This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-...This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.展开更多
The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6×6 Luttinger Kohn model.The effect of the number and period of pla...The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6×6 Luttinger Kohn model.The effect of the number and period of plane waves used for expansion on the stability of energy eigenvalues is examined.For practical calculation,it should choose the period large sufficiently to ensure the envelope functions vanish at the boundary and the number of plane waves large enough to ensure the energy eigenvalues keep unchanged within a prescribed range.展开更多
Control Moment Gyroscope(CMG) is an effective candidate for agile satellites and large spacecraft attitude control because of its powerful torque amplification capability. The most serious situation, however, in usi...Control Moment Gyroscope(CMG) is an effective candidate for agile satellites and large spacecraft attitude control because of its powerful torque amplification capability. The most serious situation, however, in using CMG is the inherent geometric singularity problem, where there's no torque output along a particular direction. Space expansion method has been proposed in this work for the singularity analysis. Based on inverse mapping transformation, an expanded Jacobian matrix which is a full rank square matrix is obtained. The singular angle sets of the 3-parallel cluster and pyramid cluster are distinguished using space expansion method. An effective hybrid steering strategy, able to deal with the elliptic singularity, is further proposed. Simulation results demonstrate the excellent performance of the proposed steering logic compared to the generalized singular robust logic and pseudo inverse logic in terms of energy consumption and torque error.展开更多
Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Pain...Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Painlev'e expansion method by introducing an intermediate expansion method. Then the generalized (G′/G)-(G/G′) expansion method is naturally derived from the standpoint of the nonstandard truncated Painlev'e expansion. The application of the generalized method to the mKdV equation shows that it extends the range of exact solutions obtained by using the ( G′/ G)-expansion method.展开更多
Based on a first order nonlinear ordinary differential equation with at most a sixth-degree nonlinear term which is extended from a type of elliptic equation, and by converting it into a new expansion form, this paper...Based on a first order nonlinear ordinary differential equation with at most a sixth-degree nonlinear term which is extended from a type of elliptic equation, and by converting it into a new expansion form, this paper proposes a new algebraic method to construct exact solutions for nonlinear evolution equations. Being concise and straightforward, the method is applied to modified Benjamin-Bona-Mahony (mBBM) model, and some new exact solutions to the system are obtained. The algorithm is of important significance in exploring exact solutions for other nonlinear evolution equations.展开更多
The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonia...The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonian. Moreover, the existence and completeness of normed symplectic orthogonal eigenfunction systems of these two block operators are demonstrated. Based on the completeness, the general solution of the free vibration of rectangular thin plates is given by double symplectie eigenfunction expansion method.展开更多
By using Jacobi elliptic function expansion method, several kinds of travelling wave solutions of Nonlinear Vakhnenko equation are obtained in this paper. As a result, some new forms of traveling wave solutions of the...By using Jacobi elliptic function expansion method, several kinds of travelling wave solutions of Nonlinear Vakhnenko equation are obtained in this paper. As a result, some new forms of traveling wave solutions of the equation are shown, and the numerical simulation with different parameters for the new forms solutions are given.展开更多
Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by u...Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.展开更多
Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with ne...Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with negative thermal expansion(NTE)have at-tracted significant attention as effective additives for tailoring the thermomechanical properties of electrodes and enhancing cell durability.In this work,for the first time,single-phase NTE perovskite Sm_(0.85)Zn_(0.15)MnO_(3−δ)(SZM15)was successfully synthesized via the sol-gel method,eliminating the unwanted ZnO phase typically observed in materials obtained through the conventional solid-state reaction route.The sol-gel approach proved highly advantageous,offering low cost,robustness,excellent chemical homogeneity,precise compositional control,and high phase purity.After optimization of synthesis parameters,a negative TEC of approximately−6.5×10^(−6)K^(−1)was achieved in the 400-850℃range.SZM15 was then incorporated as an additive(10wt%-50wt%)into a SmBa0.5Sr0.5CoCuO_(5+δ)(SBSCCO)cathode to tune the thermomechanical properties with a La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3−δ)(LSGM)electrolyte,achieving a minimal TEC mismatch of only 1%.Notably,the SBSCCO+10wt%SZM15 composite cathode exhibited the lowest polarization resistance of 0.019Ω·cm^(2)at 900℃,showing approximately 70%lower than that of the pristine cathode.Excellent long-term stability after 100 h of operation was achieved.In addition,a high peak power density of 680 mW·cm^(−2)was achieved in a Ni-YSZ(yttria-stabilized zirconia)|YSZ|Ce_(0.9)Gd_(0.1)O_(2−δ)(GDC10)|SBSCCO+10wt%SZM15 anode-supported fuel cell at 850℃,highlighting the effectiveness of incorporating NTE materials as a promising strategy for regulating the thermomechanical properties and improving the long-term stability of intermediate temperature solid oxide fuel cells(IT-SOFCs).展开更多
A new numerical method of integrating the nonlinear evolution equations, namely the Taylor expansion method, was presented. The standard Galerkin method can be viewed as the 0_th order Taylor expansion method; while t...A new numerical method of integrating the nonlinear evolution equations, namely the Taylor expansion method, was presented. The standard Galerkin method can be viewed as the 0_th order Taylor expansion method; while the nonlinear Galerkin method can be viewed as the 1_st order modified Taylor expansion method. Moreover, the existence of the numerical solution and its convergence rate were proven. Finally, a concrete example, namely, the two_dimensional Navier_Stokes equations with a non slip boundary condition,was provided. The result is that the higher order Taylor expansion method is of the higher convergence rate under some assumptions about the regularity of the solution.展开更多
Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolu...Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolution equation.展开更多
In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its app...In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the system of shallow water wave equations and modified Liouville equation which play an important role in mathematical physics.展开更多
This paper proposes an eigenfunction expansion method to solve twodimensional (2D) elasticity problems based on stress formulation. By introducing appropriate state functions, the fundamental system of partial diffe...This paper proposes an eigenfunction expansion method to solve twodimensional (2D) elasticity problems based on stress formulation. By introducing appropriate state functions, the fundamental system of partial differential equations of the above 2D problems is rewritten as an upper triangular differential system. For the associated operator matrix, the existence and the completeness of two normed orthogonal eigenfunction systems in some space are obtained, which belong to the two block operators arising in the operator matrix. Moreover, the general solution to the above 2D problem is given by the eigenfunction expansion method.展开更多
In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly const...In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.展开更多
The differential quadrature method based on Fourier expansion basis is applied in this work to solve coupled viscous Burgers’ equation with appropriate initial and boundary conditions. In the first step for the given...The differential quadrature method based on Fourier expansion basis is applied in this work to solve coupled viscous Burgers’ equation with appropriate initial and boundary conditions. In the first step for the given problem we have discretized the interval and replaced the differential equation by the Differential quadrature method based on Fourier expansion basis to obtain a system of ordinary differential equation (ODE) then we implement the numerical scheme by computer programing and perform numerical solution. Finally the validation of the present scheme is demonstrated by numerical example and compared with some existing numerical methods in literature. The method is analyzed for stability and convergence. It is found that the proposed numerical scheme produces a good result as compared to other researcher’s result and even generates a value at the nodes or mesh points that the results have not seen yet.展开更多
In this paper, based on a new more general ansitz, a new algebraic method, named generalized Riccati equation rational expansion method, is devised for constructing travelling wave solutions for nonlinear evolution eq...In this paper, based on a new more general ansitz, a new algebraic method, named generalized Riccati equation rational expansion method, is devised for constructing travelling wave solutions for nonlinear evolution equations with nonlinear terms of any order. Compared with most existing tanh methods for finding travelling wave solutions, the proposed method not only recovers the results by most known algebraic methods, but also provides new and more general solutions. We choose the generalized Burgers-Fisher equation with nonlinear terms of any order to illustrate our method. As a result, we obtain several new kinds of exact solutions for the equation. This approach can also be applied to other nonlinear evolution equations with nonlinear terms of any order.展开更多
In this paper,a novel method,named the consistent Burgers equation expansion(CBEE)method,is proposed to solve nonlinear evolution equations(NLEEs)by the celebrated Burgers equation.NLEEs are said to be CBEE solvable i...In this paper,a novel method,named the consistent Burgers equation expansion(CBEE)method,is proposed to solve nonlinear evolution equations(NLEEs)by the celebrated Burgers equation.NLEEs are said to be CBEE solvable if they are satisfied by the CBEE method.In order to verify the effectiveness of the CBEE method,we take(2+1)-dimensional Burgers equation as an example.From the(1+1)-dimensional Burgers equation,many new explicit solutions of the(2+1)-dimensional Burgers equation are derived.The obtained results illustrate that this method can be effectively extended to other NLEEs.展开更多
We formulate efficient polynomial expansion methods and obtain the exact traveling wave solutions for the generalized Camassa-Holm Equation. By the methods, we obtain three types traveling wave solutions for the gener...We formulate efficient polynomial expansion methods and obtain the exact traveling wave solutions for the generalized Camassa-Holm Equation. By the methods, we obtain three types traveling wave solutions for the generalized Camassa-Holm Equation: hyperbolic function traveling wave solutions, trigonometric function traveling wave solutions, and rational function traveling wave solutions. At the same time, we have shown graphical behavior of the traveling wave solutions.展开更多
This paper presents a new function expansion method for finding travelling wave solutions of a nonlinear evolution equation and calls it the (w/g)-expansion method, which can be thought of as the generalization of ...This paper presents a new function expansion method for finding travelling wave solutions of a nonlinear evolution equation and calls it the (w/g)-expansion method, which can be thought of as the generalization of (G'/G)-expansion given by Wang et al recently. As an application of this new method, we study the well-known Vakhnenko equation which describes the propagation of high-frequency waves in a relaxing medium. With two new expansions, general types of soliton solutions and periodic solutions for Vakhnenko equation are obtained.展开更多
In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the B...In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.展开更多
基金support from the National Natural Science Foundation of China(Grant Nos.52174123&52274222).
文摘This paper presents a framework for constructing surrogate models for sensitivity analysis of structural dynamics behavior.Physical models involving deformation,such as collisions,vibrations,and penetration,are devel-oped using the material point method.To reduce the computational cost of Monte Carlo simulations,response surface models are created as surrogate models for the material point system to approximate its dynamic behavior.An adaptive randomized greedy algorithm is employed to construct a sparse polynomial chaos expansion model with a fixed order,effectively balancing the accuracy and computational efficiency of the surrogate model.Based on the sparse polynomial chaos expansion,sensitivity analysis is conducted using the global finite difference and Sobol methods.Several examples of structural dynamics are provided to demonstrate the effectiveness of the proposed method in addressing structural dynamics problems.
文摘The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6×6 Luttinger Kohn model.The effect of the number and period of plane waves used for expansion on the stability of energy eigenvalues is examined.For practical calculation,it should choose the period large sufficiently to ensure the envelope functions vanish at the boundary and the number of plane waves large enough to ensure the energy eigenvalues keep unchanged within a prescribed range.
基金support from the National Natural Science Foundation of China (No. 61403197)the National Key Research and Development Plan of China (No. 2016YFB0500901)
文摘Control Moment Gyroscope(CMG) is an effective candidate for agile satellites and large spacecraft attitude control because of its powerful torque amplification capability. The most serious situation, however, in using CMG is the inherent geometric singularity problem, where there's no torque output along a particular direction. Space expansion method has been proposed in this work for the singularity analysis. Based on inverse mapping transformation, an expanded Jacobian matrix which is a full rank square matrix is obtained. The singular angle sets of the 3-parallel cluster and pyramid cluster are distinguished using space expansion method. An effective hybrid steering strategy, able to deal with the elliptic singularity, is further proposed. Simulation results demonstrate the excellent performance of the proposed steering logic compared to the generalized singular robust logic and pseudo inverse logic in terms of energy consumption and torque error.
基金Project supported by the National Key Basic Research Project of China (Grant No. 2004CB318000)the National Natural Science Foundation of China (Grant No. 10771072)
文摘Recently the (G′/G)-expansion method was proposed to find the traveling wave solutions of nonlinear evolution equations. This paper shows that the (G′/G)-expansion method is a special form of the truncated Painlev'e expansion method by introducing an intermediate expansion method. Then the generalized (G′/G)-(G/G′) expansion method is naturally derived from the standpoint of the nonstandard truncated Painlev'e expansion. The application of the generalized method to the mKdV equation shows that it extends the range of exact solutions obtained by using the ( G′/ G)-expansion method.
基金Project supported by the Science and Technology Foundation of Guizhou Province,China (Grant No 20072009)
文摘Based on a first order nonlinear ordinary differential equation with at most a sixth-degree nonlinear term which is extended from a type of elliptic equation, and by converting it into a new expansion form, this paper proposes a new algebraic method to construct exact solutions for nonlinear evolution equations. Being concise and straightforward, the method is applied to modified Benjamin-Bona-Mahony (mBBM) model, and some new exact solutions to the system are obtained. The algorithm is of important significance in exploring exact solutions for other nonlinear evolution equations.
基金Supported by the National Natural Science Foundation of China under Grant No.10962004the Natural Science Foundation of Inner Mongolia under Grant No.2009BS0101+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20070126002the Cultivation of Innovative Talent of "211 Project"of Inner Mongolia University
文摘The free vibration problem of rectangular thin plates is rewritten as a new upper triangular matrix differential system. For the associated operator matrix, we find that the two diagonal block operators are Hamiltonian. Moreover, the existence and completeness of normed symplectic orthogonal eigenfunction systems of these two block operators are demonstrated. Based on the completeness, the general solution of the free vibration of rectangular thin plates is given by double symplectie eigenfunction expansion method.
文摘By using Jacobi elliptic function expansion method, several kinds of travelling wave solutions of Nonlinear Vakhnenko equation are obtained in this paper. As a result, some new forms of traveling wave solutions of the equation are shown, and the numerical simulation with different parameters for the new forms solutions are given.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘Taking the Konopelchenko-Dubrovsky system as a simple example, some familles of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.
基金supported by the research project within the program“Excellence Initiative-Research University”for the AGH University of Krakow(IDUB AGH,Action 21)Kun Zheng acknowledges financial support from AGH University of Krakow(No.16.16.210.476).
文摘Minimizing the thermal expansion coefficient(TEC)mismatch between the cathode and electrolyte in solid oxide fuel cells is crucial for achieving stable,durable operation and high performance.Recently,materials with negative thermal expansion(NTE)have at-tracted significant attention as effective additives for tailoring the thermomechanical properties of electrodes and enhancing cell durability.In this work,for the first time,single-phase NTE perovskite Sm_(0.85)Zn_(0.15)MnO_(3−δ)(SZM15)was successfully synthesized via the sol-gel method,eliminating the unwanted ZnO phase typically observed in materials obtained through the conventional solid-state reaction route.The sol-gel approach proved highly advantageous,offering low cost,robustness,excellent chemical homogeneity,precise compositional control,and high phase purity.After optimization of synthesis parameters,a negative TEC of approximately−6.5×10^(−6)K^(−1)was achieved in the 400-850℃range.SZM15 was then incorporated as an additive(10wt%-50wt%)into a SmBa0.5Sr0.5CoCuO_(5+δ)(SBSCCO)cathode to tune the thermomechanical properties with a La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(0.2)O_(3−δ)(LSGM)electrolyte,achieving a minimal TEC mismatch of only 1%.Notably,the SBSCCO+10wt%SZM15 composite cathode exhibited the lowest polarization resistance of 0.019Ω·cm^(2)at 900℃,showing approximately 70%lower than that of the pristine cathode.Excellent long-term stability after 100 h of operation was achieved.In addition,a high peak power density of 680 mW·cm^(−2)was achieved in a Ni-YSZ(yttria-stabilized zirconia)|YSZ|Ce_(0.9)Gd_(0.1)O_(2−δ)(GDC10)|SBSCCO+10wt%SZM15 anode-supported fuel cell at 850℃,highlighting the effectiveness of incorporating NTE materials as a promising strategy for regulating the thermomechanical properties and improving the long-term stability of intermediate temperature solid oxide fuel cells(IT-SOFCs).
文摘A new numerical method of integrating the nonlinear evolution equations, namely the Taylor expansion method, was presented. The standard Galerkin method can be viewed as the 0_th order Taylor expansion method; while the nonlinear Galerkin method can be viewed as the 1_st order modified Taylor expansion method. Moreover, the existence of the numerical solution and its convergence rate were proven. Finally, a concrete example, namely, the two_dimensional Navier_Stokes equations with a non slip boundary condition,was provided. The result is that the higher order Taylor expansion method is of the higher convergence rate under some assumptions about the regularity of the solution.
文摘Using a polynomial expansion method, the general exact solitary wave solution and singular one areconstructed for the non-linear KS equation. This approach is obviously applicable to a large variety of nonlinear evolution equation.
文摘In this work, an extended Jacobian elliptic function expansion method is proposed for constructing the exact solutions of nonlinear evolution equations. The validity and reliability of the method are tested by its applications to the system of shallow water wave equations and modified Liouville equation which play an important role in mathematical physics.
基金Project supported by the National Natural Science Foundation of China (No. 10962004)the Special-ized Research Fund for the Doctoral Program of Higher Education of China (No. 20070126002)+1 种基金the Chunhui Program of Ministry of Education of China (No. Z2009-1-01010)the Natural Science Foundation of Inner Mongolia (No. 2009BS0101)
文摘This paper proposes an eigenfunction expansion method to solve twodimensional (2D) elasticity problems based on stress formulation. By introducing appropriate state functions, the fundamental system of partial differential equations of the above 2D problems is rewritten as an upper triangular differential system. For the associated operator matrix, the existence and the completeness of two normed orthogonal eigenfunction systems in some space are obtained, which belong to the two block operators arising in the operator matrix. Moreover, the general solution to the above 2D problem is given by the eigenfunction expansion method.
基金The author would like to thank the referees very much for their careful reading of the manuscript and many valuable suggestions.
文摘In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solution.s and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.
文摘The differential quadrature method based on Fourier expansion basis is applied in this work to solve coupled viscous Burgers’ equation with appropriate initial and boundary conditions. In the first step for the given problem we have discretized the interval and replaced the differential equation by the Differential quadrature method based on Fourier expansion basis to obtain a system of ordinary differential equation (ODE) then we implement the numerical scheme by computer programing and perform numerical solution. Finally the validation of the present scheme is demonstrated by numerical example and compared with some existing numerical methods in literature. The method is analyzed for stability and convergence. It is found that the proposed numerical scheme produces a good result as compared to other researcher’s result and even generates a value at the nodes or mesh points that the results have not seen yet.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘In this paper, based on a new more general ansitz, a new algebraic method, named generalized Riccati equation rational expansion method, is devised for constructing travelling wave solutions for nonlinear evolution equations with nonlinear terms of any order. Compared with most existing tanh methods for finding travelling wave solutions, the proposed method not only recovers the results by most known algebraic methods, but also provides new and more general solutions. We choose the generalized Burgers-Fisher equation with nonlinear terms of any order to illustrate our method. As a result, we obtain several new kinds of exact solutions for the equation. This approach can also be applied to other nonlinear evolution equations with nonlinear terms of any order.
基金supported by Natural Science Foundation of Hebei Province,China(No.A2018207030)Youth Key Program of Hebei University of Economics and Business(2018QZ07)+2 种基金Key Program of Hebei University of Economics and Business(2020ZD11)Youth Team Support Program of Hebei University of Economics and Business,Study on system dynamics of scientific and technological innovation promoting the expansion and quality of residents’consumption in Hebei Province(20556201D)Youth Top-notch Talent Support Program of Higher Education of Hebei Province of China(BJ2020011)。
文摘In this paper,a novel method,named the consistent Burgers equation expansion(CBEE)method,is proposed to solve nonlinear evolution equations(NLEEs)by the celebrated Burgers equation.NLEEs are said to be CBEE solvable if they are satisfied by the CBEE method.In order to verify the effectiveness of the CBEE method,we take(2+1)-dimensional Burgers equation as an example.From the(1+1)-dimensional Burgers equation,many new explicit solutions of the(2+1)-dimensional Burgers equation are derived.The obtained results illustrate that this method can be effectively extended to other NLEEs.
文摘We formulate efficient polynomial expansion methods and obtain the exact traveling wave solutions for the generalized Camassa-Holm Equation. By the methods, we obtain three types traveling wave solutions for the generalized Camassa-Holm Equation: hyperbolic function traveling wave solutions, trigonometric function traveling wave solutions, and rational function traveling wave solutions. At the same time, we have shown graphical behavior of the traveling wave solutions.
文摘This paper presents a new function expansion method for finding travelling wave solutions of a nonlinear evolution equation and calls it the (w/g)-expansion method, which can be thought of as the generalization of (G'/G)-expansion given by Wang et al recently. As an application of this new method, we study the well-known Vakhnenko equation which describes the propagation of high-frequency waves in a relaxing medium. With two new expansions, general types of soliton solutions and periodic solutions for Vakhnenko equation are obtained.
文摘In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.