期刊文献+
共找到293篇文章
< 1 2 15 >
每页显示 20 50 100
Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
1
作者 Fujie Li Haoyu Zhang +7 位作者 Zhilan Lu Li Yao Yuan Wei Ziwei Li Feng Bao Junwen Zhang Yingjun Zhou Nan Chi 《Opto-Electronic Advances》 2025年第10期1-13,共13页
Single-pixel imaging(SPI)is a prominent scattering media imaging technique that allows image transmission via one-dimensional detection under structured illumination,with applications spanning from long-range imaging ... Single-pixel imaging(SPI)is a prominent scattering media imaging technique that allows image transmission via one-dimensional detection under structured illumination,with applications spanning from long-range imaging to microscopy.Recent advancements leveraging deep learning(DL)have significantly improved SPI performance,especially at low compression ratios.However,most DL-based SPI methods proposed so far rely heavily on extensive labeled datasets for supervised training,which are often impractical in real-world scenarios.Here,we propose an unsupervised learningenabled label-free SPI method for resilient information transmission through unknown dynamic scattering media.Additionally,we introduce a physics-informed autoencoder framework to optimize encoding schemes,further enhancing image quality at low compression ratios.Simulation and experimental results demonstrate that high-efficiency data transmission with structural similarity exceeding 0.9 is achieved through challenging turbulent channels.Moreover,experiments demonstrate that in a 5 m underwater dynamic turbulent channel,USAF target imaging quality surpasses traditional methods by over 13 dB.The compressive encoded transmission of 720×720 resolution video exceeding 30 seconds with great fidelity is also successfully demonstrated.These preliminary results suggest that our proposed method opens up a new paradigm for resilient information transmission through unknown dynamic scattering media and holds potential for broader applications within many other scattering media imaging technologies. 展开更多
关键词 scattering media imaging single-pixel imaging unsupervised learning unsupervised domain adaptation deep learning
在线阅读 下载PDF
Intelligent sitting postural anomaly detection system for wheelchair users with unsupervised techniques
2
作者 Patrick Vermander Aitziber Mancisidor +2 位作者 Raffaele Gravina Itziar Cabanes Giancarlo Fortino 《Digital Communications and Networks》 2025年第3期622-633,共12页
Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,... Detecting sitting posture abnormalities in wheelchair users enables early identification of changes in their functional status.To date,this detection has relied on in-person observation by medical specialists.However,given the challenges faced by health specialists to carry out continuous monitoring,the development of an intelligent anomaly detection system is proposed.Unlike other authors,where they use supervised techniques,this work proposes using unsupervised techniques due to the advantages they offer.These advantages include the lack of prior labeling of data,and the detection of anomalies previously not contemplated,among others.In the present work,an individualized methodology consisting of two phases is developed:characterizing the normal sitting pattern and determining abnormal samples.An analysis has been carried out between different unsupervised techniques to study which ones are more suitable for postural diagnosis.It can be concluded,among other aspects,that the utilization of dimensionality reduction techniques leads to improved results.Moreover,the normality characterization phase is deemed necessary for enhancing the system’s learning capabilities.Additionally,employing an individualized approach to the model aids in capturing the particularities of the various pathologies present among subjects. 展开更多
关键词 Sitting posture monitoring Anomaly detection Assistive technology Pressure sensors unsupervised techniques INDIVIDUALIZATION WHEELCHAIR
在线阅读 下载PDF
Unsupervised Meteorological Downscaling Based on Dual Learning and Subgrid-scale Auxiliary Information
3
作者 Jing HU Jialing MU +1 位作者 Xiaomeng HUANG Xi WU 《Advances in Atmospheric Sciences》 2025年第1期53-66,共14页
Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.... Climate downscaling is used to transform large-scale meteorological data into small-scale data with enhanced detail,which finds wide applications in climate modeling,numerical weather forecasting,and renewable energy.Although deeplearning-based downscaling methods effectively capture the complex nonlinear mapping between meteorological data of varying scales,the supervised deep-learning-based downscaling methods suffer from insufficient high-resolution data in practice,and unsupervised methods struggle with accurately inferring small-scale specifics from limited large-scale inputs due to small-scale uncertainty.This article presents DualDS,a dual-learning framework utilizing a Generative Adversarial Network–based neural network and subgrid-scale auxiliary information for climate downscaling.Such a learning method is unified in a two-stream framework through up-and downsamplers,where the downsampler is used to simulate the information loss process during the upscaling,and the upsampler is used to reconstruct lost details and correct errors incurred during the upscaling.This dual learning strategy can eliminate the dependence on high-resolution ground truth data in the training process and refine the downscaling results by constraining the mapping process.Experimental findings demonstrate that DualDS is comparable to several state-of-the-art deep learning downscaling approaches,both qualitatively and quantitatively.Specifically,for a single surface-temperature data downscaling task,our method is comparable with other unsupervised algorithms with the same dataset,and we can achieve a 0.469 dB higher peak signal-to-noise ratio,0.017 higher structural similarity,0.08 lower RMSE,and the best correlation coefficient.In summary,this paper presents a novel approach to addressing small-scale uncertainty issues in unsupervised downscaling processes. 展开更多
关键词 DOWNSCALING unsupervised deep learning dual learning auxiliary information
在线阅读 下载PDF
FFD-Clustering:An unsupervised anomaly detection method for aero-engines based on fuzzy fusion of variables and discriminative mapping of features
4
作者 Zhe WANG Xuyun FU +2 位作者 Minghang ZHAO Xiangzhao XIA Shisheng ZHONG 《Chinese Journal of Aeronautics》 2025年第5期202-231,共30页
The original monitoring data from aero-engines possess characteristics such as high dimen-sionality,strong noise,and imbalance,which present substantial challenges to traditional anomalydetection methods.In response,t... The original monitoring data from aero-engines possess characteristics such as high dimen-sionality,strong noise,and imbalance,which present substantial challenges to traditional anomalydetection methods.In response,this paper proposes a method based on Fuzzy Fusion of variablesand Discriminant mapping of features for Clustering(FFD-Clustering)to detect anomalies in originalmonitoring data from Aircraft Communication Addressing and Reporting System(ACARS).Firstly,associated variables are fuzzily grouped to extract the underlying distribution characteristics and trendsfrom the data.Secondly,a multi-layer contrastive denoising-based feature Fusion Encoding Network(FEN)is designed for each variable group,which can construct representative features for each variablegroup through eliminating strong noise and complex interrelations between variables.Thirdly,a featureDiscriminative Mapping Network(DMN)based on reconstruction difference re-clustering is designed,which can distinguish dissimilar feature vectors when mapping representative features to a unified fea-ture space.Finally,the K-means clustering is used to detect the abnormal feature vectors in the unifiedfeature space.Additionally,the algorithm is capable of reconstructing identified abnormal vectors,thereby locating the abnormal variable groups.The performance of this algorithm was tested ontwo public datasets and real original monitoring data from four aero-engines'ACARS,demonstratingits superiority and application potential in aero-engine anomaly detection. 展开更多
关键词 AERO-ENGINE Anomaly detection unsupervised Fuzzy fusion Discriminativ emapping
原文传递
Unsupervised Anomaly Detection in Time Series Data via Enhanced VAE-Transformer Framework
5
作者 Chunhao Zhang Bin Xie Zhibin Huo 《Computers, Materials & Continua》 2025年第7期843-860,共18页
Time series anomaly detection is crucial in finance,healthcare,and industrial monitoring.However,traditional methods often face challenges when handling time series data,such as limited feature extraction capability,p... Time series anomaly detection is crucial in finance,healthcare,and industrial monitoring.However,traditional methods often face challenges when handling time series data,such as limited feature extraction capability,poor temporal dependency handling,and suboptimal real-time performance,sometimes even neglecting the temporal relationships between data.To address these issues and improve anomaly detection performance by better capturing temporal dependencies,we propose an unsupervised time series anomaly detection method,VLT-Anomaly.First,we enhance the Variational Autoencoder(VAE)module by redesigning its network structure to better suit anomaly detection through data reconstruction.We introduce hyperparameters to control the weight of the Kullback-Leibler(KL)divergence term in the Evidence Lower Bound(ELBO),thereby improving the encoder module’s decoupling and expressive power in the latent space,which yields more effective latent representations of the data.Next,we incorporate transformer and Long Short-Term Memory(LSTM)modules to estimate the long-term dependencies of the latent representations,capturing both forward and backward temporal relationships and performing time series forecasting.Finally,we compute the reconstruction error by averaging the predicted results and decoder reconstruction and detect anomalies through grid search for optimal threshold values.Experimental results demonstrate that the proposed method performs superior anomaly detection on multiple public time series datasets,effectively extracting complex time-related features and enabling efficient computation and real-time anomaly detection.It improves detection accuracy and robustness while reducing false positives and false negatives. 展开更多
关键词 Anomaly detection time series autoencoder TRANSFORMER unsupervised
在线阅读 下载PDF
Densely-connected Decoder Transformer for unsupervised anomaly detection of power electronic systems
6
作者 Zhichen Zhang Gen Qiu +1 位作者 Yuhua Cheng Min Wang 《Journal of Automation and Intelligence》 2025年第3期217-226,共10页
Reliable electricity infrastructure is critical for modern society,highlighting the importance of securing the stability of fundamental power electronic systems.However,as such systems frequently involve high-current ... Reliable electricity infrastructure is critical for modern society,highlighting the importance of securing the stability of fundamental power electronic systems.However,as such systems frequently involve high-current and high-voltage conditions,there is a greater likelihood of failures.Consequently,anomaly detection of power electronic systems holds great significance,which is a task that properly-designed neural networks can well undertake,as proven in various scenarios.Transformer-like networks are promising for such application,yet with its structure initially designed for different tasks,features extracted by beginning layers are often lost,decreasing detection performance.Also,such data-driven methods typically require sufficient anomalous data for training,which could be difficult to obtain in practice.Therefore,to improve feature utilization while achieving efficient unsupervised learning,a novel model,Densely-connected Decoder Transformer(DDformer),is proposed for unsupervised anomaly detection of power electronic systems in this paper.First,efficient labelfree training is achieved based on the concept of autoencoder with recursive-free output.An encoder-decoder structure with densely-connected decoder is then adopted,merging features from all encoder layers to avoid possible loss of mined features while reducing training difficulty.Both simulation and real-world experiments are conducted to validate the capabilities of DDformer,and the average FDR has surpassed baseline models,reaching 89.39%,93.91%,95.98%in different experiment setups respectively. 展开更多
关键词 Power electronic systems Anomaly detection Transformer network Dense connection unsupervised learning DDformer
在线阅读 下载PDF
Use of supervised and unsupervised approaches to make zonal application maps for variable-rate application of crop growth regulators in commercial cotton fields
7
作者 ANDREA Maria C.da S. OLIVEIRA Cristiano F.de +7 位作者 MOTA Fabrícia C.M. SANTOS Rafael C.dos RODRIGUES JUNIOR Edilson F. BIANCHI Lucas M. OLIVEIRA Rodrigo S.de GOUVEIA Caio M.de BARBOSA Victor G.S. BISPO E SILVA Marco A. 《Journal of Cotton Research》 2025年第1期1-20,共20页
Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applicati... Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applications under variable-rate(VR)strategies are commonly based exclusively on vegetation indices(VIs)variability.However,VIs often saturate in dense crop vegetation areas,limiting their effectiveness in distinguishing variability in crop growth.This study aimed to compare unsupervised framework(UF)and supervised framework(SUF)approaches for generat-ing zonal application maps for CGR under VR conditions.During 2022-2023 agricultural seasons,an UF was employed to generate zonal maps based on locally collected field data on plant height of cotton,satellite imagery,soil texture,and phenology data.Subsequently,a SUF(based on historical data between 2020-2021 to 2022-2023 agricultural seasons)was developed to predict plant height using remote sensing and phenology data,aiming to replicate same zonal maps but without relying on direct field measurements of plant height.Both approaches were tested in three fields and on two different dates per field.Results The predictive model for plant height of SUF performed well,as indicated by the model metrics.However,when comparing zonal application maps for specific field-date combinations,the predicted plant height exhibited lower variability compared with field measurements.This led to variable compatibility between SUF maps,which utilized the model predictions,and the UF maps,which were based on the real field data.Fields characterized by much pronounced soil texture variability yielded the highest compatibility between the zonal application maps produced by both SUF and UF approaches.This was predominantly due to the greater consistency in estimating plant development patterns within these heterogeneous field environments.While VR application approach can facilitate product savings during the application operation,other key factors must be considered.These include the availability of specialized machinery required for this type of applications,as well as the inherent operational costs associated with applying a single CGR product which differs from the typical uniform rate applications that often integrate multi-ple inputs.Conclusion Predictive modeling shows promise for assisting in the creation of zonal application maps for VR of CGR applications.However,the degree of agreement with the actual variability in crop growth found in the field should be evaluated on a field-by-field basis.The SUF approach,which is based on plant heigh prediction,demonstrated potential for supporting the development of zonal application maps for VR of CGR applications.However,the degree to which this approach aligns itself with the actual variability in crop growth observed in the field may vary,necessi-tating field-by-field evaluation. 展开更多
关键词 Cotton Site-specific management Crop growth regulator unsupervised framework Supervised framework Zonal application maps
在线阅读 下载PDF
Advancing skin cancer detection integrating a novel unsupervised classification and enhanced imaging techniques
8
作者 MdAbdur Rahman Nur Mohammad Fahad +3 位作者 Mohaimenul Azam Khan Raiaan Mirjam Jonkman Friso De Boer Sami Azam 《CAAI Transactions on Intelligence Technology》 2025年第2期474-493,共20页
Skin cancer,a severe health threat,can spread rapidly if undetected.Therefore,early detection can lead to an advanced and efficient diagnosis,thus reducing mortality.Unsupervised classification techniques analyse exte... Skin cancer,a severe health threat,can spread rapidly if undetected.Therefore,early detection can lead to an advanced and efficient diagnosis,thus reducing mortality.Unsupervised classification techniques analyse extensive skin image datasets,identifying patterns and anomalies without prior labelling,facilitating early detection and effective diagnosis and potentially saving lives.In this study,the authors aim to explore the potential of unsupervised learning methods in classifying different types of skin lesions in dermatoscopic images.The authors aim to bridge the gap in dermatological research by introducing innovative techniques that enhance image quality and improve feature extraction.To achieve this,enhanced super-resolution generative adversarial networks(ESRGAN)was fine-tuned to strengthen the resolution of skin lesion images,making critical features more visible.The authors extracted histogram features to capture essential colour characteristics and used the Davies-Bouldin index and silhouette score to determine optimal clusters.Fine-tuned k-means clustering with Euclidean distance in the histogram feature space achieved 87.77% and 90.5% test accuracies on the ISIC2019 and HAM10000 datasets,respectively.The unsupervised approach effectively categorises skin lesions,indicating that unsupervised learning can significantly advance dermatology by enabling early detection and classification without extensive manual annotation. 展开更多
关键词 histogram feature optimal cluster skin lesion unsupervised classification
在线阅读 下载PDF
Unsupervised Monocular Depth Estimation with Edge Enhancement for Dynamic Scenes
9
作者 Peicheng Shi Yueyue Tang +3 位作者 Yi Li Xinlong Dong Yu Sun Aixi Yang 《Computers, Materials & Continua》 2025年第8期3321-3343,共23页
In the dynamic scene of autonomous vehicles,the depth estimation of monocular cameras often faces the problem of inaccurate edge depth estimation.To solve this problem,we propose an unsupervised monocular depth estima... In the dynamic scene of autonomous vehicles,the depth estimation of monocular cameras often faces the problem of inaccurate edge depth estimation.To solve this problem,we propose an unsupervised monocular depth estimation model based on edge enhancement,which is specifically aimed at the depth perception challenge in dynamic scenes.The model consists of two core networks:a deep prediction network and a motion estimation network,both of which adopt an encoder-decoder architecture.The depth prediction network is based on the U-Net structure of ResNet18,which is responsible for generating the depth map of the scene.The motion estimation network is based on the U-Net structure of Flow-Net,focusing on the motion estimation of dynamic targets.In the decoding stage of the motion estimation network,we innovatively introduce an edge-enhanced decoder,which integrates a convolutional block attention module(CBAM)in the decoding process to enhance the recognition ability of the edge features of moving objects.In addition,we also designed a strip convolution module to improve the model’s capture efficiency of discrete moving targets.To further improve the performance of the model,we propose a novel edge regularization method based on the Laplace operator,which effectively accelerates the convergence process of themodel.Experimental results on the KITTI and Cityscapes datasets show that compared with the current advanced dynamic unsupervised monocular model,the proposed model has a significant improvement in depth estimation accuracy and convergence speed.Specifically,the rootmean square error(RMSE)is reduced by 4.8%compared with the DepthMotion algorithm,while the training convergence speed is increased by 36%,which shows the superior performance of the model in the depth estimation task in dynamic scenes. 展开更多
关键词 Dynamic scenes unsupervised learning monocular depth edge enhancement
在线阅读 下载PDF
An Optimized Unsupervised Defect Detection Approach via Federated Learning and Adaptive Embeddings Knowledge Distillation
10
作者 Jinhai Wang Junwei Xue +5 位作者 Hongyan Zhang Hui Xiao Huiling Wei Mingyou Chen Jiang Liao Lufeng Luo 《Computers, Materials & Continua》 2025年第7期1839-1861,共23页
Defect detection based on computer vision is a critical component in ensuring the quality of industrial products.However,existing detection methods encounter several challenges in practical applications,including the ... Defect detection based on computer vision is a critical component in ensuring the quality of industrial products.However,existing detection methods encounter several challenges in practical applications,including the scarcity of labeled samples,limited adaptability of pre-trained models,and the data heterogeneity in distributed environments.To address these issues,this research proposes an unsupervised defect detection method,FLAME(Federated Learning with Adaptive Multi-Model Embeddings).The method comprises three stages:(1)Feature learning stage:this work proposes FADE(Feature-Adaptive Domain-Specific Embeddings),a framework employs Gaussian noise injection to simulate defective patterns and implements a feature discriminator for defect detection,thereby enhancing the pre-trained model’s industrial imagery representation capabilities.(2)Knowledge distillation co-training stage:a multi-model feature knowledge distillation mechanism is introduced.Through feature-level knowledge transfer between the global model and historical local models,the current local model is guided to learn better feature representations from the global model.The approach prevents local models from converging to local optima and mitigates performance degradation caused by data heterogeneity.(3)Model parameter aggregation stage:participating clients utilize weighted averaging aggregation to synthesize an updated global model,facilitating efficient knowledge consolidation.Experimental results demonstrate that FADE improves the average image-level Area under the Receiver Operating Characteristic Curve(AUROC)by 7.34%compared to methods directly utilizing pre-trained models.In federated learning environments,FLAME’s multi-model feature knowledge distillation mechanism outperforms the classic FedAvg algorithm by 2.34%in average image-level AUROC,while exhibiting superior convergence properties. 展开更多
关键词 Federated learning defect detection knowledge distillation unsupervised learning
在线阅读 下载PDF
USDE:An Unsupervised Web Data Extraction Method Based on Statistical Characteristics
11
作者 Sun Long 《China Communications》 2025年第9期307-319,共13页
Web data extraction has become a key technology for extracting valuable data from websites.At present,most extraction methods based on rule learning,visual pattern or tree matching have limited performance on complex ... Web data extraction has become a key technology for extracting valuable data from websites.At present,most extraction methods based on rule learning,visual pattern or tree matching have limited performance on complex web pages.Through ana-lyzing various statistical characteristics of HTML el-ements in web documents,this paper proposes,based on statistical features,an unsupervised web data ex-traction method—traversing the HTML DOM parse tree at first,calculating and generating the statistical matrix of the elements,and then locating data records by clustering method and heuristic rules that reveal in-herent links between the visual characteristics of the data recording areas and the statistical characteristics of the HTML nodes—which is both suitable for data records extraction of single-page and multi-pages,and it has strong generality and needs no training.The ex-periments show that the accuracy and efficiency of this method are equally better than the current data extrac-tion method. 展开更多
关键词 cluster method statistical feature unsupervised technique web information extraction
在线阅读 下载PDF
Pseudo Label Purification with Dual Contrastive Learning for Unsupervised Vehicle Re-Identification
12
作者 Jiyang Xu Qi Wang +4 位作者 Xin Xiong Weidong Min Jiang Luo Di Gai Qing Han 《Computers, Materials & Continua》 2025年第3期3921-3941,共21页
The unsupervised vehicle re-identification task aims at identifying specific vehicles in surveillance videos without utilizing annotation information.Due to the higher similarity in appearance between vehicles compare... The unsupervised vehicle re-identification task aims at identifying specific vehicles in surveillance videos without utilizing annotation information.Due to the higher similarity in appearance between vehicles compared to pedestrians,pseudo-labels generated through clustering are ineffective in mitigating the impact of noise,and the feature distance between inter-class and intra-class has not been adequately improved.To address the aforementioned issues,we design a dual contrastive learning method based on knowledge distillation.During each iteration,we utilize a teacher model to randomly partition the entire dataset into two sub-domains based on clustering pseudo-label categories.By conducting contrastive learning between the two student models,we extract more discernible vehicle identity cues to improve the problem of imbalanced data distribution.Subsequently,we propose a context-aware pseudo label refinement strategy that leverages contextual features by progressively associating granularity information from different bottleneck blocks.To produce more trustworthy pseudo-labels and lessen noise interference during the clustering process,the context-aware scores are obtained by calculating the similarity between global features and contextual ones,which are subsequently added to the pseudo-label encoding process.The proposed method has achieved excellent performance in overcoming label noise and optimizing data distribution through extensive experimental results on publicly available datasets. 展开更多
关键词 unsupervised vehicle re-identification dual contrastive learning pseudo label refinement knowledge distillation
在线阅读 下载PDF
Two-Stream Auto-Encoder Network for Unsupervised Skeleton-Based Action Recognition
13
作者 WANG Gang GUAN Yaonan LI Dewei 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期330-336,共7页
Representation learning from unlabeled skeleton data is a challenging task.Prior unsupervised learning algorithms mainly rely on the modeling ability of recurrent neural networks to extract the action representations.... Representation learning from unlabeled skeleton data is a challenging task.Prior unsupervised learning algorithms mainly rely on the modeling ability of recurrent neural networks to extract the action representations.However,the structural information of the skeleton data,which also plays a critical role in action recognition,is rarely explored in existing unsupervised methods.To deal with this limitation,we propose a novel twostream autoencoder network to combine the topological information with temporal information of skeleton data.Specifically,we encode the graph structure by graph convolutional network(GCN)and integrate the extracted GCN-based representations into the gate recurrent unit stream.Then we design a transfer module to merge the representations of the two streams adaptively.According to the characteristics of the two-stream autoencoder,a unified loss function composed of multiple tasks is proposed to update the learnable parameters of our model.Comprehensive experiments on NW-UCLA,UWA3D,and NTU-RGBD 60 datasets demonstrate that our proposed method can achieve an excellent performance among the unsupervised skeleton-based methods and even perform a similar or superior performance over numerous supervised skeleton-based methods. 展开更多
关键词 representation learning skeleton-based action recognition unsupervised deep learning
原文传递
Leci:Learnable Evolutionary Category Intermediates for Unsupervised Domain Adaptive Segmentation
14
作者 Qiming ZHANG Yufei XU +1 位作者 Jing ZHANG Dacheng TAO 《Artificial Intelligence Science and Engineering》 2025年第1期37-51,共15页
To avoid the laborious annotation process for dense prediction tasks like semantic segmentation,unsupervised domain adaptation(UDA)methods have been proposed to leverage the abundant annotations from a source domain,s... To avoid the laborious annotation process for dense prediction tasks like semantic segmentation,unsupervised domain adaptation(UDA)methods have been proposed to leverage the abundant annotations from a source domain,such as virtual world(e.g.,3D games),and adapt models to the target domain(the real world)by narrowing the domain discrepancies.However,because of the large domain gap,directly aligning two distinct domains without considering the intermediates leads to inefficient alignment and inferior adaptation.To address this issue,we propose a novel learnable evolutionary Category Intermediates(CIs)guided UDA model named Leci,which enables the information transfer between the two domains via two processes,i.e.,Distilling and Blending.Starting from a random initialization,the CIs learn shared category-wise semantics automatically from two domains in the Distilling process.Then,the learned semantics in the CIs are sent back to blend the domain features through a residual attentive fusion(RAF)module,such that the categorywise features of both domains shift towards each other.As the CIs progressively and consistently learn from the varying feature distributions during training,they are evolutionary to guide the model to achieve category-wise feature alignment.Experiments on both GTA5 and SYNTHIA datasets demonstrate Leci's superiority over prior representative methods. 展开更多
关键词 unsupervised domain adaptation semantic segmentation deep learning
在线阅读 下载PDF
Unsupervised vehicle re-identification via meta-type generalization
15
作者 HUANG Chengti ZHANG Xiaoxiang +1 位作者 ZHAO Qianqian ZHU Jianqing 《High Technology Letters》 2025年第1期32-40,共9页
Unsupervised vehicle re-identification(Re-ID)methods have garnered widespread attention due to their potential in real-world traffic monitoring.However,existing unsupervised domain adaptation techniques often rely on ... Unsupervised vehicle re-identification(Re-ID)methods have garnered widespread attention due to their potential in real-world traffic monitoring.However,existing unsupervised domain adaptation techniques often rely on pseudo-labels generated from the source domain,which struggle to effectively address the diversity and dynamic nature of real-world scenarios.Given the limited variety of common vehicle types,enhancing the model’s generalization capability across these types is crucial.To this end,an innovative approach called meta-type generalization(MTG)is proposed.By dividing the training data into meta-train and meta-test sets based on vehicle type information,a novel gradient interaction computation strategy is designed to enhance the model’s ability to learn typeinvariant features.Integrated into the ResNet50 backbone,the MTG model achieves improvements of 4.50%and 12.04%on the Veri-776 and VRAI datasets,respectively,compared with traditional unsupervised algorithms,and surpasses current state-of-the-art methods.This achievement holds promise for application in intelligent traffic systems,enabling more efficient urban traffic solutions. 展开更多
关键词 deep learning unsupervised vehicle re-identification(Re-ID) META-LEARNING
在线阅读 下载PDF
Unsupervised Quick Reduct Algorithm Using Rough Set Theory 被引量:2
16
作者 C. Velayutham K. Thangavel 《Journal of Electronic Science and Technology》 CAS 2011年第3期193-201,共9页
Feature selection (FS) is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that not all features are important. Some of the features ma... Feature selection (FS) is a process to select features which are more informative. It is one of the important steps in knowledge discovery. The problem is that not all features are important. Some of the features may be redundant, and others may be irrelevant and noisy. The conventional supervised FS methods evaluate various feature subsets using an evaluation function or metric to select only those features which are related to the decision classes of the data under consideration. However, for many data mining applications, decision class labels are often unknown or incomplete, thus indicating the significance of unsupervised feature selection. However, in unsupervised learning, decision class labels are not provided. In this paper, we propose a new unsupervised quick reduct (QR) algorithm using rough set theory. The quality of the reduced data is measured by the classification performance and it is evaluated using WEKA classifier tool. The method is compared with existing supervised methods and the result demonstrates the efficiency of the proposed algorithm. 展开更多
关键词 Index Terms--Data mining rough set supervised and unsupervised feature selection unsupervised quick reduct algorithm.
在线阅读 下载PDF
An Approach to Unsupervised Character Classification Based on Similarity Measure in Fuzzy Model
17
作者 卢达 钱忆平 +1 位作者 谢铭培 浦炜 《Journal of Southeast University(English Edition)》 EI CAS 2002年第4期370-376,共7页
This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first ... This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first split into eight typographical categories. The classification scheme uses pattern matching to classify the characters in each category into a set of fuzzy prototypes based on a nonlinear weighted similarity function. The fuzzy unsupervised character classification, which is natural in the repre... 展开更多
关键词 fuzzy model weighted fuzzy similarity measure unsupervised character classification matching algorithm classification hierarchy
在线阅读 下载PDF
Research on Component Law of Chinese Patent Medicine for Anti-influenza and Development of New Recipes for Anti-influenza by Unsupervised Data Mining Methods 被引量:17
18
作者 唐仕欢 陈建新 +6 位作者 李耿 吴宏伟 陈畅 张娜 高娜 杨洪军 黄璐琦 《Journal of Traditional Chinese Medicine》 SCIE CAS CSCD 2010年第4期288-293,共6页
Objective:To analyze the component law of Chinese patent medicines for anti-influenza and develop new prescriptions for anti-influenza by unsupervised data mining methods. Methods: Chinese patent medicine recipes for ... Objective:To analyze the component law of Chinese patent medicines for anti-influenza and develop new prescriptions for anti-influenza by unsupervised data mining methods. Methods: Chinese patent medicine recipes for anti-influenza were collected and recorded in the database, and then the correlation coefficient between herbs, core combinations of herbs and new prescriptions were analyzed by using modified mutual information, complex system entropy cluster and unsupervised hierarchical clustering, respectively. Results: Based on analysis of 126 Chinese patent medicine recipes, the frequency of each herb occurrence in these recipes, 54 frequently-used herb pairs, 34 core combinations were determined, and 4 new recipes for influenza were developed. Conclusion: Unsupervised data mining methods are able to mine the component law quickly and develop new prescriptions. 展开更多
关键词 INFLUENZA unsupervised data mining methods swine influenza new prescription discovery
原文传递
Intelligent Fault Diagnosis of Rotary Machinery Based on Unsupervised Multiscale Representation Learning 被引量:6
19
作者 Guo-Qian Jiang Ping Xie +2 位作者 Xiao Wang Meng Chen Qun He 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第6期1314-1324,共11页
The performance of traditional vibration based fault diagnosis methods greatly depends on those hand- crafted features extracted using signal processing algo- rithms, which require significant amounts of domain knowle... The performance of traditional vibration based fault diagnosis methods greatly depends on those hand- crafted features extracted using signal processing algo- rithms, which require significant amounts of domain knowledge and human labor, and do not generalize well to new diagnosis domains. Recently, unsupervised represen- tation learning provides an alternative promising solution to feature extraction in traditional fault diagnosis due to its superior learning ability from unlabeled data. Given that vibration signals usually contain multiple temporal struc- tures, this paper proposes a multiscale representation learning (MSRL) framework to learn useful features directly from raw vibration signals, with the aim to capture rich and complementary fault pattern information at dif- ferent scales. In our proposed approach, a coarse-grained procedure is first employed to obtain multiple scale signals from an original vibration signal. Then, sparse filtering, a newly developed unsupervised learning algorithm, is applied to automatically learn useful features from each scale signal, respectively, and then the learned features at each scale to be concatenated one by one to obtain multi- scale representations. Finally, the multiscale representa- tions are fed into a supervised classifier to achieve diagnosis results. Our proposed approach is evaluated using two different case studies: motor bearing and wind turbine gearbox fault diagnosis. Experimental results show that the proposed MSRL approach can take full advantages of the availability of unlabeled data to learn discriminative features and achieved better performance with higher accuracy and stability compared to the traditional approaches. 展开更多
关键词 Intelligent fault diagnosis Vibration signals unsupervised feature learning Sparse filtering Multiscalefeature extraction
在线阅读 下载PDF
Sea fog detection based on unsupervised domain adaptation 被引量:6
20
作者 Mengqiu XU Ming WU +3 位作者 Jun GUO Chuang ZHANG Yubo WANG Zhanyu MA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第4期415-425,共11页
Sea fog detection with remote sensing images is a challenging task. Driven by the different image characteristics between fog and other types of clouds, such as textures and colors, it can be achieved by using image p... Sea fog detection with remote sensing images is a challenging task. Driven by the different image characteristics between fog and other types of clouds, such as textures and colors, it can be achieved by using image processing methods. Currently, most of the available methods are datadriven and relying on manual annotations. However, because few meteorological observations and buoys over the sea can be realized, obtaining visibility information to help the annotations is difficult. Considering the feasibility of obtaining abundant visible information over the land and the similarity between land fog and sea fog, we propose an unsupervised domain adaptation method to bridge the abundant labeled land fog data and the unlabeled sea fog data to realize the sea fog detection. We used a seeded region growing module to obtain pixel-level masks from roughlabels generated by the unsupervised domain adaptation model. Experimental results demonstrate that our proposed method achieves an accuracy of sea fog recognition up to 99.17%, which is nearly 3% higher than those vanilla methods. 展开更多
关键词 Deep learning Sea fog detection Seeded region growing Transfer learning unsupervised domain adaptation
原文传递
上一页 1 2 15 下一页 到第
使用帮助 返回顶部