The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and sym...The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and symbolic function and step size factor is proposed.It establishes a new updating method of step factor that is related to step factor and error signal.This work makes an analysis from 3 aspects:theoretical analysis,theoretical verification and specific experiments.The experimental results show that the proposed algorithm is superior to other variable step size algorithms in convergence speed and steady-state error.展开更多
This paper puts forward a new variable step size LMS adaptive algorithm based on variable region. The step size p(k) in the algorithm varies with the variation of the region of deviation e (k) to ensure the optimi...This paper puts forward a new variable step size LMS adaptive algorithm based on variable region. The step size p(k) in the algorithm varies with the variation of the region of deviation e (k) to ensure the optimization of the three performance objectives including initial convergent speed, trace ability of the time-varying system and steady disregulation. The paper demonstrates the convergence of the algorithm accompanied by random noise,展开更多
The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a ...The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a training sequence,a blind equalization channel is implemented in the receiver to increase the throughput of the system. To improve the performances of both the blind equalizer and the system,a joint receiving mechanismincluding variable step size( VSS) modified constant modulus algorithms( MC-MA) and modified decision directed modulus algorithms( MD DMA) is proposed to ameliorate the convergence speed and mean square error( MSE) performance and combat the phase error when using high order QAM modulation. The VSS scheme is based on the selection of step size according to the distance between the output of the equalizer and the desired output in the constellation plane. Analysis and simulations showthat the performance of the proposed VSS-MCMA-MD DMA mechanismis better than that of algorithms with a fixed step size. In addition,the MCMA-MDDMA with VSS can performthe phase recovery by itself.展开更多
In order to improve the problem that the filtered-x least mean square(FxLMS)algorithm cannot take into account the convergence speed,steady-state error during active noise control.A piecewise variable step size FxLMS ...In order to improve the problem that the filtered-x least mean square(FxLMS)algorithm cannot take into account the convergence speed,steady-state error during active noise control.A piecewise variable step size FxLMS algorithm based on logarithmic function(PLFxLMS)is proposed,and the genetic algorithm are introduced to optimize the parameters of logarithmic variable step size FxLMS(LFxLMS),improved logarithmic variable step size Films(IFxLMS),and PLFxLMS algorithms.Bandlimited white noise is used as the input signal,FxLMS,LFxLMS,ILFxLMS,and PLFxLMS algorithms are used to conduct active noise control simulation,and the convergence speed and steady-state characteristic of four algorithms are comparatively analyzed.Compared with the other three algorithms,the PLFxLMS algorithm proposed in this paper has the fastest convergence speed,and small steady-state error.The PLFxLMS algorithm can effectively improve the convergence speed and steady-state error of the FxLMS algorithm that cannot be controlled at the same time,and achieve the optimal effect.展开更多
Compared with vertical and horizontal wells, the solution and computation of transient pressure responses of slanted wells are more complex. Vertical and horizontal wells are both simplified cases of slanted wells at ...Compared with vertical and horizontal wells, the solution and computation of transient pressure responses of slanted wells are more complex. Vertical and horizontal wells are both simplified cases of slanted wells at particular inclination, so the model for slanted wells is more general and more complex than other models for vertical and horizontal wells. Many authors have studied unsteady-state flow of fluids in slanted wells and various solutions have been proposed. However, until now, few of the published results pertain to the computational efficiency. Whether in the time domain or in the Laplace domain, the computation of integration of complex functions is necessary in obtaining pressure responses of slanted wells, while the computation of the integration is complex and time-consuming. To obtain a perfect type curve the computation time is unacceptable even with an aid of high-speed computers. The purpose of this paper is to present an efficient algorithm to compute transient pressure distributions caused by slanted wells in reservoirs. Based on rigorous derivation, the transient pressure solution for slanted wells of any inclination angle is presented. Assuming an infinite-conductivity wellbore, the location of the equivalent-pressure point is determined. More importantly, according to the characteristics of the integrand in a transient pressure solution for slanted wells, the whole integral interval is partitioned into several small integral intervals, and then the method of variable substitution and the variable step-size piecewise numerical integration are employed. The amount of computation is significantly reduced and the computational efficiency is greatly improved. The algorithm proposed in this paper thoroughly solved the difficulty in the efficient and high-speed computation of transient pressure distribution of slanted wells with any inclination angle.展开更多
With independence assumption, this paper proposes and proves the superior step-size theorem on least mean square (LMS) algorithm, from the view of minimizing mean squared error (MSE). Following the theorem we construc...With independence assumption, this paper proposes and proves the superior step-size theorem on least mean square (LMS) algorithm, from the view of minimizing mean squared error (MSE). Following the theorem we construct a parallel variable step-size LMS filters algorithm. The theoretical model of the proposed algorithm is analyzed in detail. Simulations show the proposed theoretical model is quite close to the optimal variable step-size LMS (OVS-LMS) model. The experimental learning curves of the proposed algorithm also show the fastest convergence and fine tracking performance. The proposed algorithm is therefore a good realization of the OVS-LMS model.展开更多
针对目前定步长和变步长最小均方(Least Mean Square,LMS)算法在设计低通滤波器时面临稳态精度和响应速度二者无法同时保障的问题,设计了一种基于改进变步长LMS算法的自适应滤波器。为获得较高的稳态精度和响应速度,该算法设计过程中引...针对目前定步长和变步长最小均方(Least Mean Square,LMS)算法在设计低通滤波器时面临稳态精度和响应速度二者无法同时保障的问题,设计了一种基于改进变步长LMS算法的自适应滤波器。为获得较高的稳态精度和响应速度,该算法设计过程中引入了改进双曲正切函数用以实现对步长因子及误差信号的连续调节。利用MATLAB/Simulink仿真软件对改进变步长LMS算法下的自适应滤波器进行仿真验证。结果表明,在该算法下设计的滤波器不仅能够响应速度快,而且还能获得较高的稳态精度。展开更多
为了改进现有的变步长最小均方误差(least mean square,LMS)算法在低信噪比时性能较差的缺陷,提出了一种基于改进的双曲正切函数的变步长LMS算法,从理论分析和仿真实验两方面讨论了引入参数对算法收敛性、跟踪性、稳定性的影响及算法的...为了改进现有的变步长最小均方误差(least mean square,LMS)算法在低信噪比时性能较差的缺陷,提出了一种基于改进的双曲正切函数的变步长LMS算法,从理论分析和仿真实验两方面讨论了引入参数对算法收敛性、跟踪性、稳定性的影响及算法的抗干扰性。理论分析和仿真实验表明该算法在高低信噪比时均具有较快的收敛速度和跟踪速度以及较小的稳态误差和稳态失调,并且在低信噪比时该算法的收敛性、跟踪性、稳态性均优于其他多种变步长算法。展开更多
基金the National Natural Science Foundation of China(No.51575328,61503232).
文摘The contradiction of variable step size least mean square(LMS)algorithm between fast convergence speed and small steady-state error has always existed.So,a new algorithm based on the combination of logarithmic and symbolic function and step size factor is proposed.It establishes a new updating method of step factor that is related to step factor and error signal.This work makes an analysis from 3 aspects:theoretical analysis,theoretical verification and specific experiments.The experimental results show that the proposed algorithm is superior to other variable step size algorithms in convergence speed and steady-state error.
基金Supported by Natural Science Foundation of Beijing of China (No.2005AA501140)
文摘This paper puts forward a new variable step size LMS adaptive algorithm based on variable region. The step size p(k) in the algorithm varies with the variation of the region of deviation e (k) to ensure the optimization of the three performance objectives including initial convergent speed, trace ability of the time-varying system and steady disregulation. The paper demonstrates the convergence of the algorithm accompanied by random noise,
基金Supported by the National Natural Science Foundation of China(6100201461101129+1 种基金6122700161072050)
文摘The problem of inter symbol interference( ISI) in wireless communication systems caused by multipath propagation when using high order modulation like M-Q AMis solved. Since the wireless receiver doesn't require a training sequence,a blind equalization channel is implemented in the receiver to increase the throughput of the system. To improve the performances of both the blind equalizer and the system,a joint receiving mechanismincluding variable step size( VSS) modified constant modulus algorithms( MC-MA) and modified decision directed modulus algorithms( MD DMA) is proposed to ameliorate the convergence speed and mean square error( MSE) performance and combat the phase error when using high order QAM modulation. The VSS scheme is based on the selection of step size according to the distance between the output of the equalizer and the desired output in the constellation plane. Analysis and simulations showthat the performance of the proposed VSS-MCMA-MD DMA mechanismis better than that of algorithms with a fixed step size. In addition,the MCMA-MDDMA with VSS can performthe phase recovery by itself.
文摘In order to improve the problem that the filtered-x least mean square(FxLMS)algorithm cannot take into account the convergence speed,steady-state error during active noise control.A piecewise variable step size FxLMS algorithm based on logarithmic function(PLFxLMS)is proposed,and the genetic algorithm are introduced to optimize the parameters of logarithmic variable step size FxLMS(LFxLMS),improved logarithmic variable step size Films(IFxLMS),and PLFxLMS algorithms.Bandlimited white noise is used as the input signal,FxLMS,LFxLMS,ILFxLMS,and PLFxLMS algorithms are used to conduct active noise control simulation,and the convergence speed and steady-state characteristic of four algorithms are comparatively analyzed.Compared with the other three algorithms,the PLFxLMS algorithm proposed in this paper has the fastest convergence speed,and small steady-state error.The PLFxLMS algorithm can effectively improve the convergence speed and steady-state error of the FxLMS algorithm that cannot be controlled at the same time,and achieve the optimal effect.
基金financial support from the special fund of China’s central government for the development of local colleges and universities―the project of national first-level discipline in Oil and Gas Engineering, the National Science Fund for Distinguished Young Scholars of China (Grant No. 51125019)the National Program on Key fundamental Research Project (973 Program, Grant No. 2011CB201005)
文摘Compared with vertical and horizontal wells, the solution and computation of transient pressure responses of slanted wells are more complex. Vertical and horizontal wells are both simplified cases of slanted wells at particular inclination, so the model for slanted wells is more general and more complex than other models for vertical and horizontal wells. Many authors have studied unsteady-state flow of fluids in slanted wells and various solutions have been proposed. However, until now, few of the published results pertain to the computational efficiency. Whether in the time domain or in the Laplace domain, the computation of integration of complex functions is necessary in obtaining pressure responses of slanted wells, while the computation of the integration is complex and time-consuming. To obtain a perfect type curve the computation time is unacceptable even with an aid of high-speed computers. The purpose of this paper is to present an efficient algorithm to compute transient pressure distributions caused by slanted wells in reservoirs. Based on rigorous derivation, the transient pressure solution for slanted wells of any inclination angle is presented. Assuming an infinite-conductivity wellbore, the location of the equivalent-pressure point is determined. More importantly, according to the characteristics of the integrand in a transient pressure solution for slanted wells, the whole integral interval is partitioned into several small integral intervals, and then the method of variable substitution and the variable step-size piecewise numerical integration are employed. The amount of computation is significantly reduced and the computational efficiency is greatly improved. The algorithm proposed in this paper thoroughly solved the difficulty in the efficient and high-speed computation of transient pressure distribution of slanted wells with any inclination angle.
文摘With independence assumption, this paper proposes and proves the superior step-size theorem on least mean square (LMS) algorithm, from the view of minimizing mean squared error (MSE). Following the theorem we construct a parallel variable step-size LMS filters algorithm. The theoretical model of the proposed algorithm is analyzed in detail. Simulations show the proposed theoretical model is quite close to the optimal variable step-size LMS (OVS-LMS) model. The experimental learning curves of the proposed algorithm also show the fastest convergence and fine tracking performance. The proposed algorithm is therefore a good realization of the OVS-LMS model.
文摘针对目前定步长和变步长最小均方(Least Mean Square,LMS)算法在设计低通滤波器时面临稳态精度和响应速度二者无法同时保障的问题,设计了一种基于改进变步长LMS算法的自适应滤波器。为获得较高的稳态精度和响应速度,该算法设计过程中引入了改进双曲正切函数用以实现对步长因子及误差信号的连续调节。利用MATLAB/Simulink仿真软件对改进变步长LMS算法下的自适应滤波器进行仿真验证。结果表明,在该算法下设计的滤波器不仅能够响应速度快,而且还能获得较高的稳态精度。
文摘为了改进现有的变步长最小均方误差(least mean square,LMS)算法在低信噪比时性能较差的缺陷,提出了一种基于改进的双曲正切函数的变步长LMS算法,从理论分析和仿真实验两方面讨论了引入参数对算法收敛性、跟踪性、稳定性的影响及算法的抗干扰性。理论分析和仿真实验表明该算法在高低信噪比时均具有较快的收敛速度和跟踪速度以及较小的稳态误差和稳态失调,并且在低信噪比时该算法的收敛性、跟踪性、稳态性均优于其他多种变步长算法。