Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r ...Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r - 1 of S,, while the i-th vertex of each component of (r - 1)G be adjacented to r - 1 vertices of degree 1 of St, respectively. By applying the properties of adjoint polynomials, We prove that factorization theorem of adjoint polynomials of kinds of graphs Eτp+(r-1)^G(i)∪(r - 1)K1 (1 ≤i≤p). Furthermore, we obtain structure characteristics of chromatically equivalent graphs of their complements.展开更多
A new recursive vertex-deleting formula for the computation of the chromatic polynomial of a graph is obtained in this paper. This algorithm is not only a good tool for further studying chromatic polynomials but also ...A new recursive vertex-deleting formula for the computation of the chromatic polynomial of a graph is obtained in this paper. This algorithm is not only a good tool for further studying chromatic polynomials but also the fastest among all the algorithms for the computation of chromatic polynomials.展开更多
By means of the chromatic polynomials, this paper provided a necessary and sufficient condition for the graph G being a mono-cycle graph(the Theorem 1), a first class hi-cycle graph and a second class bicycle graph...By means of the chromatic polynomials, this paper provided a necessary and sufficient condition for the graph G being a mono-cycle graph(the Theorem 1), a first class hi-cycle graph and a second class bicycle graph(the Theorem 2), respectively.展开更多
We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Herm...We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.展开更多
Based on the technique of integration within an ordered product of operators, we derive new bosonicoperators' ordering identities by using entangled state representation and the properties of two-variable Hermite ...Based on the technique of integration within an ordered product of operators, we derive new bosonicoperators' ordering identities by using entangled state representation and the properties of two-variable Hermite poly-nomials H and vice versa. In doing so, some concise normally (antinormally) ordering operator identities, such asa+man =:Hm,n(a+,a):, ana+m = (-i)m+n:Hm,n(ia+,ia): are obtained.展开更多
By virtue of the entangled state representation we concisely derive some new operator identities with regard to the two-variable Hermite polynomial (TVHP). By them and the technique of integration within an ordered ...By virtue of the entangled state representation we concisely derive some new operator identities with regard to the two-variable Hermite polynomial (TVHP). By them and the technique of integration within an ordered product (IWOP) of operators we further derive new generating function formulas of the TVHP. They are useful in quantum optical theoretical calculations. It is seen from this work that by combining the IWOP technique and quantum mechanical representations one can derive some new integration formulas even without really performing the integration.展开更多
Based on the technique of integration within an ordered product of operators, we derive new bosonic operators, ordering identities by using entangled state representation and the properties of two-variable Hermite pol...Based on the technique of integration within an ordered product of operators, we derive new bosonic operators, ordering identities by using entangled state representation and the properties of two-variable Hermite polynomials , and vice versa. In doing so, some concise normally (antinormally) ordering operator identities, such as : are obtained.展开更多
For a graph G,P(G,λ)denotes the chromatic polynomial of G.Two graphs G and H are said to be chromatically equivalent,denoted by G~H,if P(G,λ)=p(H,λ).Let [G]={H|H~G}.If [G]={G},then G is said to be chromaticall...For a graph G,P(G,λ)denotes the chromatic polynomial of G.Two graphs G and H are said to be chromatically equivalent,denoted by G~H,if P(G,λ)=p(H,λ).Let [G]={H|H~G}.If [G]={G},then G is said to be chromatically unique.For a complete 5 partite graph G with 5n vertices, define θ(G)=(α(G,6)-2 n+1 -2 n-1 + 5)/2 n-2 ,where α(G,6) denotes the number of 6 independent partition s of G.In this paper, the authors show that θ(G)≥0 and determine all g raphs with θ(G)=0,1,2,5/2,7/2,4,17/4.By using these results the chromaticity of 5 partite graphs of the form G-S with θ(G)=0,1,2,5/2,7/2,4,17/4 is inve stigated,where S is a set of edges of G.Many new chromatically unique 5 partite graphs are obtained.展开更多
Two graphs are defined to be adjointly equivalent if and only if their complements are chromatically equivalent. Using the properties of the adjoint polynomials and the fourth character R4(G), the adjoint equivalenc...Two graphs are defined to be adjointly equivalent if and only if their complements are chromatically equivalent. Using the properties of the adjoint polynomials and the fourth character R4(G), the adjoint equivalence class of graph Bn-8,l,4 is determined. According to the relations between adjoint polynomial and chromatic polynomial, we also simultaneously determine the chromatic equivalence class of Bn-8,l,4 that is the complement of Bn-8,l,4.展开更多
The parameter R(G) is the function about the front three coeffcients of the adjoint polynomial of graph G. In the paper, the range of R(G) is given when β(G) 〈 β(Dn), where β(G) is the minimum root of th...The parameter R(G) is the function about the front three coeffcients of the adjoint polynomial of graph G. In the paper, the range of R(G) is given when β(G) 〈 β(Dn), where β(G) is the minimum root of the adjoint polynomial of graph G and the chromatically equivalent classification of tDn is completely depicted.Furthermore, a sufficient and necessary condition for the class of graphs to be chromatically unique is obtained.展开更多
In this paper, a new method has been used to calculate the chromatic polynomials of graphs. In particular, the chromatic polynomials of complements of all wheels with any missing consecutive spokes are given.
In this paper,a new method is used to calculate the chromatic polynomials of graphs.The chro-matic polynomials of the complements of a wheel and a fan are determined.Furthermore,the adjoint polynomialsof F_n with n ve...In this paper,a new method is used to calculate the chromatic polynomials of graphs.The chro-matic polynomials of the complements of a wheel and a fan are determined.Furthermore,the adjoint polynomialsof F_n with n vertices are obtained.This supports a conjecture put forward by R.Y.Liu et al.展开更多
Tw o variable Jacobi polynomials,as a two-dimensional basis,are applied to solve a class of temporal fractional partial differential equations.The fractional derivative operators are in the Caputo sense.The operationa...Tw o variable Jacobi polynomials,as a two-dimensional basis,are applied to solve a class of temporal fractional partial differential equations.The fractional derivative operators are in the Caputo sense.The operational matrices of the integration of integer and fractional orders are presented.Using these matrices together with the Tau Jacobi method converts the main problem into the corresponding system of algebraic equations.An error bound is obtained in a two-dimensional Jacobi-weighted Sobolev space.Finally,the efficiency of the proposed method is demonstrated by implementing the algorithm to several illustrative examples.Results will be compared witli those obtained from some existing methods.展开更多
文摘Let Sn be the star with n vertices, and let G be any connected graph with p vertices. We denote by Eτp+(r-1)^G(i) the graph obtained from Sr and rG by coinciding the i-th vertex of G with the vertex of degree r - 1 of S,, while the i-th vertex of each component of (r - 1)G be adjacented to r - 1 vertices of degree 1 of St, respectively. By applying the properties of adjoint polynomials, We prove that factorization theorem of adjoint polynomials of kinds of graphs Eτp+(r-1)^G(i)∪(r - 1)K1 (1 ≤i≤p). Furthermore, we obtain structure characteristics of chromatically equivalent graphs of their complements.
基金This research is partially supported by NNSF of China.
文摘A new recursive vertex-deleting formula for the computation of the chromatic polynomial of a graph is obtained in this paper. This algorithm is not only a good tool for further studying chromatic polynomials but also the fastest among all the algorithms for the computation of chromatic polynomials.
基金Supported by the NNSF of China(10861009)Supported by the Ministry of Education Science and Technology Item of China(206156)
文摘By means of the chromatic polynomials, this paper provided a necessary and sufficient condition for the graph G being a mono-cycle graph(the Theorem 1), a first class hi-cycle graph and a second class bicycle graph(the Theorem 2), respectively.
基金Project supported by the National Natural Science Foundation of China(Grnat No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.
基金The project supported by National Natural Science Foundation of China under Grant No. 10175057 and the Foundation of Educational Ministry of China
文摘Based on the technique of integration within an ordered product of operators, we derive new bosonicoperators' ordering identities by using entangled state representation and the properties of two-variable Hermite poly-nomials H and vice versa. In doing so, some concise normally (antinormally) ordering operator identities, such asa+man =:Hm,n(a+,a):, ana+m = (-i)m+n:Hm,n(ia+,ia): are obtained.
基金supported by the National Natural Science Foundation of China (Grant No. 11174114)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 12KJD140001)the Research Foundation of Changzhou Institute of Technology of China (Grant No. YN1106)
文摘By virtue of the entangled state representation we concisely derive some new operator identities with regard to the two-variable Hermite polynomial (TVHP). By them and the technique of integration within an ordered product (IWOP) of operators we further derive new generating function formulas of the TVHP. They are useful in quantum optical theoretical calculations. It is seen from this work that by combining the IWOP technique and quantum mechanical representations one can derive some new integration formulas even without really performing the integration.
文摘Based on the technique of integration within an ordered product of operators, we derive new bosonic operators, ordering identities by using entangled state representation and the properties of two-variable Hermite polynomials , and vice versa. In doing so, some concise normally (antinormally) ordering operator identities, such as : are obtained.
基金Supported by the National Natural Science Foundation of China (1 0 0 61 0 0 3) and the ScienceFoundation of the State Education Ministry of China
文摘For a graph G,P(G,λ)denotes the chromatic polynomial of G.Two graphs G and H are said to be chromatically equivalent,denoted by G~H,if P(G,λ)=p(H,λ).Let [G]={H|H~G}.If [G]={G},then G is said to be chromatically unique.For a complete 5 partite graph G with 5n vertices, define θ(G)=(α(G,6)-2 n+1 -2 n-1 + 5)/2 n-2 ,where α(G,6) denotes the number of 6 independent partition s of G.In this paper, the authors show that θ(G)≥0 and determine all g raphs with θ(G)=0,1,2,5/2,7/2,4,17/4.By using these results the chromaticity of 5 partite graphs of the form G-S with θ(G)=0,1,2,5/2,7/2,4,17/4 is inve stigated,where S is a set of edges of G.Many new chromatically unique 5 partite graphs are obtained.
基金Supported by the National Natural Science Foundation of China(Grant No.11161037)the Science Found of Qinghai Province(Grant No.2011-z-907)
文摘Two graphs are defined to be adjointly equivalent if and only if their complements are chromatically equivalent. Using the properties of the adjoint polynomials and the fourth character R4(G), the adjoint equivalence class of graph Bn-8,l,4 is determined. According to the relations between adjoint polynomial and chromatic polynomial, we also simultaneously determine the chromatic equivalence class of Bn-8,l,4 that is the complement of Bn-8,l,4.
基金Supported by the National Science Foundation of China(10761008)Supported by the Science Foundation of the State Education Ministry of China(205170)
文摘The parameter R(G) is the function about the front three coeffcients of the adjoint polynomial of graph G. In the paper, the range of R(G) is given when β(G) 〈 β(Dn), where β(G) is the minimum root of the adjoint polynomial of graph G and the chromatically equivalent classification of tDn is completely depicted.Furthermore, a sufficient and necessary condition for the class of graphs to be chromatically unique is obtained.
基金Supported by National Natural Science Found of China(1027101710271048)
文摘In this paper, a new method has been used to calculate the chromatic polynomials of graphs. In particular, the chromatic polynomials of complements of all wheels with any missing consecutive spokes are given.
基金Supported by Foundation of Beijing Jiaotong University and by the National Natural Science Foundation of China (No.10271017,No.60373030) and Beijing National Science Foundation (No.1012003)
文摘In this paper,a new method is used to calculate the chromatic polynomials of graphs.The chro-matic polynomials of the complements of a wheel and a fan are determined.Furthermore,the adjoint polynomialsof F_n with n vertices are obtained.This supports a conjecture put forward by R.Y.Liu et al.
基金the Iran National Science Foundation:INFS under Grant No.95009788 and is also under supplementary support of The University of Guilan,Iran.
文摘Tw o variable Jacobi polynomials,as a two-dimensional basis,are applied to solve a class of temporal fractional partial differential equations.The fractional derivative operators are in the Caputo sense.The operational matrices of the integration of integer and fractional orders are presented.Using these matrices together with the Tau Jacobi method converts the main problem into the corresponding system of algebraic equations.An error bound is obtained in a two-dimensional Jacobi-weighted Sobolev space.Finally,the efficiency of the proposed method is demonstrated by implementing the algorithm to several illustrative examples.Results will be compared witli those obtained from some existing methods.