A new technique was developed for the integrated processing of cell disruption and aqueous two-phase extraction in a high-speed bead mill to separate intracellular proteins from microbial cells. The process was named ...A new technique was developed for the integrated processing of cell disruption and aqueous two-phase extraction in a high-speed bead mill to separate intracellular proteins from microbial cells. The process was named as simultaneous cell disruption and aqueous two-phase extraction (SDATE). Advantages, such as high cell disruption efficiency, biochemical activities preservation of proteins, cell debris elimination, and prelimiary purification of the target protein were being claimed. When this technique was employed for isolating recombinant Tumor Necrosis Factor (TNF) from E. coli, overall protein concentration and TNF activity were found to have been increased. More than 95% of TNF was partitioned into the top phase and all cell debris were in the bottom phase. The partition coefficient was greater than 3 and the TNF purification factor was greater than 6. It is shown that less separation steps were being utilized in the new technique, meaning a reduction in separation time and less process extractors required.展开更多
A simple aqueous two-phase extraction system (ATPS) of PEG/phosphate was proposed for selective separation and enrichment of proteins. The combination of ATPE with HPLC was applied to identify the partition of prote...A simple aqueous two-phase extraction system (ATPS) of PEG/phosphate was proposed for selective separation and enrichment of proteins. The combination of ATPE with HPLC was applied to identify the partition of proteins in two phases. Five proteins (bovine serum albumin, Cytochrome C, lysozyme, myoglobin, and trypsin) were used as model proteins to study the effect of phosphate concentration and pH on proteins partition. The PEG/phosphate system was firstly applied to real human saliva and plasma samples, some proteins showed obviously different partition in two phases. The primary results manifest the selective separation and enrichment of proteins in ATPS provided the potential for high abundance proteins depletion in proteomics. ~ 2009 Feng Qu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
[Objectives]The ultrasound-assisted aqueous two-phase extraction of sweet potato leaf polysaccharides was studied.[Methods]With the yield of sweet potato leaf polysaccharides as the index,the aqueous two-phase extract...[Objectives]The ultrasound-assisted aqueous two-phase extraction of sweet potato leaf polysaccharides was studied.[Methods]With the yield of sweet potato leaf polysaccharides as the index,the aqueous two-phase extraction system was determined,and the optimal extraction conditions were optimized by single-factor experiments and response surface methodology.[Results]The optimal parameters were ethanol concentration 25.68%,liquid-to-material ratio 55.83,and ultrasonic treatment time 38.33 min.Under these conditions,the yield of sweet potato leaf polysaccharides could reach 20.646 mg/g.[Conclusions]The ethanol/ammonium sulfate aqueous system is a rapid and efficient method for extracting sweet potato leaf polysaccharides,which is of great significance for the application of sweet potato leaf extract as a natural food additive.展开更多
Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representati...Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development.展开更多
AIM:To investigate the long-term outcomes in acute primary angle closure(APAC)patients treated with lens extraction(LE)surgery and to identify risk factors for glaucomatous optic neuropathy(GON).METHODS:In this longit...AIM:To investigate the long-term outcomes in acute primary angle closure(APAC)patients treated with lens extraction(LE)surgery and to identify risk factors for glaucomatous optic neuropathy(GON).METHODS:In this longitudinal observational study,detailed medical histories of APAC patients and comprehensive ophthalmic examinations at final followup were collected.Logistic regression analysis was performed to identify predictors of blindness.Univariate and multivariate linear regression analyses were conducted to determine risk factors associated with visual outcomes.RESULTS:This study included 39 affected eyes of 31 subjects(26 females)with an average age of 74.1±8.0y.At 6.7±4.2y after APAC attack,2(5.7%)eyes had bestcorrected visual acuity(VA)worse than 3/60.Advanced glaucomatous visual field loss was observed in 15(39.5%)affected eyes and 5(25.0%)fellow eyes.Nine affected eyes(23.7%)had GON,and 11(28.9%)were blind.Six(15.4%)affected eyes and 2(9.1%)fellow eyes had suspicious progression.A significantly higher blindness rate in factory workers compared to office workers.Logistic regression identified that worse VA at attack(OR 10.568,95%CI 1.288-86.695;P=0.028)and worse early postoperative VA(OR 13.214,95%CI 1.157-150.881;P=0.038)were risk factors for blindness.Multivariate regression showed that longer duration of elevated intraocular pressure(P=0.004)and worse early postoperative VA(P=0.009)were associated with worse visual outcomes.CONCLUSION:Despite LE surgery,some APAC patients experience continued visual function deterioration.Lifelong monitoring is necessary.Target pressure and progression rates should be re-evaluated during follow-up.展开更多
Extraction of theanine from waste liquid of tea polyphenol production was studied in aqueous surfactanttwo-phase system (ASTP) with cationic surfactant (CTAB) and anionic surfactant (SDS). Results indicate that ...Extraction of theanine from waste liquid of tea polyphenol production was studied in aqueous surfactanttwo-phase system (ASTP) with cationic surfactant (CTAB) and anionic surfactant (SDS). Results indicate that the region of ASTP is narrow and there is only a two-phase region of cationic surfactant. The increase in concentrations of NaBr and Na2SO4 are beneficial to the formation of ASTP. Theanine concentration in the bottom phase increases with increasing concentration of theanine, whereas the Partition coefficient and extraction rate only change a littlewhen the concentration of theanine is above 0.2 g.L-'. With the increase of SDS concentration, the phase ratio and the partition coefficient decrease, while the extraction efficiency of theanine increases and the concentration of theanine changes a little in the range from 2.4/7.5 to 2.8/7.2 for SDS/CTAB ratio. The temperature has a notable ef- fect on the concentration of theanine in the bottom phase, partition coefficient and extraction rate of theanine. The increase of waste liquid decreases the phase ratio, increases the concentration and extraction rate of theanine in the bottom ohase, since the orotein and the saccharide enter the bottom nhase with theanine.展开更多
A 1-butyl-3-methylimidazolium chloride-salt aqueous two-phase system was studied on extraction of abused drugs. The effects of sorts of salts, temperature, concentration of salt and drugs on system were investigated s...A 1-butyl-3-methylimidazolium chloride-salt aqueous two-phase system was studied on extraction of abused drugs. The effects of sorts of salts, temperature, concentration of salt and drugs on system were investigated systematically. A satisfactory extraction efficiency of 93% was obtained for papaverine while that of morphine was 65%. The extraction mechanism was primarily discussed.展开更多
Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A mode...Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A model for overall dispersed side volumetric mass transfer coefficients was derived by describing the motion of the drops based upon Navier-Stokes equation combined with the relationship between mass transfer coefficients and the drop velocity. The model provides good predictions and can be successfully used in aqueous two-phase extraction. The average relative deviation between calculated values and experimental data ranges from 8% to 14%.展开更多
This paper presents the evaluation of an aqueous two-phase system (ATPS) for extracting elastase produced by Bacillus sp. EL31410. The elastase and cell partition behavior in polyethylene glycol (PEG)/salt systems...This paper presents the evaluation of an aqueous two-phase system (ATPS) for extracting elastase produced by Bacillus sp. EL31410. The elastase and cell partition behavior in polyethylene glycol (PEG)/salt systems was investigated. The suitable system for elastase extraction was PEG/KHEPO4-KEHPO4, in which elastase is mainly partitioned into the PEG-rich phase, while the cells remained in the other phase. The influence of defined system parameters (e.g. PEG molecular mass, pH, NaCl addition) on the partitioning behavior of elastase is described. The concentration of phase forming components, PEG and KHEPO4-KEHPO4, was optimized for elastase recovery by means of response surface methodology, and it was found that they greatly influenced extraction recovery. The optimal ATPS was 23.1% (w/w) PEG 2000 and 11.7% (w/w) KHEPO4-KEHPO4. The predicted recovery was about 89.5%, so this process is suggested to be a rapid and convenient method for elastase extraction.展开更多
An exhaustive study has been conducted to investigate span-based models for the joint entity and relation extraction task.However,these models sample a large number of negative entities and negative relations during t...An exhaustive study has been conducted to investigate span-based models for the joint entity and relation extraction task.However,these models sample a large number of negative entities and negative relations during the model training,which are essential but result in grossly imbalanced data distributions and in turn cause suboptimal model performance.In order to address the above issues,we propose a two-phase paradigm for the span-based joint entity and relation extraction,which involves classifying the entities and relations in the first phase,and predicting the types of these entities and relations in the second phase.The two-phase paradigm enables our model to significantly reduce the data distribution gap,including the gap between negative entities and other entities,aswell as the gap between negative relations and other relations.In addition,we make the first attempt at combining entity type and entity distance as global features,which has proven effective,especially for the relation extraction.Experimental results on several datasets demonstrate that the span-based joint extraction model augmented with the two-phase paradigm and the global features consistently outperforms previous state-ofthe-art span-based models for the joint extraction task,establishing a new standard benchmark.Qualitative and quantitative analyses further validate the effectiveness the proposed paradigm and the global features.展开更多
Isolation and purification of single-walled carbon nanotubes (SWCNTs) are prerequisites for their implementation in various applications. In this work, we present a fast (-5 min), low-cost, and easily scalable ben...Isolation and purification of single-walled carbon nanotubes (SWCNTs) are prerequisites for their implementation in various applications. In this work, we present a fast (-5 min), low-cost, and easily scalable bench-top approach to the extraction of high-quality isolated SWCNTs from bundles and impurities in an aqueous dispersion. The extraction procedure, based on aqueous two-phase (ATP) separation, is widely applicable to any SWCNT source (tested on samples up to 1.7 nm in diameter) and independent of defect density, purity, diameter, and length. The extracted dispersions demonstrate that the removal of large aggregates, small bundles, and impurities is comparable to that by density gradient ultracentrifugation, but without the need for high-end instrumentation. Raman and fluorescence-excitation spectroscopy, single-nanotube fluorescence imaging, atomic force and transmission electron microscopy, and thermogravimetric analysis all confirm the high purity of the isolated SWCNTs. By predispersing the SWCNTs without sonication (only gentle stirring), full-length, pristine SWCNTs can be isolated (tested up to 20 μm). Hence, this simple ATP method will find immediate application in the generation of SWCNT materials for all levels of nanotube research and applications, from fundamental studies to high-performance devices.展开更多
The compositions of the extracted complexes of La, Gd, Er and Y with sec octyl phenoxy acetic acid in heptane and the related apparent extraction equilibrium constants K M were determined using two phase titration...The compositions of the extracted complexes of La, Gd, Er and Y with sec octyl phenoxy acetic acid in heptane and the related apparent extraction equilibrium constants K M were determined using two phase titration technique. The stoichiometric compounds for La, Gd, Er and Y should be LaA 3·2.5HA, GdA 3·3HA, ErA 3·3.1HA and YA 3·4.3HA respectively. And their p K M are 3.43, 3.46, 3.08 and 2.58 respectively.展开更多
The aqueous two-phase system of PEG-4000/K<sub>3</sub>PO<sub>4</sub> is selected to extract interferon-γ(γ-IFN)from the broth of homogenized E.coil cells,which were recombined genetically a...The aqueous two-phase system of PEG-4000/K<sub>3</sub>PO<sub>4</sub> is selected to extract interferon-γ(γ-IFN)from the broth of homogenized E.coil cells,which were recombined genetically and werefermented in high expressivity.The effects of pH value and the concentrations of PEG and phos-phate on the partition behavious of γ-IFN and contaminating proteins have been investigated.Theresults show that the pH value is the most influential factor effecting the extraction yield of γ-IFN.Under a suitable condition,an effective separation with high yield of γ-IFN can be achieved.展开更多
A new method to extract and separate tetracycline(TC) in a new aqueous tyro-phase system(ATPS) consisting of hydrophilic [Bmim]BF4 and NaH2PO4 was investigated. The effects of the amount of salt, ionic liquid as w...A new method to extract and separate tetracycline(TC) in a new aqueous tyro-phase system(ATPS) consisting of hydrophilic [Bmim]BF4 and NaH2PO4 was investigated. The effects of the amount of salt, ionic liquid as well as tetracycline on extraction efficiency were studied systematically. The results show that ionic liquid-ATPS exhibited the highest extraction efficiency higher than 90%. When the concentration of NaH2PO4 was 33.3%--38.5% (mass fraction), the amounts of ionic liquid and TC were 1.0--2.0 mL and 1.8 mL, respectively, and ionic liquid could be re-used.展开更多
The exosomes hold significant potential in disease diagnosis and therapeutic interventions.The objective of this study was to investigate the potential of aqueous two-phase systems(ATPSs)for the separation of bovine m...The exosomes hold significant potential in disease diagnosis and therapeutic interventions.The objective of this study was to investigate the potential of aqueous two-phase systems(ATPSs)for the separation of bovine milk exosomes.The milk exosome partition behaviors and bovine milk separation were investigated,and the ATPSs and bovine milk whey addition was optimized.The optimal separation conditions were identified as 16%(mass)polyethylene glycol 4000,10%(mass)dipotassium phosphate,and 1%(mass)enzymatic hydrolysis bovine milk whey.During the separation process,bovine milk exosomes were predominantly enriched in the interphase,while protein impurities were primarily found in the bottom phase.The process yielded bovine milk exosomes of 2.0×10^(11)particles per ml whey with high purity(staining rate>90%,7.01×10^(10)particles per mg protein)and high uniformity(polydispersity index<0.03).The isolated exosomes were characterized and identified by transmission electron microscopy,zeta potential and size distribution.The results demonstrated aqueous two-phase extraction possesses a robust capability for the enrichment and separation of exosomes directly from bovine milk whey,presenting a novel approach for the large-scale isolation of exosomes.展开更多
In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shippi...In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making.展开更多
Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or...Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or improper operating conditions.Once emulsification occurs,it would not only lead to low rare earths recovery efficiency,small product quantities,high production costs and the losing of extractant and rare earth resources,but also result in serious environmental pollution.Therefore,it is very important to study the micro-mechanisms of emulsification and establish new methods to prevent emulsification at the source.In this paper,possible factors resulting in emulsification,such as the compositions and properties of the organic and aqueous phases,the operating conditions of the rare earths extraction are reviewed.The micro-mechanisms of emulsification are summarized basing on the microscopic structures in the bulk phase,aggregations of the extractants at the organic-aqueous interface,spectral characterizations and computational simulations.On this basis,new formation mechanisms are proposed for emulsification.Preliminary explorations are employed to verify the correctness of these new viewpoints.Finally,future directions for studies of the emulsification micro-mechanism are proposed.This study provides a theoretical basis for further understanding the micro-mechanisms of interfacial instability resulting in emulsification in the process of rare earths extraction.展开更多
Deep-sea mineral resource transportation predominantly utilizes hydraulic pipeline methodology.Environmental factors induce vibrations in flexible pipelines,thereby affecting the internal flow characteristics.Therefor...Deep-sea mineral resource transportation predominantly utilizes hydraulic pipeline methodology.Environmental factors induce vibrations in flexible pipelines,thereby affecting the internal flow characteristics.Therefore,real-time monitoring of solid–liquid two-phase flow in pipelines is crucial for system maintenance.This study develops an autoencoder-based deep learning framework to reconstruct three-dimensional solid–liquid two-phase flow within flexible vibrating pipelines utilizing sparse wall information from sensors.Within this framework,separate X-model and F-model with distinct hidden-layer structures are established to reconstruct the coordinates and flow field information on the computational domain grid of the pipeline under traveling wave vibration.Following hyperparameter optimization,the models achieved high reconstruction accuracy,demonstrating R^(2)values of 0.990 and 0.945,respectively.The models’robustness is evaluated across three aspects:vibration parameters,physical fields,and vibration modes,demonstrating good reconstruction performance.Results concerning sensors show that 20 sensors(0.06%of total grids)achieve a balance between accuracy and cost,with superior accuracy obtained when arranged along the full length of the pipe compared to a dense arrangement at the front end.The models exhibited a signal-to-noise ratio tolerance of approximately 27 dB,with reconstruction accuracy being more affected by sensor failures at both ends of the pipeline.展开更多
The influence of the squeeze film between the tube and the support structure on flow-induced vibrations is a critical factor in tube bundles subjected to two-phase cross-flow.This aspect can significantly alter the th...The influence of the squeeze film between the tube and the support structure on flow-induced vibrations is a critical factor in tube bundles subjected to two-phase cross-flow.This aspect can significantly alter the threshold for fluidelastic instability and affect heat transfer efficiency.This paper presents a mathematical model incorporating the squeeze film force between the tube and the support structure.We aim to clarify the mechanisms underlying fluidelastic instability in tube bundle systems exposed to two-phase flow.Using a self-developed computer program,we performed numerical calculations to examine the influence of the squeeze film on the threshold of fluidelastic instability in the tube bundle system.Furthermore,we analyzed how the thickness and length of the squeeze film affect both the underlying mechanisms and the critical velocity of fluidelastic instability.展开更多
Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristic...Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristics complicate the gas-water two-phase flow process in porous media following hydrate decomposition, posing challenges for efficient development. This study examines the transport response of clayey-silt reservoir samples from the Shenhu area using gas-water two-phase flow experiments and CT scanning to explore changes in pore structure, gas-water distribution, and relative permeability under varying flow conditions. The results indicate that pore heterogeneity significantly influences flow characteristics. Gas preferentially displaces water in larger pores, forming fracture-like pores, which serve as preferential flow channels for gas migration. The preferential flow channels enhance gas-phase permeability up to 19 times that of the water phase when fluid pressures exceed total stresses. However,small pores retain liquid, leading to a high residual water saturation of 0.561. CT imaging reveals that these hydro-fractures improve gas permeability but also confine gas flow to specific channels. Pore network analysis shows that gas injection expands the pore-throat network, enhancing connectivity and forming fracture-like pores. Residual water remains trapped in smaller pores and throats, while structural changes, including new fractures, improve gas flow pathways and overall connectivity. Relative permeability curves demonstrate a narrow gas-water cocurrent-flow zone, a right-shifted iso-permeability point and high reservoir capillary pressure, indicating a strong "water-blocking" effect. The findings suggest that optimizing reservoir stimulation techniques to enhance fracture formation, reduce residual water saturation, and improve gas flow capacity is critical for efficient hydrate reservoir development.展开更多
基金Supported by the National Natural Science Foundation of China(No.295256O9 and 29736180).
文摘A new technique was developed for the integrated processing of cell disruption and aqueous two-phase extraction in a high-speed bead mill to separate intracellular proteins from microbial cells. The process was named as simultaneous cell disruption and aqueous two-phase extraction (SDATE). Advantages, such as high cell disruption efficiency, biochemical activities preservation of proteins, cell debris elimination, and prelimiary purification of the target protein were being claimed. When this technique was employed for isolating recombinant Tumor Necrosis Factor (TNF) from E. coli, overall protein concentration and TNF activity were found to have been increased. More than 95% of TNF was partitioned into the top phase and all cell debris were in the bottom phase. The partition coefficient was greater than 3 and the TNF purification factor was greater than 6. It is shown that less separation steps were being utilized in the new technique, meaning a reduction in separation time and less process extractors required.
基金supported by the National Basic Research Program of China(973 program No.2007CB914101)National Natural Science Foundation of China(No.20875009)
文摘A simple aqueous two-phase extraction system (ATPS) of PEG/phosphate was proposed for selective separation and enrichment of proteins. The combination of ATPE with HPLC was applied to identify the partition of proteins in two phases. Five proteins (bovine serum albumin, Cytochrome C, lysozyme, myoglobin, and trypsin) were used as model proteins to study the effect of phosphate concentration and pH on proteins partition. The PEG/phosphate system was firstly applied to real human saliva and plasma samples, some proteins showed obviously different partition in two phases. The primary results manifest the selective separation and enrichment of proteins in ATPS provided the potential for high abundance proteins depletion in proteomics. ~ 2009 Feng Qu. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
文摘[Objectives]The ultrasound-assisted aqueous two-phase extraction of sweet potato leaf polysaccharides was studied.[Methods]With the yield of sweet potato leaf polysaccharides as the index,the aqueous two-phase extraction system was determined,and the optimal extraction conditions were optimized by single-factor experiments and response surface methodology.[Results]The optimal parameters were ethanol concentration 25.68%,liquid-to-material ratio 55.83,and ultrasonic treatment time 38.33 min.Under these conditions,the yield of sweet potato leaf polysaccharides could reach 20.646 mg/g.[Conclusions]The ethanol/ammonium sulfate aqueous system is a rapid and efficient method for extracting sweet potato leaf polysaccharides,which is of great significance for the application of sweet potato leaf extract as a natural food additive.
文摘Since Google introduced the concept of Knowledge Graphs(KGs)in 2012,their construction technologies have evolved into a comprehensive methodological framework encompassing knowledge acquisition,extraction,representation,modeling,fusion,computation,and storage.Within this framework,knowledge extraction,as the core component,directly determines KG quality.In military domains,traditional manual curation models face efficiency constraints due to data fragmentation,complex knowledge architectures,and confidentiality protocols.Meanwhile,crowdsourced ontology construction approaches from general domains prove non-transferable,while human-crafted ontologies struggle with generalization deficiencies.To address these challenges,this study proposes an OntologyAware LLM Methodology for Military Domain Knowledge Extraction(LLM-KE).This approach leverages the deep semantic comprehension capabilities of Large Language Models(LLMs)to simulate human experts’cognitive processes in crowdsourced ontology construction,enabling automated extraction of military textual knowledge.It concurrently enhances knowledge processing efficiency and improves KG completeness.Empirical analysis demonstrates that this method effectively resolves scalability and dynamic adaptation challenges in military KG construction,establishing a novel technological pathway for advancing military intelligence development.
文摘AIM:To investigate the long-term outcomes in acute primary angle closure(APAC)patients treated with lens extraction(LE)surgery and to identify risk factors for glaucomatous optic neuropathy(GON).METHODS:In this longitudinal observational study,detailed medical histories of APAC patients and comprehensive ophthalmic examinations at final followup were collected.Logistic regression analysis was performed to identify predictors of blindness.Univariate and multivariate linear regression analyses were conducted to determine risk factors associated with visual outcomes.RESULTS:This study included 39 affected eyes of 31 subjects(26 females)with an average age of 74.1±8.0y.At 6.7±4.2y after APAC attack,2(5.7%)eyes had bestcorrected visual acuity(VA)worse than 3/60.Advanced glaucomatous visual field loss was observed in 15(39.5%)affected eyes and 5(25.0%)fellow eyes.Nine affected eyes(23.7%)had GON,and 11(28.9%)were blind.Six(15.4%)affected eyes and 2(9.1%)fellow eyes had suspicious progression.A significantly higher blindness rate in factory workers compared to office workers.Logistic regression identified that worse VA at attack(OR 10.568,95%CI 1.288-86.695;P=0.028)and worse early postoperative VA(OR 13.214,95%CI 1.157-150.881;P=0.038)were risk factors for blindness.Multivariate regression showed that longer duration of elevated intraocular pressure(P=0.004)and worse early postoperative VA(P=0.009)were associated with worse visual outcomes.CONCLUSION:Despite LE surgery,some APAC patients experience continued visual function deterioration.Lifelong monitoring is necessary.Target pressure and progression rates should be re-evaluated during follow-up.
基金Supported by the Fundamental Research Funds for the Central Universities(JUSRP11205)
文摘Extraction of theanine from waste liquid of tea polyphenol production was studied in aqueous surfactanttwo-phase system (ASTP) with cationic surfactant (CTAB) and anionic surfactant (SDS). Results indicate that the region of ASTP is narrow and there is only a two-phase region of cationic surfactant. The increase in concentrations of NaBr and Na2SO4 are beneficial to the formation of ASTP. Theanine concentration in the bottom phase increases with increasing concentration of theanine, whereas the Partition coefficient and extraction rate only change a littlewhen the concentration of theanine is above 0.2 g.L-'. With the increase of SDS concentration, the phase ratio and the partition coefficient decrease, while the extraction efficiency of theanine increases and the concentration of theanine changes a little in the range from 2.4/7.5 to 2.8/7.2 for SDS/CTAB ratio. The temperature has a notable ef- fect on the concentration of theanine in the bottom phase, partition coefficient and extraction rate of theanine. The increase of waste liquid decreases the phase ratio, increases the concentration and extraction rate of theanine in the bottom ohase, since the orotein and the saccharide enter the bottom nhase with theanine.
基金This study was jointly supported by the National Natural Science Foundation of China(20275003 and 20335010).
文摘A 1-butyl-3-methylimidazolium chloride-salt aqueous two-phase system was studied on extraction of abused drugs. The effects of sorts of salts, temperature, concentration of salt and drugs on system were investigated systematically. A satisfactory extraction efficiency of 93% was obtained for papaverine while that of morphine was 65%. The extraction mechanism was primarily discussed.
基金Supported by the National Natural Science Foundation of China.
文摘Overall dispersed side volumetric mass transfer coefficients for protein and amino acids were measured in continuous countercurrent PEG4000/KHP aqueous two-phase systems in a 57mm I.D. packed extraction column. A model for overall dispersed side volumetric mass transfer coefficients was derived by describing the motion of the drops based upon Navier-Stokes equation combined with the relationship between mass transfer coefficients and the drop velocity. The model provides good predictions and can be successfully used in aqueous two-phase extraction. The average relative deviation between calculated values and experimental data ranges from 8% to 14%.
基金Project (No. 20276064) supported by the National Natural ScienceFoundation of China
文摘This paper presents the evaluation of an aqueous two-phase system (ATPS) for extracting elastase produced by Bacillus sp. EL31410. The elastase and cell partition behavior in polyethylene glycol (PEG)/salt systems was investigated. The suitable system for elastase extraction was PEG/KHEPO4-KEHPO4, in which elastase is mainly partitioned into the PEG-rich phase, while the cells remained in the other phase. The influence of defined system parameters (e.g. PEG molecular mass, pH, NaCl addition) on the partitioning behavior of elastase is described. The concentration of phase forming components, PEG and KHEPO4-KEHPO4, was optimized for elastase recovery by means of response surface methodology, and it was found that they greatly influenced extraction recovery. The optimal ATPS was 23.1% (w/w) PEG 2000 and 11.7% (w/w) KHEPO4-KEHPO4. The predicted recovery was about 89.5%, so this process is suggested to be a rapid and convenient method for elastase extraction.
基金supported by the National Key Research and Development Program[2020YFB1006302].
文摘An exhaustive study has been conducted to investigate span-based models for the joint entity and relation extraction task.However,these models sample a large number of negative entities and negative relations during the model training,which are essential but result in grossly imbalanced data distributions and in turn cause suboptimal model performance.In order to address the above issues,we propose a two-phase paradigm for the span-based joint entity and relation extraction,which involves classifying the entities and relations in the first phase,and predicting the types of these entities and relations in the second phase.The two-phase paradigm enables our model to significantly reduce the data distribution gap,including the gap between negative entities and other entities,aswell as the gap between negative relations and other relations.In addition,we make the first attempt at combining entity type and entity distance as global features,which has proven effective,especially for the relation extraction.Experimental results on several datasets demonstrate that the span-based joint extraction model augmented with the two-phase paradigm and the global features consistently outperforms previous state-ofthe-art span-based models for the joint extraction task,establishing a new standard benchmark.Qualitative and quantitative analyses further validate the effectiveness the proposed paradigm and the global features.
文摘Isolation and purification of single-walled carbon nanotubes (SWCNTs) are prerequisites for their implementation in various applications. In this work, we present a fast (-5 min), low-cost, and easily scalable bench-top approach to the extraction of high-quality isolated SWCNTs from bundles and impurities in an aqueous dispersion. The extraction procedure, based on aqueous two-phase (ATP) separation, is widely applicable to any SWCNT source (tested on samples up to 1.7 nm in diameter) and independent of defect density, purity, diameter, and length. The extracted dispersions demonstrate that the removal of large aggregates, small bundles, and impurities is comparable to that by density gradient ultracentrifugation, but without the need for high-end instrumentation. Raman and fluorescence-excitation spectroscopy, single-nanotube fluorescence imaging, atomic force and transmission electron microscopy, and thermogravimetric analysis all confirm the high purity of the isolated SWCNTs. By predispersing the SWCNTs without sonication (only gentle stirring), full-length, pristine SWCNTs can be isolated (tested up to 20 μm). Hence, this simple ATP method will find immediate application in the generation of SWCNT materials for all levels of nanotube research and applications, from fundamental studies to high-performance devices.
文摘The compositions of the extracted complexes of La, Gd, Er and Y with sec octyl phenoxy acetic acid in heptane and the related apparent extraction equilibrium constants K M were determined using two phase titration technique. The stoichiometric compounds for La, Gd, Er and Y should be LaA 3·2.5HA, GdA 3·3HA, ErA 3·3.1HA and YA 3·4.3HA respectively. And their p K M are 3.43, 3.46, 3.08 and 2.58 respectively.
文摘The aqueous two-phase system of PEG-4000/K<sub>3</sub>PO<sub>4</sub> is selected to extract interferon-γ(γ-IFN)from the broth of homogenized E.coil cells,which were recombined genetically and werefermented in high expressivity.The effects of pH value and the concentrations of PEG and phos-phate on the partition behavious of γ-IFN and contaminating proteins have been investigated.Theresults show that the pH value is the most influential factor effecting the extraction yield of γ-IFN.Under a suitable condition,an effective separation with high yield of γ-IFN can be achieved.
基金Supported by the National Natural Science Foundation of China(No.20777029)Department of Education Project of Jilin Province,China(No.20070156)
文摘A new method to extract and separate tetracycline(TC) in a new aqueous tyro-phase system(ATPS) consisting of hydrophilic [Bmim]BF4 and NaH2PO4 was investigated. The effects of the amount of salt, ionic liquid as well as tetracycline on extraction efficiency were studied systematically. The results show that ionic liquid-ATPS exhibited the highest extraction efficiency higher than 90%. When the concentration of NaH2PO4 was 33.3%--38.5% (mass fraction), the amounts of ionic liquid and TC were 1.0--2.0 mL and 1.8 mL, respectively, and ionic liquid could be re-used.
基金supported by the National Natural Science Foundation of China(22378350).
文摘The exosomes hold significant potential in disease diagnosis and therapeutic interventions.The objective of this study was to investigate the potential of aqueous two-phase systems(ATPSs)for the separation of bovine milk exosomes.The milk exosome partition behaviors and bovine milk separation were investigated,and the ATPSs and bovine milk whey addition was optimized.The optimal separation conditions were identified as 16%(mass)polyethylene glycol 4000,10%(mass)dipotassium phosphate,and 1%(mass)enzymatic hydrolysis bovine milk whey.During the separation process,bovine milk exosomes were predominantly enriched in the interphase,while protein impurities were primarily found in the bottom phase.The process yielded bovine milk exosomes of 2.0×10^(11)particles per ml whey with high purity(staining rate>90%,7.01×10^(10)particles per mg protein)and high uniformity(polydispersity index<0.03).The isolated exosomes were characterized and identified by transmission electron microscopy,zeta potential and size distribution.The results demonstrated aqueous two-phase extraction possesses a robust capability for the enrichment and separation of exosomes directly from bovine milk whey,presenting a novel approach for the large-scale isolation of exosomes.
文摘In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making.
基金Project supported by the National Natural Science Foundation of China(52074031)the Key Research and Development Program of Shandong Province(ZR2021MB051,ZR2020ME256)the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education(GCP202117)。
文摘Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or improper operating conditions.Once emulsification occurs,it would not only lead to low rare earths recovery efficiency,small product quantities,high production costs and the losing of extractant and rare earth resources,but also result in serious environmental pollution.Therefore,it is very important to study the micro-mechanisms of emulsification and establish new methods to prevent emulsification at the source.In this paper,possible factors resulting in emulsification,such as the compositions and properties of the organic and aqueous phases,the operating conditions of the rare earths extraction are reviewed.The micro-mechanisms of emulsification are summarized basing on the microscopic structures in the bulk phase,aggregations of the extractants at the organic-aqueous interface,spectral characterizations and computational simulations.On this basis,new formation mechanisms are proposed for emulsification.Preliminary explorations are employed to verify the correctness of these new viewpoints.Finally,future directions for studies of the emulsification micro-mechanism are proposed.This study provides a theoretical basis for further understanding the micro-mechanisms of interfacial instability resulting in emulsification in the process of rare earths extraction.
基金financial support by the National Natural Science Foundation of China (Nos.52471293 and 12372270)the National Youth Science Foundation of China (Nos.52101322 and 52108375)+3 种基金the Program for Intergovernmental International S&T Cooperation Projects of Shanghai Municipality, China (Nos.24510711100 and 22160710200)The Oceanic Interdisciplinary Program of Shanghai Jiao Tong University (No.SL2022PT101)funded by the Open Fund of the State Key Laboratory of Coastal and Offshore Engineering of Dalian University of Technology (No.LP2415)National Key R&D Program of China (No.2023YFC2811600)
文摘Deep-sea mineral resource transportation predominantly utilizes hydraulic pipeline methodology.Environmental factors induce vibrations in flexible pipelines,thereby affecting the internal flow characteristics.Therefore,real-time monitoring of solid–liquid two-phase flow in pipelines is crucial for system maintenance.This study develops an autoencoder-based deep learning framework to reconstruct three-dimensional solid–liquid two-phase flow within flexible vibrating pipelines utilizing sparse wall information from sensors.Within this framework,separate X-model and F-model with distinct hidden-layer structures are established to reconstruct the coordinates and flow field information on the computational domain grid of the pipeline under traveling wave vibration.Following hyperparameter optimization,the models achieved high reconstruction accuracy,demonstrating R^(2)values of 0.990 and 0.945,respectively.The models’robustness is evaluated across three aspects:vibration parameters,physical fields,and vibration modes,demonstrating good reconstruction performance.Results concerning sensors show that 20 sensors(0.06%of total grids)achieve a balance between accuracy and cost,with superior accuracy obtained when arranged along the full length of the pipe compared to a dense arrangement at the front end.The models exhibited a signal-to-noise ratio tolerance of approximately 27 dB,with reconstruction accuracy being more affected by sensor failures at both ends of the pipeline.
基金financially supported by the National Natural Science Foundation of China(Grant No.12072336).
文摘The influence of the squeeze film between the tube and the support structure on flow-induced vibrations is a critical factor in tube bundles subjected to two-phase cross-flow.This aspect can significantly alter the threshold for fluidelastic instability and affect heat transfer efficiency.This paper presents a mathematical model incorporating the squeeze film force between the tube and the support structure.We aim to clarify the mechanisms underlying fluidelastic instability in tube bundle systems exposed to two-phase flow.Using a self-developed computer program,we performed numerical calculations to examine the influence of the squeeze film on the threshold of fluidelastic instability in the tube bundle system.Furthermore,we analyzed how the thickness and length of the squeeze film affect both the underlying mechanisms and the critical velocity of fluidelastic instability.
基金the National Natural Science Foundation of China (Nos. 42302143, 42172159)China Geological Survey Project (No. DD20211350)support from the G. Albert Shoemaker endowment
文摘Clayey-silt natural gas hydrate reservoirs in the South China Sea exhibit loose and unconsolidated structures, heterogeneous pore structures, high clay mineral contents, and strong hydrophilicity. These characteristics complicate the gas-water two-phase flow process in porous media following hydrate decomposition, posing challenges for efficient development. This study examines the transport response of clayey-silt reservoir samples from the Shenhu area using gas-water two-phase flow experiments and CT scanning to explore changes in pore structure, gas-water distribution, and relative permeability under varying flow conditions. The results indicate that pore heterogeneity significantly influences flow characteristics. Gas preferentially displaces water in larger pores, forming fracture-like pores, which serve as preferential flow channels for gas migration. The preferential flow channels enhance gas-phase permeability up to 19 times that of the water phase when fluid pressures exceed total stresses. However,small pores retain liquid, leading to a high residual water saturation of 0.561. CT imaging reveals that these hydro-fractures improve gas permeability but also confine gas flow to specific channels. Pore network analysis shows that gas injection expands the pore-throat network, enhancing connectivity and forming fracture-like pores. Residual water remains trapped in smaller pores and throats, while structural changes, including new fractures, improve gas flow pathways and overall connectivity. Relative permeability curves demonstrate a narrow gas-water cocurrent-flow zone, a right-shifted iso-permeability point and high reservoir capillary pressure, indicating a strong "water-blocking" effect. The findings suggest that optimizing reservoir stimulation techniques to enhance fracture formation, reduce residual water saturation, and improve gas flow capacity is critical for efficient hydrate reservoir development.