Horizontal wells are commonly used in bottom water reservoirs,which can increase contact area between wellbores and reservoirs.There are many completion methods used to control cresting,among which variable density pe...Horizontal wells are commonly used in bottom water reservoirs,which can increase contact area between wellbores and reservoirs.There are many completion methods used to control cresting,among which variable density perforation is an effective one.It is difficult to evaluate well productivity and to analyze inflow profiles of horizontal wells with quantities of unevenly distributed perforations,which are characterized by different parameters.In this paper,fluid flow in each wellbore perforation,as well as the reservoir,was analyzed.A comprehensive model,coupling the fluid flow in the reservoir and the wellbore pressure drawdown,was developed based on potential functions and solved using the numerical discrete method.Then,a bottom water cresting model was established on the basis of the piston-like displacement principle.Finally,bottom water cresting parameters and factors influencing inflow profile were analyzed.A more systematic optimization method was proposed by introducing the concept of cumulative free-water production,which could maintain a balance(or then a balance is achieved)between stabilizing oil production and controlling bottom water cresting.Results show that the inflow profile is affected by the perforation distribution.Wells with denser perforation density at the toe end and thinner density at the heel end may obtain low production,but the water breakthrough time is delayed.Taking cumulative free-water production as a parameter to evaluate perforation strategies is advisable in bottom water reservoirs.展开更多
In this article, the authors deal with the Cauchy problem of a nonlinear parabolic equation with variable density and absorption. By using energy methods, the authors prove that the interfaces can disappear in finite ...In this article, the authors deal with the Cauchy problem of a nonlinear parabolic equation with variable density and absorption. By using energy methods, the authors prove that the interfaces can disappear in finite time under some assumptions on the density functions.展开更多
The forward calculation of gravity anomalies is a non-negligible aspect contributing to the time consumption of the entire process of basement relief estimation.In this study,we develop a fast hybrid computing scheme ...The forward calculation of gravity anomalies is a non-negligible aspect contributing to the time consumption of the entire process of basement relief estimation.In this study,we develop a fast hybrid computing scheme to compute the gravity anomaly of a basement.We use the vertical prism source equation in a given region R centered at a certain gravity observation point and the vertical line source equation outside R to derive the gravity anomaly.We observe that the computation with the vertical line source equation is much faster than that of the vertical prism source equation,but the former is slightly inaccurate.Therefore,our method is highly effi cient and able to avoid the errors caused by the low accuracy of the vertical line source equation near the observation point.We then derive the general principle of choosing the size of R via a series of prism model tests.Our tests on the gravity anomaly over the Los Angeles Basin confirm the correctness of our proposed forward strategy.We modify Bott’s method with an accelerating factor to expedite the inversion procedure and presume that the density contrast between the sediments and the basement in a sedimentary basin varies laterally and can be obtained using the equivalent equation.Synthetic data and real data applications in the Weihe Basin illustrate that our proposed method can accurately and effi ciently estimate the basement relief of sedimentary basins.展开更多
Effects of Reynolds(Re)number and Schmidt(Sc)number on the flow structures and variable density mixing are numerically investigated through the canonical shock cylindrical bubble interaction.By determining the viscosi...Effects of Reynolds(Re)number and Schmidt(Sc)number on the flow structures and variable density mixing are numerically investigated through the canonical shock cylindrical bubble interaction.By determining the viscosity and diffusivity within a wide range,the controlling parameters,total vortex circulation,and compression rate,are conservative under a broad range of Re and Sc numbers(Re≈10^(3)-10^(5)and Sc≈0.1-5)in the same shock Mach(Ma)number condition(Ma=2.4).As for the Re number effect,the circulation of secondary baroclinic vorticity(SBV),induced by the main vortex centripetal acceleration,is observed to be higher in high Re number and vice versa.Based on the vorticity transport equation decomposition,a growth-inhibition vorticity dynamics balance mechanism is revealed:the vorticity viscous term grows synchronously with baroclinic production to inhibit SBV production in low Re number.By contrast,the viscous term terminates the baroclinic term with a time lag in high Re number,leading to the SBV production.Since the SBV reflects the local stretching enhancement based on the advection-diffusion equation,mixing is influenced by the Sc number in a different behavior if different Re numbers are considered.The time-averaged variable density mixing rate emerges a scaling law with Sc number asχ^(∗)=β·Sc^(−α),where the coefficientβ∼Re−0.2 and the scaling exponentα∼Re−0.385.The understanding of Re number and Sc number effect on variable density mixing provides an opportunity for mixing enhancement from the perspective of designing the viscosity and diffusivity of the fluid mixture.展开更多
Growth of stand average DBH is discussed bassed on relationship between standgrowth and stand density.Growth equation of stand average DBH is fitted with data of 65 plotsand 130 stem analyses of site index 18 meter of...Growth of stand average DBH is discussed bassed on relationship between standgrowth and stand density.Growth equation of stand average DBH is fitted with data of 65 plotsand 130 stem analyses of site index 18 meter of old-growth Larch(Larix gmeliniiRupr.)collectedin Great Xing’an Mountain m Inner Monglia.Variable-density yield tables of old—growth Larchare constructed based on growth equation of stand average DBH and relationship between standaverage DBH and the other stand attributes.展开更多
In this paper, the seismic effectiveness of a density-variable tuned liquid damper (DVTLD) with a sloping bottom is experimentally investigated through a series of shake table tests on a 1/4-scale, 3-story frame str...In this paper, the seismic effectiveness of a density-variable tuned liquid damper (DVTLD) with a sloping bottom is experimentally investigated through a series of shake table tests on a 1/4-scale, 3-story frame structure and numerically simulated by a new semi-analytical model. Special attention was given to reducing the first peak and maximum response under near- and far-field ground motions, and the robustness of a density-variable control system consisting of multiple DVTLDs with closely-spaced frequencies. Adaptable to earthquake excitations, the density-variable control system has been demonstrated to be more effective and more robust than its corresponding traditional tuned liquid damper in suppressing story drift and floor acceleration of the structure. Numerical simulations of the DVTLD-controlled structure agreed very well in phase with experimental results but somewhat overestimated the amplitude of the structural response.展开更多
The proper characterization of coastal aquifers requires modeling variable density flow effects. However, most models estimate processes as saline intrusion based on 2D models with constant density and are rarely cali...The proper characterization of coastal aquifers requires modeling variable density flow effects. However, most models estimate processes as saline intrusion based on 2D models with constant density and are rarely calibrated to honor salinity measurements. These facts limit the model predictions reliability, affecting the estimated hydrodynamic parameters, external stresses, and other model outputs that can be critical for planning or management decisions. This paper describes the re-assessment of a coastal aquifer model (Oropesa-Torreblanca, eastern Spain) subjected to moderate-to-high saline intrusion with a transient 3D variable density flow model. Previous models were based on 2D low-resolution grids without variable density effects. The new model honors the observed trends of both piezometric and salinity data. Results show the importance of the variable density effects having on critical outputs as sea intrusion and the discharges to a local wetland of high environmental value. The widespread intrusion process and its current stabilization are confirmed but, compared to previous models, the annual average intrusion is 156% higher, discharge to the wetland increases 30%, and the inflows from neighboring formations increase 22%. The more accurate aquifer models, as well as the new discharges and intrusion estimations, are important contributions for future water and environmental planning decisions in the area.展开更多
This paper describes a characteristics-mix finite element method for the computation of incompressible Navi-er-Stokes equations with variable density. We have introduced a mixed scheme which combines a characteristics...This paper describes a characteristics-mix finite element method for the computation of incompressible Navi-er-Stokes equations with variable density. We have introduced a mixed scheme which combines a characteristics finite element scheme for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The proposed method has a lot of attractive computational properties: parameter-free, very flexible, and averting the difficulties caused by the original equations. The stability of the method is proved. Finally, several numerical experiments are given to show that this method is efficient for variable density incompressible flows problem.展开更多
We examine governing equations that could be used to model a one-dimensional blood flow within a pulsating elastic artery that is represented by a tube of varying cross-section. The model is considered from two perspe...We examine governing equations that could be used to model a one-dimensional blood flow within a pulsating elastic artery that is represented by a tube of varying cross-section. The model is considered from two perspectives. The first represents a singular perturbation theory providing explicit approximate solutions to the model, and the second is based on group theoretical modeling that provides exact solutions in implicit form. The main goal is to compare these two approaches and lay out the advantages and disadvantages of each approach.展开更多
In this paper, we discussed population model of two competing populations with non-linear double diffusion and variable density which described by nonlinear system of competing individuals. We identify new properties,...In this paper, we discussed population model of two competing populations with non-linear double diffusion and variable density which described by nonlinear system of competing individuals. We identify new properties, such as finite speed of propagation, and localization of the outbreaks in a specific area.展开更多
Variable-top stem biomass models at the tree level for second growth forests of roble (Nothofagus obliqua), rauli(Nothofagus alpina), and coigüe (Nothofagus dombeyi) were fitted by a simultaneous density-integral...Variable-top stem biomass models at the tree level for second growth forests of roble (Nothofagus obliqua), rauli(Nothofagus alpina), and coigüe (Nothofagus dombeyi) were fitted by a simultaneous density-integral system, which combines a stem taper model and a wood basic density model. For each model, an autoregressive structure of order 2 and a power equation of residual variance were incorporated to reduce residual autocorrelation and heteroscedasticity, respectively. By using dummy variables in the regression analysis, zonal effects on the parameters in the variable-top stem biomass equations were detected in roble. Consequently, equations for clusters of zones were obtained. These equations presented significant parameters and a high precision in both fitting and validation processes (i.e., CV<11.5% and CVp<11.9%, respectively), demonstrating that they are unbiased. The advantage of these types of functions is that they provide estimates of volume and biomass of sections of the stem, defined between any two points of the stem in the three species. Thus, depending on the final use of the wood and the dimensions of the tree, a stem fraction can be quantified in units of volume and the remaining fraction in units of weight.展开更多
The relatively long scan time is still a bottleneck for both clinical applications and research of magnetic resonance imaging. To reduce the data acquisition time, we propose a novel fast magnetic resonance imaging me...The relatively long scan time is still a bottleneck for both clinical applications and research of magnetic resonance imaging. To reduce the data acquisition time, we propose a novel fast magnetic resonance imaging method based on parallel variable-density spiral acquisition, which combines undersampling optimization and nonlocal total variation reconstruction. The undersampling optimization promotes the incoherence of resultant aliasing artifact via the "worst-case" residual error metric, and thus accelerates the data acquisition. Moreover, nonlocal total variation reconstruction is utilized to remove such an incoherent aliasing artifact and so improve image quality. The feasibility of the proposed method is demonstrated by both numerical phantom simulation and in vivo experiment. The experimental results show that the proposed method can achieve high acceleration factor and effectively remove an aliasing artifact from data undersampling with well-preserved image details. The image quality is better than that achieved with the total variation method.展开更多
For the instability problem of density stratified shear flows in sea straits with variable cross sections, a new semielliptical instability region is found. Rurthermore, the instability of the bounded shear layer is s...For the instability problem of density stratified shear flows in sea straits with variable cross sections, a new semielliptical instability region is found. Rurthermore, the instability of the bounded shear layer is studied in two cases: (i) the density which takes two different constant values in two layers and (ii) the density which takes three different constant values in three layers. In both cases, the dispersion relation is found to be a quartic equation in the complex phase velocity. It is found that there are two unstable modes in a range of the wave numbers in the first case, whereas there is only one unstable mode in the second case.展开更多
Analytical solutions for the rotating variable-thickness inhomogeneous, orthotropic, hollow cylinders under plane strain assumption are developed in Part I of this paper. The extensions of these solutions to the visco...Analytical solutions for the rotating variable-thickness inhomogeneous, orthotropic, hollow cylinders under plane strain assumption are developed in Part I of this paper. The extensions of these solutions to the viscoelastic case are discussed here. The method of effective moduli and Illyushin's approximation method are used for this purpose. The rotating fiber-reinforced viscoelastic homogeneous isotropic hollow cylinders with uniform thickness are obtained as special cases of the studied problem. Numerical application examples are given for the dimensionless displacement of and stresses in the different cylinders. The influences of time, constitutive parameter and elastic properties on the stresses and displacement are investigated.展开更多
In this paper, an analytical solution for the rotation problem of an inhomogeneous hollow cylinder with variable thickness under plane strain assumption is developed. The present cylinder is made of a fiber-reinforced...In this paper, an analytical solution for the rotation problem of an inhomogeneous hollow cylinder with variable thickness under plane strain assumption is developed. The present cylinder is made of a fiber-reinforced viscoelastic inhomogeneous orthotropic material. The thickness of the cylinder is taken as parabolic function in the radial direction. The elastic properties varies in the same manner as the thickness of the cylinder while the density varies according to an exponential law form. The inner and outer surfaces of the cylinder are considered to have combinations of free and clamped boundary conditions. Analytical solutions are given according to different types of the hollow cylinders. An extension of the present solutions to the viscoelastic ones and some applications are investigated in Part II.展开更多
In this paper,a fast design method is developed based on a combination of analytical and finite element(FE)methods for variable flux reluctance machines(VFRMs).Firstly,the feasibility of using analytical method in opt...In this paper,a fast design method is developed based on a combination of analytical and finite element(FE)methods for variable flux reluctance machines(VFRMs).Firstly,the feasibility of using analytical method in optimization under unsaturated condition is confirmed.Then,by applying the FE method,the influence of magnetic saturation is considered.Compared with the unsaturated case,the optimal split ratio for magnetically saturated case is increased by 1~1.2 times,the optimal rotor pole arc ratio varies within 0.33~0.44,and the stator pole arc ratio remains the same.Based on this,the optimal structural parameters can be initially set by analytical method and then refined by the FE method.Due to the fast speed of analytical method,less variable counts and narrowed variation ranges,the proposed method is significantly faster than the conventional pure FE based global optimization.Finally,the proposed method is used for optimizing the 6-stator-slots VFRMs having different numbers of rotor poles.The 6-stator-slot/7-rotor-pole(6s/7r)VFRM is found to have the highest torque density.It is prototyped and tested to verify the analyses.展开更多
Soil bulk density is a basic but important physic soil property related to soil porosity,soil moisture and hydraulic conductivity,which is crucial to soil quality assessment and land use management.In this study,we ev...Soil bulk density is a basic but important physic soil property related to soil porosity,soil moisture and hydraulic conductivity,which is crucial to soil quality assessment and land use management.In this study,we evaluated the spatial variability of soil bulk density in the 0–20,20–40,40–60 and 60–100 cm layers as well as its affecting factors in Southwest China’s agricultural intensive area.Results indicated the mean value of surface soil bulk density(0–20 cm)was 1.26 g cm^(–3),significantly lower than that of subsoil(20–100 cm).No statistical difference existed among the subsoil with a mean soil bulk density of 1.54 g cm^(–3).Spatially,soil bulk density played a similar spatial pattern in soil profile,whereas obvious differences were found in details.The nugget effects for soil bulk density in the 0–20 and 20–40 cm layers were 27.22 and27.02%while 12.06 and 3.46%in the 40–60 and 60–100 cm layers,respectively,gradually decreasing in the soil profile,indicating that the spatial variability of soil bulk density above 40 cm was affected by structural and random factors while dominated by structural factors under 40 cm.Soil organic matter was the controlling factor on the spatial variability of soil bulk density in each layer.Land use and elevation were another two dominated factor controlling the spatial variability of soil bulk density in the 0–20 and 40–60 cm layers,respectively.Soil genus was one of the dominated factors controlling the spatial variability of soil bulk below 40 cm.展开更多
The effects of canopy development, solar angle, and weather conditions on temporal variation in photosynthetic photon flux density(PPFD) at three heights within a tropical rain forest canopy in Xishuangbanna, China,...The effects of canopy development, solar angle, and weather conditions on temporal variation in photosynthetic photon flux density(PPFD) at three heights within a tropical rain forest canopy in Xishuangbanna, China, were examined. PPFD was measured every second and stored as 10-min averages from 1 December 2002 to 30 November 2003. PPFD variability was examined at three different temporal scales. Specific days in March, September, and December with clear and overcast sky conditions were selected to separate the effects of leaf area index(LAI) and solar angle on diurnal variability. On both clear and overcast days, mean daily average PPFD was significantly different between March and September at all heights, except 10 m on clear days, suggesting that LAI directly influences PPFD. In contrast, the differences in daily average PPFD among three heights between September and December were likely due to variation in solar angle. In addition, daily average PPFD at all locations were significantly lower under overcast than clear sky conditions in March, September and December. Over the year-long study, the mean daily total PPFD at 2! m, 10 m and 4 m was 2.8, 2.7 and 0.7 mol/(m^2·d), which accounted for 9.7%, 9.4% and 2.4% of the daily PPFD above the canopy, respectively. Significant differences in mean daily total PPFD occurred at the same heights among different seasons, and diurnal, day-to-day and seasonal PPFD varied at different heights within the canopy. The possible effects of light variability on physiological and morphological responses of plants are discussed.展开更多
The main aim of soil monitoring system is to obtain the knowledge of the most current state and development of soil properties according to concrete threats to soil. To determine the significant changes of soil proper...The main aim of soil monitoring system is to obtain the knowledge of the most current state and development of soil properties according to concrete threats to soil. To determine the significant changes of soil properties in time, it is important to know spatial variability of concrete soil parameter for concrete site. Only those time changes of the soil parameter are significant, which exceed its spatial variability at the site. The main aim of the study has been focused on the evaluation of small-scale site heterogeneity of equilibrium soil bulk density and the integration of impact of this heterogeneity in evaluation of degradation process of soil compaction in time. As site variation coefficients have considerably varied at standard sampling with five repetitions during monitoring period, one-time detail spatial variability mapping of soil bulk density was realized at 17 repetitions on five selected monitoring sites with different soil type, texture and use. This increase in the number of sampling points helped us to specify and stabilize the values of variation coefficients (between minimum and maximum by standard sampling) as well as the extent of confidence intervals. Standard deviations at the chosen monitoring sites moved from 0.039 to 0.118 g·cm<sup><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span>3</span></sup><span style="font-family:Verdana;"> in topsoil and from 0.031 to 0.067 g·cm</span><sup><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span>3</span></sup><span style="font-family:Verdana;"> in subsoil and expressed as variation coefficient 2.9% - 9.2% and 2.0% - 4.9%, respectively. The intervals of significant time changes of soil bulk density for the sites and depths were determined on the base of its site confidence interval (95%) and uncertainty rate of its measure methodology. The time changes of bulk density values between single year-to-year sampling were overlapped by this interval of significant changes to obtain significant bulk density changes in time. This method allowed us to distinguish significant time changes in soil bulk density from insignificant ones. The bulk density value changes on the monitoring sites were significant in the range of six to nine years within observed period 2002-2014 in both depths.</span>展开更多
Let {Xn, n≥1} be a strictly stationary sequence of random variables, which are either associated or negatively associated, f(.) be their common density. In this paper, the author shows a central limit theorem for a k...Let {Xn, n≥1} be a strictly stationary sequence of random variables, which are either associated or negatively associated, f(.) be their common density. In this paper, the author shows a central limit theorem for a kernel estimate of f(.) under certain regular conditions.展开更多
文摘Horizontal wells are commonly used in bottom water reservoirs,which can increase contact area between wellbores and reservoirs.There are many completion methods used to control cresting,among which variable density perforation is an effective one.It is difficult to evaluate well productivity and to analyze inflow profiles of horizontal wells with quantities of unevenly distributed perforations,which are characterized by different parameters.In this paper,fluid flow in each wellbore perforation,as well as the reservoir,was analyzed.A comprehensive model,coupling the fluid flow in the reservoir and the wellbore pressure drawdown,was developed based on potential functions and solved using the numerical discrete method.Then,a bottom water cresting model was established on the basis of the piston-like displacement principle.Finally,bottom water cresting parameters and factors influencing inflow profile were analyzed.A more systematic optimization method was proposed by introducing the concept of cumulative free-water production,which could maintain a balance(or then a balance is achieved)between stabilizing oil production and controlling bottom water cresting.Results show that the inflow profile is affected by the perforation distribution.Wells with denser perforation density at the toe end and thinner density at the heel end may obtain low production,but the water breakthrough time is delayed.Taking cumulative free-water production as a parameter to evaluate perforation strategies is advisable in bottom water reservoirs.
基金This work is supported in part by NNSF of China(10571126)in part by Program for New Century Excellent Talents in University
文摘In this article, the authors deal with the Cauchy problem of a nonlinear parabolic equation with variable density and absorption. By using energy methods, the authors prove that the interfaces can disappear in finite time under some assumptions on the density functions.
基金supported by the National Natural Science Foundation of China(41904115)。
文摘The forward calculation of gravity anomalies is a non-negligible aspect contributing to the time consumption of the entire process of basement relief estimation.In this study,we develop a fast hybrid computing scheme to compute the gravity anomaly of a basement.We use the vertical prism source equation in a given region R centered at a certain gravity observation point and the vertical line source equation outside R to derive the gravity anomaly.We observe that the computation with the vertical line source equation is much faster than that of the vertical prism source equation,but the former is slightly inaccurate.Therefore,our method is highly effi cient and able to avoid the errors caused by the low accuracy of the vertical line source equation near the observation point.We then derive the general principle of choosing the size of R via a series of prism model tests.Our tests on the gravity anomaly over the Los Angeles Basin confirm the correctness of our proposed forward strategy.We modify Bott’s method with an accelerating factor to expedite the inversion procedure and presume that the density contrast between the sediments and the basement in a sedimentary basin varies laterally and can be obtained using the equivalent equation.Synthetic data and real data applications in the Weihe Basin illustrate that our proposed method can accurately and effi ciently estimate the basement relief of sedimentary basins.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(Grant No.91941301)the Key Research and Development Project of Sichuan Province(Grant No.2019ZYZF0002)。
文摘Effects of Reynolds(Re)number and Schmidt(Sc)number on the flow structures and variable density mixing are numerically investigated through the canonical shock cylindrical bubble interaction.By determining the viscosity and diffusivity within a wide range,the controlling parameters,total vortex circulation,and compression rate,are conservative under a broad range of Re and Sc numbers(Re≈10^(3)-10^(5)and Sc≈0.1-5)in the same shock Mach(Ma)number condition(Ma=2.4).As for the Re number effect,the circulation of secondary baroclinic vorticity(SBV),induced by the main vortex centripetal acceleration,is observed to be higher in high Re number and vice versa.Based on the vorticity transport equation decomposition,a growth-inhibition vorticity dynamics balance mechanism is revealed:the vorticity viscous term grows synchronously with baroclinic production to inhibit SBV production in low Re number.By contrast,the viscous term terminates the baroclinic term with a time lag in high Re number,leading to the SBV production.Since the SBV reflects the local stretching enhancement based on the advection-diffusion equation,mixing is influenced by the Sc number in a different behavior if different Re numbers are considered.The time-averaged variable density mixing rate emerges a scaling law with Sc number asχ^(∗)=β·Sc^(−α),where the coefficientβ∼Re−0.2 and the scaling exponentα∼Re−0.385.The understanding of Re number and Sc number effect on variable density mixing provides an opportunity for mixing enhancement from the perspective of designing the viscosity and diffusivity of the fluid mixture.
文摘Growth of stand average DBH is discussed bassed on relationship between standgrowth and stand density.Growth equation of stand average DBH is fitted with data of 65 plotsand 130 stem analyses of site index 18 meter of old-growth Larch(Larix gmeliniiRupr.)collectedin Great Xing’an Mountain m Inner Monglia.Variable-density yield tables of old—growth Larchare constructed based on growth equation of stand average DBH and relationship between standaverage DBH and the other stand attributes.
基金U.S. National Science Foundation Under Award No. 0342020the Dean’s Fellowship Program from the University of Missouri-Rolla (renamed to Missouri University of Science and Technology in January 2008)
文摘In this paper, the seismic effectiveness of a density-variable tuned liquid damper (DVTLD) with a sloping bottom is experimentally investigated through a series of shake table tests on a 1/4-scale, 3-story frame structure and numerically simulated by a new semi-analytical model. Special attention was given to reducing the first peak and maximum response under near- and far-field ground motions, and the robustness of a density-variable control system consisting of multiple DVTLDs with closely-spaced frequencies. Adaptable to earthquake excitations, the density-variable control system has been demonstrated to be more effective and more robust than its corresponding traditional tuned liquid damper in suppressing story drift and floor acceleration of the structure. Numerical simulations of the DVTLD-controlled structure agreed very well in phase with experimental results but somewhat overestimated the amplitude of the structural response.
文摘The proper characterization of coastal aquifers requires modeling variable density flow effects. However, most models estimate processes as saline intrusion based on 2D models with constant density and are rarely calibrated to honor salinity measurements. These facts limit the model predictions reliability, affecting the estimated hydrodynamic parameters, external stresses, and other model outputs that can be critical for planning or management decisions. This paper describes the re-assessment of a coastal aquifer model (Oropesa-Torreblanca, eastern Spain) subjected to moderate-to-high saline intrusion with a transient 3D variable density flow model. Previous models were based on 2D low-resolution grids without variable density effects. The new model honors the observed trends of both piezometric and salinity data. Results show the importance of the variable density effects having on critical outputs as sea intrusion and the discharges to a local wetland of high environmental value. The widespread intrusion process and its current stabilization are confirmed but, compared to previous models, the annual average intrusion is 156% higher, discharge to the wetland increases 30%, and the inflows from neighboring formations increase 22%. The more accurate aquifer models, as well as the new discharges and intrusion estimations, are important contributions for future water and environmental planning decisions in the area.
文摘This paper describes a characteristics-mix finite element method for the computation of incompressible Navi-er-Stokes equations with variable density. We have introduced a mixed scheme which combines a characteristics finite element scheme for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The proposed method has a lot of attractive computational properties: parameter-free, very flexible, and averting the difficulties caused by the original equations. The stability of the method is proved. Finally, several numerical experiments are given to show that this method is efficient for variable density incompressible flows problem.
文摘We examine governing equations that could be used to model a one-dimensional blood flow within a pulsating elastic artery that is represented by a tube of varying cross-section. The model is considered from two perspectives. The first represents a singular perturbation theory providing explicit approximate solutions to the model, and the second is based on group theoretical modeling that provides exact solutions in implicit form. The main goal is to compare these two approaches and lay out the advantages and disadvantages of each approach.
文摘In this paper, we discussed population model of two competing populations with non-linear double diffusion and variable density which described by nonlinear system of competing individuals. We identify new properties, such as finite speed of propagation, and localization of the outbreaks in a specific area.
基金financial supported by the the Corporación Nacional Forestal(CONAF)(Project 025/2012‘‘Desarrollo de herramientas de cuantificación biométrica generalizadas para el manejo y uso integral sustentable de renovales de Nothofagus spp.’’)Ⅲ Concurso del Fondo de Investigación del Bosque Nativo
文摘Variable-top stem biomass models at the tree level for second growth forests of roble (Nothofagus obliqua), rauli(Nothofagus alpina), and coigüe (Nothofagus dombeyi) were fitted by a simultaneous density-integral system, which combines a stem taper model and a wood basic density model. For each model, an autoregressive structure of order 2 and a power equation of residual variance were incorporated to reduce residual autocorrelation and heteroscedasticity, respectively. By using dummy variables in the regression analysis, zonal effects on the parameters in the variable-top stem biomass equations were detected in roble. Consequently, equations for clusters of zones were obtained. These equations presented significant parameters and a high precision in both fitting and validation processes (i.e., CV<11.5% and CVp<11.9%, respectively), demonstrating that they are unbiased. The advantage of these types of functions is that they provide estimates of volume and biomass of sections of the stem, defined between any two points of the stem in the three species. Thus, depending on the final use of the wood and the dimensions of the tree, a stem fraction can be quantified in units of volume and the remaining fraction in units of weight.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.81101030 and 61271132)
文摘The relatively long scan time is still a bottleneck for both clinical applications and research of magnetic resonance imaging. To reduce the data acquisition time, we propose a novel fast magnetic resonance imaging method based on parallel variable-density spiral acquisition, which combines undersampling optimization and nonlocal total variation reconstruction. The undersampling optimization promotes the incoherence of resultant aliasing artifact via the "worst-case" residual error metric, and thus accelerates the data acquisition. Moreover, nonlocal total variation reconstruction is utilized to remove such an incoherent aliasing artifact and so improve image quality. The feasibility of the proposed method is demonstrated by both numerical phantom simulation and in vivo experiment. The experimental results show that the proposed method can achieve high acceleration factor and effectively remove an aliasing artifact from data undersampling with well-preserved image details. The image quality is better than that achieved with the total variation method.
基金supported by University Grants Commission-Junior Research Fellowship, Government of India
文摘For the instability problem of density stratified shear flows in sea straits with variable cross sections, a new semielliptical instability region is found. Rurthermore, the instability of the bounded shear layer is studied in two cases: (i) the density which takes two different constant values in two layers and (ii) the density which takes three different constant values in three layers. In both cases, the dispersion relation is found to be a quartic equation in the complex phase velocity. It is found that there are two unstable modes in a range of the wave numbers in the first case, whereas there is only one unstable mode in the second case.
文摘Analytical solutions for the rotating variable-thickness inhomogeneous, orthotropic, hollow cylinders under plane strain assumption are developed in Part I of this paper. The extensions of these solutions to the viscoelastic case are discussed here. The method of effective moduli and Illyushin's approximation method are used for this purpose. The rotating fiber-reinforced viscoelastic homogeneous isotropic hollow cylinders with uniform thickness are obtained as special cases of the studied problem. Numerical application examples are given for the dimensionless displacement of and stresses in the different cylinders. The influences of time, constitutive parameter and elastic properties on the stresses and displacement are investigated.
文摘In this paper, an analytical solution for the rotation problem of an inhomogeneous hollow cylinder with variable thickness under plane strain assumption is developed. The present cylinder is made of a fiber-reinforced viscoelastic inhomogeneous orthotropic material. The thickness of the cylinder is taken as parabolic function in the radial direction. The elastic properties varies in the same manner as the thickness of the cylinder while the density varies according to an exponential law form. The inner and outer surfaces of the cylinder are considered to have combinations of free and clamped boundary conditions. Analytical solutions are given according to different types of the hollow cylinders. An extension of the present solutions to the viscoelastic ones and some applications are investigated in Part II.
文摘In this paper,a fast design method is developed based on a combination of analytical and finite element(FE)methods for variable flux reluctance machines(VFRMs).Firstly,the feasibility of using analytical method in optimization under unsaturated condition is confirmed.Then,by applying the FE method,the influence of magnetic saturation is considered.Compared with the unsaturated case,the optimal split ratio for magnetically saturated case is increased by 1~1.2 times,the optimal rotor pole arc ratio varies within 0.33~0.44,and the stator pole arc ratio remains the same.Based on this,the optimal structural parameters can be initially set by analytical method and then refined by the FE method.Due to the fast speed of analytical method,less variable counts and narrowed variation ranges,the proposed method is significantly faster than the conventional pure FE based global optimization.Finally,the proposed method is used for optimizing the 6-stator-slots VFRMs having different numbers of rotor poles.The 6-stator-slot/7-rotor-pole(6s/7r)VFRM is found to have the highest torque density.It is prototyped and tested to verify the analyses.
基金supported by the National Natural Science Foundation of China (4120124)the Science Fund of the Education Department of Sichuan Province, China (16ZB0048)
文摘Soil bulk density is a basic but important physic soil property related to soil porosity,soil moisture and hydraulic conductivity,which is crucial to soil quality assessment and land use management.In this study,we evaluated the spatial variability of soil bulk density in the 0–20,20–40,40–60 and 60–100 cm layers as well as its affecting factors in Southwest China’s agricultural intensive area.Results indicated the mean value of surface soil bulk density(0–20 cm)was 1.26 g cm^(–3),significantly lower than that of subsoil(20–100 cm).No statistical difference existed among the subsoil with a mean soil bulk density of 1.54 g cm^(–3).Spatially,soil bulk density played a similar spatial pattern in soil profile,whereas obvious differences were found in details.The nugget effects for soil bulk density in the 0–20 and 20–40 cm layers were 27.22 and27.02%while 12.06 and 3.46%in the 40–60 and 60–100 cm layers,respectively,gradually decreasing in the soil profile,indicating that the spatial variability of soil bulk density above 40 cm was affected by structural and random factors while dominated by structural factors under 40 cm.Soil organic matter was the controlling factor on the spatial variability of soil bulk density in each layer.Land use and elevation were another two dominated factor controlling the spatial variability of soil bulk density in the 0–20 and 40–60 cm layers,respectively.Soil genus was one of the dominated factors controlling the spatial variability of soil bulk below 40 cm.
文摘The effects of canopy development, solar angle, and weather conditions on temporal variation in photosynthetic photon flux density(PPFD) at three heights within a tropical rain forest canopy in Xishuangbanna, China, were examined. PPFD was measured every second and stored as 10-min averages from 1 December 2002 to 30 November 2003. PPFD variability was examined at three different temporal scales. Specific days in March, September, and December with clear and overcast sky conditions were selected to separate the effects of leaf area index(LAI) and solar angle on diurnal variability. On both clear and overcast days, mean daily average PPFD was significantly different between March and September at all heights, except 10 m on clear days, suggesting that LAI directly influences PPFD. In contrast, the differences in daily average PPFD among three heights between September and December were likely due to variation in solar angle. In addition, daily average PPFD at all locations were significantly lower under overcast than clear sky conditions in March, September and December. Over the year-long study, the mean daily total PPFD at 2! m, 10 m and 4 m was 2.8, 2.7 and 0.7 mol/(m^2·d), which accounted for 9.7%, 9.4% and 2.4% of the daily PPFD above the canopy, respectively. Significant differences in mean daily total PPFD occurred at the same heights among different seasons, and diurnal, day-to-day and seasonal PPFD varied at different heights within the canopy. The possible effects of light variability on physiological and morphological responses of plants are discussed.
文摘The main aim of soil monitoring system is to obtain the knowledge of the most current state and development of soil properties according to concrete threats to soil. To determine the significant changes of soil properties in time, it is important to know spatial variability of concrete soil parameter for concrete site. Only those time changes of the soil parameter are significant, which exceed its spatial variability at the site. The main aim of the study has been focused on the evaluation of small-scale site heterogeneity of equilibrium soil bulk density and the integration of impact of this heterogeneity in evaluation of degradation process of soil compaction in time. As site variation coefficients have considerably varied at standard sampling with five repetitions during monitoring period, one-time detail spatial variability mapping of soil bulk density was realized at 17 repetitions on five selected monitoring sites with different soil type, texture and use. This increase in the number of sampling points helped us to specify and stabilize the values of variation coefficients (between minimum and maximum by standard sampling) as well as the extent of confidence intervals. Standard deviations at the chosen monitoring sites moved from 0.039 to 0.118 g·cm<sup><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span>3</span></sup><span style="font-family:Verdana;"> in topsoil and from 0.031 to 0.067 g·cm</span><sup><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">-</span>3</span></sup><span style="font-family:Verdana;"> in subsoil and expressed as variation coefficient 2.9% - 9.2% and 2.0% - 4.9%, respectively. The intervals of significant time changes of soil bulk density for the sites and depths were determined on the base of its site confidence interval (95%) and uncertainty rate of its measure methodology. The time changes of bulk density values between single year-to-year sampling were overlapped by this interval of significant changes to obtain significant bulk density changes in time. This method allowed us to distinguish significant time changes in soil bulk density from insignificant ones. The bulk density value changes on the monitoring sites were significant in the range of six to nine years within observed period 2002-2014 in both depths.</span>
文摘Let {Xn, n≥1} be a strictly stationary sequence of random variables, which are either associated or negatively associated, f(.) be their common density. In this paper, the author shows a central limit theorem for a kernel estimate of f(.) under certain regular conditions.