value of AME weight factor is determined according to the relative deviation square of distance between the two mapping points and the corresponding original objects distance. The larger the relative deviation square between two distances is, the larger the value of the corresponding weight factor is. Due to chaotic mapping operator, the evolutional process of CGA makes the individuals of subgenerations distributed ergodieally in the defined space and circumvents the premature of the individuals of subgenerations. The comparison results demonstrated that the whole performance of CGA is better than that of traditional genetic algorithm. Furthermore, a typical example of mapping eight-dimenslonal olive oil samples onto two-dimensional plane was employed to verify the effectiveness of ANLM. The results showed that the topology-preserving map obtained by ANLM can well represent the classification of original objects and is much better than that obtained by NLM.展开更多
A variable step-size parameter is usually used to accelerate the convergence speed of a blind adaptive equalizer with N1 + N2 -1 coefficients where N1 and N2 are odd values. In this paper we show that improved equaliz...A variable step-size parameter is usually used to accelerate the convergence speed of a blind adaptive equalizer with N1 + N2 -1 coefficients where N1 and N2 are odd values. In this paper we show that improved equalization performance is achieved when using two blind adaptive equalizers connected in series where the first and second blind adaptive equalizer have N1 and N2 coefficients respectively compared with the case where a single blind adaptive equalizer is applied with N1 + N2 -1 coefficients. It should be pointed out that the same algorithm (cost function) is used for updating the filter taps for the different equalizers and that a fixed step-size parameter is used. Simulation results show that for the low signal to noise ratio (SNR) environment and for the case where the convergence speed is slow due to the channel characteristics, the new method has a faster convergence speed with a factor of approximately two while leaving the system with approximately the same or lower residual intersymbol interference (ISI).展开更多
With independence assumption, this paper proposes and proves the superior step-size theorem on least mean square (LMS) algorithm, from the view of minimizing mean squared error (MSE). Following the theorem we construc...With independence assumption, this paper proposes and proves the superior step-size theorem on least mean square (LMS) algorithm, from the view of minimizing mean squared error (MSE). Following the theorem we construct a parallel variable step-size LMS filters algorithm. The theoretical model of the proposed algorithm is analyzed in detail. Simulations show the proposed theoretical model is quite close to the optimal variable step-size LMS (OVS-LMS) model. The experimental learning curves of the proposed algorithm also show the fastest convergence and fine tracking performance. The proposed algorithm is therefore a good realization of the OVS-LMS model.展开更多
基金supported by the Shan⁃dong Provincial Natural Science Foundation(No.ZR2022MF314).
文摘The adaptive filtering algorithm with a fixed projection order is unable to adjust its performance in response to changes in the external environment of airborne radars.To overcome this limitation,a new approach is introduced,which is the variable projection order Ekblom norm-promoted adaptive algorithm(VPO-EPAA).The method begins by examining the mean squared deviation(MSD)of the EPAA,deriving a formula for its MSD.Next,it compares the MSD of EPAA at two different projection orders and selects the one that minimizes the MSD as the parameter for the current iteration.Furthermore,the algorithm’s computational complexity is analyzed theoretically.Simulation results from system identification and self-interference cancellation show that the proposed algorithm performs exceptionally well in airborne radar signal self-interference cancellation,even under various noise intensities and types of interference.
基金supported by the National Natural Science Foundation of China(51467013)
文摘Satisfactory results cannot be obtained when three-dimensional (3D) targets with complex maneuvering characteristics are tracked by the commonly used two-dimensional coordinated turn (2DCT) model. To address the problem of 3D target tracking with strong maneuverability, on the basis of the modified three-dimensional variable turn (3DVT) model, an adaptive tracking algorithm is proposed by combining with the cubature Kalman filter (CKF) in this paper. Through ideology of real-time identification, the parameters of the model are changed to adjust the state transition matrix and the state noise covariance matrix. Therefore, states of the target are matched in real-time to achieve the purpose of adaptive tracking. Finally, four simulations are analyzed in different settings by the Monte Carlo method. All results show that the proposed algorithm can update parameters of the model and identify motion characteristics in real-time when targets tracking also has a better tracking accuracy.
基金supported by the National Natural Science Foundation of China(Grant No.11971486)。
文摘We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponential distributions.Whenever the server is available,it admits the retrial customers into service based on a first-come first-served rule.The service rate adjusts in real-time based on the retrial queue length.An iterative algorithm is proposed to numerically solve the personal optimal problem in the fully observable scenario.Furthermore,we investigate the impact of parameters on the social optimal threshold.The effectiveness of the results is illustrated by two examples.
基金supported by the National Natural Science Foundation of China(61571131 11604055)
文摘A new normalized least mean square(NLMS) adaptive filter is first derived from a cost function, which incorporates the conventional one of the NLMS with a minimum-disturbance(MD)constraint. A variable regularization factor(RF) is then employed to control the contribution made by the MD constraint in the cost function. Analysis results show that the RF can be taken as a combination of the step size and regularization parameter in the conventional NLMS. This implies that these parameters can be jointly controlled by simply tuning the RF as the proposed algorithm does. It also demonstrates that the RF can accelerate the convergence rate of the proposed algorithm and its optimal value can be obtained by minimizing the squared noise-free posteriori error. A method for automatically determining the value of the RF is also presented, which is free of any prior knowledge of the noise. While simulation results verify the analytical ones, it is also illustrated that the performance of the proposed algorithm is superior to the state-of-art ones in both the steady-state misalignment and the convergence rate. A novel algorithm is proposed to solve some problems. Simulation results show the effectiveness of the proposed algorithm.
基金the National Natural Science Foundation of China(No.51575328,61503232).
文摘The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and symbolic function and step size factor is proposed.It establishes a new updating method of step factor that is related to step factor and error signal.This work makes an analysis from 3 aspects:theoretical analysis,theoretical verification and specific experiments.The experimental results show that the proposed algorithm is superior to other variable step size algorithms in convergence speed and steady-state error.
文摘This paper proposes a robust adaptive filter based on the exponent sin cost to improve the capability against Gaussian or multiple types of non-Gaussian noises of the adaptive filtering algorithm when dealing with time-varying/time-invariant linear systems function exponent sin(ExpSin).Then a variable step-size(VSS)-ExpSin algorithm is extended further.Besides,the stepsize,the convergence,and the steady-state performance of the proposed algorithm are validated experimentally.The Monte Carlo simulation results of linear system identification illustrate the principle and efficiency of this proposed adaptive filtering algorithm.Results suggest that the proposed adaptive filtering algorithm has superior performance when estimating the unknown linear systems under multiple-types measurement noises.
文摘A new variable step-size algorithm for a second-order lattice form structure adaptive infinite impulse response (IIR) notch filter to detection and estimation frequency of sinusoids in Gaussian noises is proposed. Utilizing least square kurtosis of output signals as a cost function, the new gradient-based algorithm to update frequency of the adaptive IIR notch filter and the new variable step-size algorithm are given. The computer simulation results show that the proposed algorithm has better ability in suppressing colored Gaussian noises and better accuracy in estimating parameters at low SNR than previous algorithms.
基金The National Natural Science Foundation of China(No.51575101)
文摘In order to de-noise and filter the acoustic emission(AE) signal, the adaptive filtering technology is applied to AE signal processing in view of the special attenuation characteristics of burst AE signal. According to the contradiction between the convergence speed and steady-state error of the traditional least mean square(LMS) adaptive filter, an improved LMS adaptive filtering algorithm with variable iteration step is proposed on the basis of the existing algorithms. Based on the Sigmoid function, an expression with three parameters is constructed by function translation and symmetric transformation.As for the error mutation, e(k) and e(k-1) are combined to control the change of the iteration step. The selection and adjustment process of each parameter is described in detail, and the MSE is used to evaluate the performance. The simulation results show that the proposed algorithm significantly increases the convergence speed, reduces the steady-state error, and improves the performance of the adaptive filter. The improved algorithm is applied to the AE signal processing, and the experimental signal is demodulated by an empirical mode decomposition(EMD) envelope to obtain the upper and lower envelopes. Then, the expected function related to the AE signal is established. Finally, the improved algorithm is substituted into the adaptive filter to filter the AE signal. A good result is achieved, which proves the feasibility of adaptive filtering technology in AE signal processing.
基金supported in part by the National Natural Science Foundation of China(No.61773306)the National Key Research and Development Plan,China(Nos.2021YFC2202600 and 2021YFC2202603)。
文摘This paper focuses on fixed-interval smoothing for stochastic hybrid systems.When the truth-mode mismatch is encountered,existing smoothing methods based on fixed structure of model-set have significant performance degradation and are inapplicable.We develop a fixedinterval smoothing method based on forward-and backward-filtering in the Variable Structure Multiple Model(VSMM)framework in this paper.We propose to use the Simplified Equivalent model Interacting Multiple Model(SEIMM)in the forward and the backward filters to handle the difficulty of different mode-sets used in both filters,and design a re-filtering procedure in the model-switching stage to enhance the estimation performance.To improve the computational efficiency,we make the basic model-set adaptive by the Likely-Model Set(LMS)algorithm.It turns out that the smoothing performance is further improved by the LMS due to less competition among models.Simulation results are provided to demonstrate the better performance and the computational efficiency of our proposed smoothing algorithms.
文摘In issues like hearing impairment,speech therapy and hearing aids play a major role in reducing the impairment.Removal of noise signals from speech signals is a key task in hearing aids as well as in speech therapy.During the transmission of speech signals,several noise components contaminate the actual speech components.This paper addresses a new adaptive speech enhancement(ASE)method based on a modified version of singular spectrum analysis(MSSA).The MSSA generates a reference signal for ASE and makes the ASE is free from feeding reference component.The MSSA adopts three key steps for generating the reference from the contaminated speech only.These are decomposition,grouping and reconstruction.The generated reference is taken as a reference for variable size adaptive learning algorithms.In this work two categories of adaptive learning algorithms are used.They are step variable adaptive learning(SVAL)algorithm and time variable step size adaptive learning(TVAL).Further,sign regressor function is applied to adaptive learning algorithms to reduce the computational complexity of the proposed adaptive learning algorithms.The performance measures of the proposed schemes are calculated in terms of signal to noise ratio improvement(SNRI),excess mean square error(EMSE)and misadjustment(MSD).For cockpit noise these measures are found to be 29.2850,-27.6060 and 0.0758 dB respectively during the experiments using SVAL algorithm.By considering the reduced number of multiplications the sign regressor version of SVAL based ASE method is found to better then the counter parts.
基金The project supported by State Key Laboratory of Structural Analyses of Industrial Equipment
文摘A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in conventional models and algorithms for the optimization of the structural topology. Its application to truss topological optimization with stress and displacement constraints is satisfactory, with convergence faster than that of sectional optimizations.
基金Supported by the National Natural Science Foun-dation of China (20506003) the National Basic Research ProgramofChina (973 Program2002CB312200) the ShangHai Science andTechnology of Phosphor of China (04QMX1433)
文摘A novel adaptive non-linear mapping (ANLM), integrating an adaptive mapping error (AME) with a chaosgenetic algorithm (CGA) including chaotic variable, was proposed to overcome the deficiencies of non-linear mapping (NLM). The value of AME weight factor is determined according to the relative deviation square of distance between the two mapping points and the corresponding original objects distance. The larger the relative deviation square between two distances is, the larger the value of the corresponding weight factor is. Due to chaotic mapping operator, the evolutional process of CGA makes the individuals of subgenerations distributed ergodieally in the defined space and circumvents the premature of the individuals of subgenerations. The comparison results demonstrated that the whole performance of CGA is better than that of traditional genetic algorithm. Furthermore, a typical example of mapping eight-dimenslonal olive oil samples onto two-dimensional plane was employed to verify the effectiveness of ANLM. The results showed that the topology-preserving map obtained by ANLM can well represent the classification of original objects and is much better than that obtained by NLM.
文摘A variable step-size parameter is usually used to accelerate the convergence speed of a blind adaptive equalizer with N1 + N2 -1 coefficients where N1 and N2 are odd values. In this paper we show that improved equalization performance is achieved when using two blind adaptive equalizers connected in series where the first and second blind adaptive equalizer have N1 and N2 coefficients respectively compared with the case where a single blind adaptive equalizer is applied with N1 + N2 -1 coefficients. It should be pointed out that the same algorithm (cost function) is used for updating the filter taps for the different equalizers and that a fixed step-size parameter is used. Simulation results show that for the low signal to noise ratio (SNR) environment and for the case where the convergence speed is slow due to the channel characteristics, the new method has a faster convergence speed with a factor of approximately two while leaving the system with approximately the same or lower residual intersymbol interference (ISI).
文摘With independence assumption, this paper proposes and proves the superior step-size theorem on least mean square (LMS) algorithm, from the view of minimizing mean squared error (MSE). Following the theorem we construct a parallel variable step-size LMS filters algorithm. The theoretical model of the proposed algorithm is analyzed in detail. Simulations show the proposed theoretical model is quite close to the optimal variable step-size LMS (OVS-LMS) model. The experimental learning curves of the proposed algorithm also show the fastest convergence and fine tracking performance. The proposed algorithm is therefore a good realization of the OVS-LMS model.