期刊文献+
共找到280篇文章
< 1 2 14 >
每页显示 20 50 100
Numerical Treatments for Crossover Cancer Model of Hybrid Variable-Order Fractional Derivatives
1
作者 Nasser Sweilam Seham Al-Mekhlafi +2 位作者 Aya Ahmed Ahoud Alsheri Emad Abo-Eldahab 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1619-1645,共27页
In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators... In this paper,two crossover hybrid variable-order derivatives of the cancer model are developed.Grünwald-Letnikov approximation is used to approximate the hybrid fractional and variable-order fractional operators.The existence,uniqueness,and stability of the proposed model are discussed.Adams Bashfourth’s fifth-step method with a hybrid variable-order fractional operator is developed to study the proposed models.Comparative studies with generalized fifth-order Runge-Kutta method are given.Numerical examples and comparative studies to verify the applicability of the used methods and to demonstrate the simplicity of these approximations are presented.We have showcased the efficiency of the proposed method and garnered robust empirical support for our theoretical findings. 展开更多
关键词 Cancer diseases hybrid variable-order fractional derivatives adams bashfourth fifth step generalized fifth order runge-kutta method
在线阅读 下载PDF
Optimized Runge-Kutta Methods with Automatic Step Size Control for Compressible Computational Fluid Dynamics
2
作者 Hendrik Ranocha Lisandro Dalcin +1 位作者 Matteo Parsani David I.Ketcheson 《Communications on Applied Mathematics and Computation》 2022年第4期1191-1228,共38页
We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusi... We develop error-control based time integration algorithms for compressible fluid dynam-ics(CFD)applications and show that they are efficient and robust in both the accuracy-limited and stability-limited regime.Focusing on discontinuous spectral element semidis-cretizations,we design new controllers for existing methods and for some new embedded Runge-Kutta pairs.We demonstrate the importance of choosing adequate controller parameters and provide a means to obtain these in practice.We compare a wide range of error-control-based methods,along with the common approach in which step size con-trol is based on the Courant-Friedrichs-Lewy(CFL)number.The optimized methods give improved performance and naturally adopt a step size close to the maximum stable CFL number at loose tolerances,while additionally providing control of the temporal error at tighter tolerances.The numerical examples include challenging industrial CFD applications. 展开更多
关键词 Explicit runge-kutta methods step size control Compressible Euler equations Compressible Navier-Stokes equations hp-adaptive spatial discretizations
在线阅读 下载PDF
Stress Function of a Rotating Variable-Thickness Annular Disk Using Exact and Numerical Methods
3
作者 Ashraf M. Zenkour Daoud S. Mashat 《Engineering(科研)》 2011年第4期422-430,共9页
In this paper, the exact analytical and numerical solutions for rotating variable-thickness annular disk are presented. The inner and outer edges of the rotating variable-thickness annular disk are considered to have ... In this paper, the exact analytical and numerical solutions for rotating variable-thickness annular disk are presented. The inner and outer edges of the rotating variable-thickness annular disk are considered to have free boundary conditions. Two different annular disks for the radially varying thickness are given. The numerical Runge-Kutta solution as well as the exact analytical solution is available for the first disk while the exact analytical solution is not available for the second annular disk. Both exact and numerical results for stress function, stresses, strains and radial displacement will be investigated for the first annular disk of variable thickness. The accuracy of the present numerical solution is discussed and its ability of use for the second rotating variable-thickness annular disk is investigated. Finally, the distributions of stress function, displacement, strains, and stresses will be presented. The appropriate comparisons and discussions are made at the same angular velocity. 展开更多
关键词 ROTATING ANNULAR DISK variable Thickness runge-kutta method
在线阅读 下载PDF
EFFICIENT ESTIMATION OF FUNCTIONAL-COEFFICIENT REGRESSION MODELS WITH DIFFERENT SMOOTHING VARIABLES 被引量:5
4
作者 张日权 李国英 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期989-997,共9页
In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the l... In this article,a procedure for estimating the coefficient functions on the functional-coefficient regression models with different smoothing variables in different coefficient functions is defined.First step,by the local linear technique and the averaged method,the initial estimates of the coefficient functions are given.Second step,based on the initial estimates,the efficient estimates of the coefficient functions are proposed by a one-step back-fitting procedure.The efficient estimators share the same asymptotic normalities as the local linear estimators for the functional-coefficient models with a single smoothing variable in different functions.Two simulated examples show that the procedure is effective. 展开更多
关键词 Asymptotic normality averaged method different smoothing variables functional-coefficient regression models local linear method one-step back-fitting procedure
在线阅读 下载PDF
Parallel iteration methods of Runge-Kutta methods for delay differential equations
5
作者 丁效华 刘明珠 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2004年第1期77-81,共5页
This paper deals with the parallel diagonal implicit Runge-Kutta methods for solving DDEs with a constant delay. It is shown that the suitable choice of the predictor matrix can guarantee the stability of the methods.... This paper deals with the parallel diagonal implicit Runge-Kutta methods for solving DDEs with a constant delay. It is shown that the suitable choice of the predictor matrix can guarantee the stability of the methods. It is proved that for the suitable selection of the diagonal matrix D, the method based on Radau IIA is δ-convergent, and the estimates for the non-stiff speed and the stiff speed of convergence are given. 展开更多
关键词 runge-kutta methods Parallelism across the steps PDIRK methods
在线阅读 下载PDF
NONLINEAR STABILITY OF TRUNCATED SHALLOW SPHERICALSHELL WITH VARIABLE THICKNESS UNDERUNIFORMLY DISTRIBUTED LOAD
6
作者 严圣平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第10期0-0,0-0+0-0,共6页
In this paper, to begin with. the nonlinear differential equations of a truncaled shallow spherical shell with variable thickness under uniformal distributed load are linearized by step-by-step loading method. The lin... In this paper, to begin with. the nonlinear differential equations of a truncaled shallow spherical shell with variable thickness under uniformal distributed load are linearized by step-by-step loading method. The linear differential equations can be solved by spline collocanon method. Critical loads have been obtained accordingly. 展开更多
关键词 truncated shallow spherical shell with variable thickness nonlinear stability step-by-step loading method spline collocation method
在线阅读 下载PDF
GRACE-FO动力学一步法时变重力场反演
7
作者 张佳辉 游为 +2 位作者 万祥禹 余彪 范东明 《地球物理学报》 北大核心 2025年第9期3338-3352,共15页
相较于传统的两步法,动力学一步法能充分利用观测数据的原始信息,理论上可获得更合理的时变重力场产品,同时也因其涉及的参数维度更多样、函数模型更复杂,一直是当前研究的热点和难点.本文研究并实现了动力学一步法恢复时变重力场,给出... 相较于传统的两步法,动力学一步法能充分利用观测数据的原始信息,理论上可获得更合理的时变重力场产品,同时也因其涉及的参数维度更多样、函数模型更复杂,一直是当前研究的热点和难点.本文研究并实现了动力学一步法恢复时变重力场,给出了合理的数据处理策略,而后基于GRACE-FO(GRACE Follow-On)星载GPS数据和KBR(K/Ka Band Ranging)距离变率数据反演了2021—2022年60阶全球月时变重力场模型.对于一步法中诸多技术细节,本文重点分析了先验权和经验参数对轨道确定和模型反演的影响,研究表明:当采用30 s采样率的GPS数据时,需适当对GPS数据降权,以免引入过多噪声,码伪距、载波相位和KBR距离变率数据的先验权比应为1:104:1014;为了保证轨道和模型质量,在反演过程中有必要引入经验参数以吸收残余的摄动力误差,相较其他经验参数(分段周期经验加速度、几何经验参数),分段常经验加速度在保证定轨精度的同时可更有效地吸收模型中的噪声.此外,在采用相同动力学参数配置时,动力学一步法反演的时变重力场模型无论是与官方模型的一致性还是内符合精度均优于两步法.最后,综合评估了整个时间跨度的轨道和时变重力场模型质量,结果显示,动力学一步法确定的轨道可满足厘米级需求,双星的卫星激光测距残差标准差均为1.6 cm,重力场模型与官方机构CSR(Center for Space Research)、JPL(Jet Propulsion Laboratory)、GFZ(GeoForschungsZentrum Potsdam)最新发布的RL06.1模型一致性较好,在保留完整时变信号特征的前提下,噪声表现与CSR模型相当,优于JPL、GFZ模型. 展开更多
关键词 动力学一步法 GRACE-FO 时变重力场
在线阅读 下载PDF
一种改进MPPT的四级充电控制策略
8
作者 许晓辉 李海虹 +1 位作者 张彬 张延军 《电子测量技术》 北大核心 2025年第2期49-56,共8页
针对传统蓄电池三级充电方式存在的功率输入不稳定、随机性大的问题,本研究提出一种基于扰动观察法(POM)的变步长扰动观察法的最大功率点追踪(VSS-POM-MPPT)算法与四级充电算法相结合的光伏储能充电控制策略。通过搭建光伏模型,对VSS-PO... 针对传统蓄电池三级充电方式存在的功率输入不稳定、随机性大的问题,本研究提出一种基于扰动观察法(POM)的变步长扰动观察法的最大功率点追踪(VSS-POM-MPPT)算法与四级充电算法相结合的光伏储能充电控制策略。通过搭建光伏模型,对VSS-POM与POM的最大功率点追踪(MPPT)的跟踪速度进行对比,同时以稳压精度和稳流精度作为光伏电池为蓄电池充电时的性能评价指标。完成基于VSS-POM-MPPT算法的控制器程序设计,进行光伏电池向蓄电池充电实验验证。实验结果表明,VSS-POM-MPPT相较于POM-MPPT在追踪到最大功率点时的用时减少了0.008 s,速度提升了24.3%;实验记录的蓄电池充电数据与本研究设计的充电算法一致,稳压精度和稳流精度分别为±0.4%、±0.8%,满足电力行业标准即±(0.5%~1%)、±(1%~2%)。 展开更多
关键词 MPPT 变步长扰动观察法 四级充电控制策略 蓄电池
原文传递
变步长精细Runge-Kutta法非等温输气管道泄漏检测与定位 被引量:1
9
作者 王丽娜 高宪文 刘潭 《电机与控制学报》 EI CSCD 北大核心 2015年第1期107-112,共6页
针对复杂工况下输气管道的泄漏检测与定位准确率低、效率不高这一难题,结合等温定位法和Runge-Kutta法(龙格-库塔法)的原理及优缺点提出改进的变步长精细Runge-Kutta法。根据管道中的气体流动过程及温度的不同处理方式,以管道的温度、... 针对复杂工况下输气管道的泄漏检测与定位准确率低、效率不高这一难题,结合等温定位法和Runge-Kutta法(龙格-库塔法)的原理及优缺点提出改进的变步长精细Runge-Kutta法。根据管道中的气体流动过程及温度的不同处理方式,以管道的温度、压力和流速为参数确定步长求得管道从首端到末端各截面的参数,通过测量管道首末端的流量和压力可判定出输气管道泄漏的位置。通过对非等温气体管道的仿真实验,以泄漏率和定位精度作为评价指标,对等温定位法和变步长精细Runge-Kutta法定位效果进行了对比分析。仿真结果表明,对于非等温气体管道的泄漏,变步长精细Runge-Kutta法的检测与定位精度准效率高。 展开更多
关键词 输气管道 非等温 泄漏检测与定位 精细runge-kutta 变步长
在线阅读 下载PDF
数值方法中Runge-Kutta方法改进的探讨 被引量:6
10
作者 赵学杰 《衡水学院学报》 2014年第4期23-26,共4页
根据一阶常微分方程数值解的收敛性与稳定性,从固步长的Runge-Kutta法出发,考虑变步长的Runge-Kutta法,讨论了3种改进算法,即折半步长Runge-Kutta法、Runge-Kutta-Fehlberg法和Zadunaisky方法.并且分别讨论了3种变步长的Runge-Kutta法... 根据一阶常微分方程数值解的收敛性与稳定性,从固步长的Runge-Kutta法出发,考虑变步长的Runge-Kutta法,讨论了3种改进算法,即折半步长Runge-Kutta法、Runge-Kutta-Fehlberg法和Zadunaisky方法.并且分别讨论了3种变步长的Runge-Kutta法的精度及效率. 展开更多
关键词 数值解 runge-kutta 变步长的runge-kutta 自适应
在线阅读 下载PDF
On Error‑Based Step Size Control for Discontinuous Galerkin Methods for Compressible Fluid Dynamics
11
作者 Hendrik Ranocha Andrew R.Winters +4 位作者 Hugo Guillermo Castro Lisandro Dalcin Michael Schlottke‑Lakemper Gregor J.Gassner Matteo Parsani 《Communications on Applied Mathematics and Computation》 2025年第1期3-39,共37页
We study a temporal step size control of explicit Runge-Kutta(RK)methods for com-pressible computational fuid dynamics(CFD),including the Navier-Stokes equations and hyperbolic systems of conservation laws such as the... We study a temporal step size control of explicit Runge-Kutta(RK)methods for com-pressible computational fuid dynamics(CFD),including the Navier-Stokes equations and hyperbolic systems of conservation laws such as the Euler equations.We demonstrate that error-based approaches are convenient in a wide range of applications and compare them to more classical step size control based on a Courant-Friedrichs-Lewy(CFL)number.Our numerical examples show that the error-based step size control is easy to use,robust,and efcient,e.g.,for(initial)transient periods,complex geometries,nonlinear shock captur-ing approaches,and schemes that use nonlinear entropy projections.We demonstrate these properties for problems ranging from well-understood academic test cases to industrially relevant large-scale computations with two disjoint code bases,the open source Julia pack-ages Trixi.jl with OrdinaryDiffEq.jl and the C/Fortran code SSDC based on PETSc. 展开更多
关键词 Explicit runge-kutta(RK)methods step size control Compressible fluid dynamics Adaptivity in space and time Shock capturing
在线阅读 下载PDF
定日镜场布局的优化设计
12
作者 谢方钰 徐晓宇 +1 位作者 王琪 刘伟 《能源工程》 2025年第5期58-65,共8页
为获得塔式太阳能发热发电系统中定日镜高度的最优取值,在EB布局的基础上,建立了以单位镜面面积年平均输出热功率最大为目标函数的数学模型,并运用变步长遍历算法对其进行求解,得到镜场的最优布局策略。在计算光学效率中的遮挡效率时,... 为获得塔式太阳能发热发电系统中定日镜高度的最优取值,在EB布局的基础上,建立了以单位镜面面积年平均输出热功率最大为目标函数的数学模型,并运用变步长遍历算法对其进行求解,得到镜场的最优布局策略。在计算光学效率中的遮挡效率时,提出在几何投影法的基础上引入遮挡判断矩形的方法,降低了问题的复杂度,简化了计算。采用HFLCAL模型计算集热器的截断效率,使得结果更加精准。最后运用误差分析法对模型进行检验,证明了模型的可行性,可予以推广并应用到实际生产生活中。 展开更多
关键词 定日镜场 变步长遍历算法 HFLCAL模型 几何投影法 误差分析法
在线阅读 下载PDF
基于MPPT技术的双轴太阳能光伏发电最大功率跟踪研究
13
作者 于建国 《粘接》 2025年第8期123-126,共4页
当双轴太阳能光伏发电系统在光照条件不均匀或发生快速变化时,整体输出电流发生变化,最大功率点也会随之移动,使得最大功率跟踪性能较差。对此,提出基于MPPT控制的双轴太阳能光伏发电最大功率跟踪方法。首先,依据双轴太阳能光伏发电原理... 当双轴太阳能光伏发电系统在光照条件不均匀或发生快速变化时,整体输出电流发生变化,最大功率点也会随之移动,使得最大功率跟踪性能较差。对此,提出基于MPPT控制的双轴太阳能光伏发电最大功率跟踪方法。首先,依据双轴太阳能光伏发电原理,得知光照条件不均匀或发生快速变化时会导致最大功率点也会随之移动。然后,定义自适应趋近律,获取改进的MPPT跟踪控制器。利用MPPT控制器进行二次修正后,得到的最大功率修正量。最后,将经过MPPT控制后得到的最佳功率点作为参考数据,引入分段变步长概念光伏发电最大功率进行动态跟踪结果。实验结果表明:在电网稳定和不稳定状态下,新研究方法得出的最大功率跟踪结果MSE值均低于0.1,满足了光伏发电系统功率观测要求。 展开更多
关键词 MPPT控制 光伏发电 扰动观察法 分段变步长 最大功率跟踪
在线阅读 下载PDF
光伏发电系统MPPT控制策略优化
14
作者 李晓悦 《光源与照明》 2025年第10期133-135,共3页
光伏发电系统效率优化关键在于最大功率点跟踪(maximum power point tracking,MPPT)控制技术,传统算法在环境变化及部分阴影下存在局限。对此,设计了模糊逻辑控制策略与改进型变步长扰动观察法,后者通过自适应步长调节和双层搜索结构,... 光伏发电系统效率优化关键在于最大功率点跟踪(maximum power point tracking,MPPT)控制技术,传统算法在环境变化及部分阴影下存在局限。对此,设计了模糊逻辑控制策略与改进型变步长扰动观察法,后者通过自适应步长调节和双层搜索结构,标准测试条件下效率达99.3%。实验表明,该算法具备优越的动态响应、稳态精度和环境适应性,可为光伏系统高效运行提供技术支撑。 展开更多
关键词 光伏发电系统 MPPT控制 变步长扰动观察法 模糊逻辑控制
在线阅读 下载PDF
Improved finite difference method for pressure distribution of aerostatic bearing 被引量:4
15
作者 郑书飞 蒋书运 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期501-505,共5页
An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aero... An improved finite difference method (FDM)is described to solve existing problems such as low efficiency and poor convergence performance in the traditional method adopted to derive the pressure distribution of aerostatic bearings. A detailed theoretical analysis of the pressure distribution of the orifice-compensated aerostatic journal bearing is presented. The nonlinear dimensionless Reynolds equation of the aerostatic journal bearing is solved by the finite difference method. Based on the principle of flow equilibrium, a new iterative algorithm named the variable step size successive approximation method is presented to adjust the pressure at the orifice in the iterative process and enhance the efficiency and convergence performance of the algorithm. A general program is developed to analyze the pressure distribution of the aerostatic journal bearing by Matlab tool. The results show that the improved finite difference method is highly effective, reliable, stable, and convergent. Even when very thin gas film thicknesses (less than 2 Win)are considered, the improved calculation method still yields a result and converges fast. 展开更多
关键词 aerostatic bearing: pressure distribution: Reynolds equation: finite difference method variable step size
在线阅读 下载PDF
VARIABLE STEP-SIZE IMPLICIT-EXPLICIT LINEAR MULTISTEP METHODS FOR TIME-DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS 被引量:2
16
作者 DongWang Steven J. Ruuth 《Journal of Computational Mathematics》 SCIE CSCD 2008年第6期838-855,共18页
Implicit-explicit (IMEX) linear multistep methods are popular techniques for solving partial differential equations (PDEs) with terms of different types. While fixed timestep versions of such schemes have been dev... Implicit-explicit (IMEX) linear multistep methods are popular techniques for solving partial differential equations (PDEs) with terms of different types. While fixed timestep versions of such schemes have been developed and studied, implicit-explicit schemes also naturally arise in general situations where the temporal smoothness of the solution changes. In this paper we consider easily implementable variable step-size implicit-explicit (VSIMEX) linear multistep methods for time-dependent PDEs. Families of order-p, pstep VSIMEX schemes are constructed and analyzed, where p ranges from 1 to 4. The corresponding schemes are simple to implement and have the property that they reduce to the classical IMEX schemes whenever constant time step-sizes are imposed. The methods are validated on the Burgers' equation. These results demonstrate that by varying the time step-size, VSIMEX methods can outperform their fixed time step counterparts while still maintaining good numerical behavior. 展开更多
关键词 Implicit-explicit (IMEX) linear multistep methods variable step-size Zero-stability Burgers' equation.
原文传递
High Order Block Method for Third Order ODEs
17
作者 A.I.Asnor S.A.M.Yatim +1 位作者 Z.B.Ibrahim N.Zainuddin 《Computers, Materials & Continua》 SCIE EI 2021年第4期1253-1267,共15页
Many initial value problems are difficult to be solved using ordinary,explicit step-by-step methods because most of these problems are considered stiff.Certain implicit methods,however,are capable of solving stiff ord... Many initial value problems are difficult to be solved using ordinary,explicit step-by-step methods because most of these problems are considered stiff.Certain implicit methods,however,are capable of solving stiff ordinary differential equations(ODEs)usually found in most applied problems.This study aims to develop a new numerical method,namely the high order variable step variable order block backward differentiation formula(VSVOHOBBDF)for the main purpose of approximating the solutions of third order ODEs.The computational work of the VSVO-HOBBDF method was carried out using the strategy of varying the step size and order in a single code.The order of the proposed method was then discussed in detail.The advancement of this strategy is intended to enhance the efficiency of the proposed method to approximate solutions effectively.In order to confirm the efficiency of the VSVO-HOBBDF method over the two ODE solvers in MATLAB,particularly ode15s and ode23s,a numerical experiment was conducted on a set of stiff problems.The numerical results prove that for this particular set of problem,the use of the proposed method is more efficient than the comparable methods.VSVO-HOBBDF method is thus recommended as a reliable alternative solver for the third order ODEs. 展开更多
关键词 Block method stiff ODEs third order variable step variable order
在线阅读 下载PDF
Variable-step-size second-order-derivative multistep method for solving first-order ordinary differential equations in system simulation
18
作者 Lei Zhang Chaofeng Zhang Mengya Liu 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2020年第1期42-57,共16页
According to the relationship between truncation error and step size of two implicit second-order-derivative multistep formulas based on Hermite interpolation polynomial,a variable-order and variable-step-size numeric... According to the relationship between truncation error and step size of two implicit second-order-derivative multistep formulas based on Hermite interpolation polynomial,a variable-order and variable-step-size numerical method for solving differential equations is designed.The stability properties of the formulas are discussed and the stability regions are analyzed.The deduced methods are applied to a simulation problem.The results show that the numerical method can satisfy calculation accuracy,reduce the number of calculation steps and accelerate calculation speed. 展开更多
关键词 Numerical method variable step size variable order hermite interpolation ordinary differential equations
原文传递
The Effect of a Step Increase in Depth and Decay upon Dispersion of Coastal Effluent Discharges
19
作者 Abdullrahman A. Al-Muqbali Anton Purnama 《Applied Mathematics》 2022年第1期37-55,共19页
Coastal wastewater-discharged effluents contain a mixture of pollutants with decay rates that vary with water depth. Analytical models using a two-dimensional advection-diffusion equation are presented to study the ef... Coastal wastewater-discharged effluents contain a mixture of pollutants with decay rates that vary with water depth. Analytical models using a two-dimensional advection-diffusion equation are presented to study the effects of a cross-stream sudden depth change and decay on mixing and dispersing steady discharge of effluents through a sea outfall. The solutions are illustrated graphically by plotting contours of concentration, resembling snapshots of discharged effluent plumes in the far-field. Different shapes of effluent plumes are observed due to the variability of length of the step seabed, and the concentration at the step seabed is formulated to measure how much has discharged effluents dispersed into or out of the shallow coastal waters. 展开更多
关键词 Advection-Diffusion Equation Flat Seabed method of Image step Seabed Variability of Decay
在线阅读 下载PDF
基于POD-αATS的油浸变压器瞬态温升降阶自适应变步长计算方法 被引量:6
20
作者 刘刚 郝世缘 +2 位作者 胡万君 刘云鹏 李琳 《中国电机工程学报》 EI CSCD 北大核心 2024年第16期6656-6666,I0030,共12页
针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计... 针对油浸式电力变压器瞬态温升计算效率过低的问题,该文提出本征正交分解-αATS(proper orthogonal decomposition-adaptive time stepping based onαfactor,POD-αATS)降阶自适应变步长瞬态计算方法。首先,推导变压器绕组瞬态温升计算的有限元离散方程;其次,采用POD降阶算法改善传统瞬态计算中存在的条件数过大及方程阶数过高的问题;同时对于瞬态计算中的时间步长选择问题,提出适用于非线性问题的αATS变步长策略;然后,为验证方法的有效性,基于110 kV油浸式电力变压器绕组的基本结构建立二维八分区数值计算模型,同时将计算结果与基于110 kV绕组的温升实验结果进行对比。数值计算及实验结果表明,所提算法与全阶定步长算法在流场和温度场中的精度几乎相同,且流场计算效率提升约45倍,温度场计算效率提升约38倍,计算速度得到显著提高。这一点在温升实验中同样得到验证,说明该文所提算法的准确性、高效性及一定的工程实用性。 展开更多
关键词 αATS变步长算法 本征正交分解降阶方法 瞬态流热耦合问题 快速计算方法 温升实验
原文传递
上一页 1 2 14 下一页 到第
使用帮助 返回顶部