As a key mode of transportation, urban metro networks have significantly enhanced urban traffic environments and travel efficiency, making the identification of critical stations within these networks increasingly ess...As a key mode of transportation, urban metro networks have significantly enhanced urban traffic environments and travel efficiency, making the identification of critical stations within these networks increasingly essential. This study presents a novel integrated topological-functional(ITF) algorithm for identifying critical nodes, combining topological metrics such as K-shell decomposition, node information entropy, and neighbor overlapping interaction with the functional attributes of passenger flow operations, while also considering the coupling effects between metro and bus networks. Using the Chengdu metro network as a case study, the effectiveness of the algorithm under different conditions is validated.The results indicate significant differences in passenger flow patterns between working and non-working days, leading to varying sets of critical nodes across these scenarios. Moreover, the ITF algorithm demonstrates a marked improvement in the accuracy of critical node identification compared to existing methods. This conclusion is supported by the analysis of changes in the overall network structure and relative global operational efficiency following targeted attacks on the identified critical nodes. The findings provide valuable insight into urban transportation planning, offering theoretical and practical guidance for improving metro network safety and resilience.展开更多
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o...Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems.展开更多
Alzheimer’s disease is a primary age-related neurodegenerative disorder that can result in impaired cognitive and memory functions.Although connections between changes in brain networks of Alzheimer’s disease patien...Alzheimer’s disease is a primary age-related neurodegenerative disorder that can result in impaired cognitive and memory functions.Although connections between changes in brain networks of Alzheimer’s disease patients have been established,the mechanisms that drive these alterations remain incompletely understood.This study,which was conducted in 2018 at Northeastern University in China,included data from 97 participants of the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset covering genetics,imaging,and clinical data.All participants were divided into two groups:normal control(n=52;20 males and 32 females;mean age 73.90±4.72 years)and Alzheimer’s disease(n=45,23 males and 22 females;mean age 74.85±5.66).To uncover the wiring mechanisms that shaped changes in the topology of human brain networks of Alzheimer’s disease patients,we proposed a local naive Bayes brain network model based on graph theory.Our results showed that the proposed model provided an excellent fit to observe networks in all properties examined,including clustering coefficient,modularity,characteristic path length,network efficiency,betweenness,and degree distribution compared with empirical methods.This proposed model simulated the wiring changes in human brain networks between controls and Alzheimer’s disease patients.Our results demonstrate its utility in understanding relationships between brain tissue structure and cognitive or behavioral functions.The ADNI was performed in accordance with the Good Clinical Practice guidelines,US 21 CFR Part 50-Protection of Human Subjects,and Part 56-Institutional Review Boards(IRBs)/Research Good Clinical Practice guidelines Institutional Review Boards(IRBs)/Research Ethics Boards(REBs).展开更多
To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership functi...To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells.展开更多
Objective Using graph theory analysis,this study compares the topological and node attributes of the brain network to explore the differences in gray matter structural and functional network topological properties bet...Objective Using graph theory analysis,this study compares the topological and node attributes of the brain network to explore the differences in gray matter structural and functional network topological properties between bipolar depression(BD)patients with and without obsessive-compulsive symptoms(OCS).Methods A total of 90 BD patients(27 males,63 females;median age 19.0(22.0,25.0)years)were recruited from the psychiatric outpatient and inpatient departments of the First Affiliated Hospital of Jinan University between March 2018 and December 2022.Fifty healthy controls(19 males,31 females;median age:23.0(20.0,27.0)years)were also enrolled.The BD patients were divided into two groups based on the presence of OCS:53 with OCS(OCS group)and 37 without OCS(NOCS group).Resting-state structural and functional MRI data were collected for all participants to construct gray matter structural and functional networks.Graph therory analysis was aapplied to calculate network topological metrics such as small-world properties.The structural and functional network topological properties were compared among the BD-OCS,BD-nOCS,and control groups.Partial correlation analysis was conducted to examine the association between network topological metrics with significant group differences and Yale-Brown Obsessive-Compulsive Scale(Y-BOCS)scores.Support vector machines(SVM)were used with these metrics as classificationfeaturevalues toimproveediagnostic accuracy through pairwise group classification.Results Structural network analysis of gray matter:compared to HC group,both OCS group and NOCS group showed increasedshortesttpathlengthand standardized characteristic path length(shortest path length:0.78 and 0.80 vs.0.69;normalized characteristic path length:0.48 and 0.49 vs.0.43),and decreased global efficiency(0.21 and 0.21 vs.0.24)compared to the HC group(permutation test,all P<0.05).Compared to NOCS and HC groups,the OCS group showed increased nodal centrality and betweenness centrality in the right rolandic operculum and left superior occipital gyrus(permutation test,all P<0.05).Functional network analysis of gray matter:compared to the NOCS group,the OCS group showed increased node efficiency and decreased betweenness centrality in the cerebellum(t=2.15,-3.04;all P<0.05);compared to HC groups,the OCS group showed decreased betweenness centrality in the cerebellum and left inferior frontal gyrus,along with increased node centrality and nodal efficiency in the right transverse temporal gyrus(t=-2.99,-3.61,3.06,3.10;all P<0.05).In the 0CS group,betweenness centrality in the left inferior frontal gyrus positively correlated with Y-BOCS scale obsessive thinking score(r=0.303,P=0.034).Nodal centrality and node efficiency of the right transverse temporal gyrus negatively correlated with Y-BOCS total score(r=-0.301,-0.311)and Y-BOCS obsessional thinking scores(r=-0.385,-0.380)separately(all P<0.05).SVM classification:the combined network features achieved an area under the curve of 0.80 in distinguising OCS from NOCS patients.Conclusion BDOCS and BD-nOCS patients both exhibit consistent changes in gray matter structural network topology,with theOCSSgroup displaying more pronounced nodal topological abnormalities.Multi-network feature integration demostrates potential for diagnostic classfication.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 71971150)the Project of Research Center for System Sciences and Enterprise Development (Grant No. Xq16B05)the Fundamental Research Funds for the Central Universities of China (Grant No. SXYPY202313)。
文摘As a key mode of transportation, urban metro networks have significantly enhanced urban traffic environments and travel efficiency, making the identification of critical stations within these networks increasingly essential. This study presents a novel integrated topological-functional(ITF) algorithm for identifying critical nodes, combining topological metrics such as K-shell decomposition, node information entropy, and neighbor overlapping interaction with the functional attributes of passenger flow operations, while also considering the coupling effects between metro and bus networks. Using the Chengdu metro network as a case study, the effectiveness of the algorithm under different conditions is validated.The results indicate significant differences in passenger flow patterns between working and non-working days, leading to varying sets of critical nodes across these scenarios. Moreover, the ITF algorithm demonstrates a marked improvement in the accuracy of critical node identification compared to existing methods. This conclusion is supported by the analysis of changes in the overall network structure and relative global operational efficiency following targeted attacks on the identified critical nodes. The findings provide valuable insight into urban transportation planning, offering theoretical and practical guidance for improving metro network safety and resilience.
文摘Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems.
基金Fundamental Research Funds for the Central Universities in China,No.N161608001 and No.N171903002
文摘Alzheimer’s disease is a primary age-related neurodegenerative disorder that can result in impaired cognitive and memory functions.Although connections between changes in brain networks of Alzheimer’s disease patients have been established,the mechanisms that drive these alterations remain incompletely understood.This study,which was conducted in 2018 at Northeastern University in China,included data from 97 participants of the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset covering genetics,imaging,and clinical data.All participants were divided into two groups:normal control(n=52;20 males and 32 females;mean age 73.90±4.72 years)and Alzheimer’s disease(n=45,23 males and 22 females;mean age 74.85±5.66).To uncover the wiring mechanisms that shaped changes in the topology of human brain networks of Alzheimer’s disease patients,we proposed a local naive Bayes brain network model based on graph theory.Our results showed that the proposed model provided an excellent fit to observe networks in all properties examined,including clustering coefficient,modularity,characteristic path length,network efficiency,betweenness,and degree distribution compared with empirical methods.This proposed model simulated the wiring changes in human brain networks between controls and Alzheimer’s disease patients.Our results demonstrate its utility in understanding relationships between brain tissue structure and cognitive or behavioral functions.The ADNI was performed in accordance with the Good Clinical Practice guidelines,US 21 CFR Part 50-Protection of Human Subjects,and Part 56-Institutional Review Boards(IRBs)/Research Good Clinical Practice guidelines Institutional Review Boards(IRBs)/Research Ethics Boards(REBs).
文摘To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells.
文摘Objective Using graph theory analysis,this study compares the topological and node attributes of the brain network to explore the differences in gray matter structural and functional network topological properties between bipolar depression(BD)patients with and without obsessive-compulsive symptoms(OCS).Methods A total of 90 BD patients(27 males,63 females;median age 19.0(22.0,25.0)years)were recruited from the psychiatric outpatient and inpatient departments of the First Affiliated Hospital of Jinan University between March 2018 and December 2022.Fifty healthy controls(19 males,31 females;median age:23.0(20.0,27.0)years)were also enrolled.The BD patients were divided into two groups based on the presence of OCS:53 with OCS(OCS group)and 37 without OCS(NOCS group).Resting-state structural and functional MRI data were collected for all participants to construct gray matter structural and functional networks.Graph therory analysis was aapplied to calculate network topological metrics such as small-world properties.The structural and functional network topological properties were compared among the BD-OCS,BD-nOCS,and control groups.Partial correlation analysis was conducted to examine the association between network topological metrics with significant group differences and Yale-Brown Obsessive-Compulsive Scale(Y-BOCS)scores.Support vector machines(SVM)were used with these metrics as classificationfeaturevalues toimproveediagnostic accuracy through pairwise group classification.Results Structural network analysis of gray matter:compared to HC group,both OCS group and NOCS group showed increasedshortesttpathlengthand standardized characteristic path length(shortest path length:0.78 and 0.80 vs.0.69;normalized characteristic path length:0.48 and 0.49 vs.0.43),and decreased global efficiency(0.21 and 0.21 vs.0.24)compared to the HC group(permutation test,all P<0.05).Compared to NOCS and HC groups,the OCS group showed increased nodal centrality and betweenness centrality in the right rolandic operculum and left superior occipital gyrus(permutation test,all P<0.05).Functional network analysis of gray matter:compared to the NOCS group,the OCS group showed increased node efficiency and decreased betweenness centrality in the cerebellum(t=2.15,-3.04;all P<0.05);compared to HC groups,the OCS group showed decreased betweenness centrality in the cerebellum and left inferior frontal gyrus,along with increased node centrality and nodal efficiency in the right transverse temporal gyrus(t=-2.99,-3.61,3.06,3.10;all P<0.05).In the 0CS group,betweenness centrality in the left inferior frontal gyrus positively correlated with Y-BOCS scale obsessive thinking score(r=0.303,P=0.034).Nodal centrality and node efficiency of the right transverse temporal gyrus negatively correlated with Y-BOCS total score(r=-0.301,-0.311)and Y-BOCS obsessional thinking scores(r=-0.385,-0.380)separately(all P<0.05).SVM classification:the combined network features achieved an area under the curve of 0.80 in distinguising OCS from NOCS patients.Conclusion BDOCS and BD-nOCS patients both exhibit consistent changes in gray matter structural network topology,with theOCSSgroup displaying more pronounced nodal topological abnormalities.Multi-network feature integration demostrates potential for diagnostic classfication.