To achieve high quality of service (QoS) on computational grids, the QoS-aware job scheduling is investigated for a hierarchical decentralized grid architecture that consists of multilevel schedulers. An integrated ...To achieve high quality of service (QoS) on computational grids, the QoS-aware job scheduling is investigated for a hierarchical decentralized grid architecture that consists of multilevel schedulers. An integrated QoS-aware job dispatching policy is proposed, which correlates priorities of incoming jobs used for job selecting at the local scheduler of the grid node with the job dispatching policies at the global scheduler for computational grids. The stochastic high-level Petri net (SHLPN) model of a two-level hierarchy computational grid architecture is presented, and a model refinement is made to reduce the complexity of the model solution. A performance analysis technique based on the SHLPN is proposed to investigate the QoS-aware job scheduling policy. Numerical results show that the QoS-aware job dispatching policy outperforms the QoS-unaware job dispatching policy in balancing the high-priority jobs, and thus enables priority-based QoS.展开更多
Using a crop-water-salinity production function and a soil-water-salinity dynamic model, optimal irrigation scheduling was developed to maximize net return per irrigated area. Plot and field experiments were used to o...Using a crop-water-salinity production function and a soil-water-salinity dynamic model, optimal irrigation scheduling was developed to maximize net return per irrigated area. Plot and field experiments were used to obtain the crop water sensitivity index, the salinity sensitivity index, and other parameters. Using data collected during 35 years to calculate the 10-day mean precipitation and evaporation, the variation in soil salinity concentrations and in the yields of winter wheat and cotton were simulated for 49 irrigation scheduling that were combined from 7 irrigation schemes over 3 irrigation dates and 7 salinity concentrations of saline irrigation water (fresh water and 6 levels of saline water). Comparison of predicted results with irrigation data obtained from a large area of the field showed that the model was valid and reliable. Based on the analysis of the investment cost of the irrigation that employed deep tube wells or shallow tube wells, a saline water irrigation schedule and a corresponding strategy for groundwater development and utilization were proposed. For wheat or cotton, if the salinity concentration was higher than 7.0 g L-1 in groundwater, irrigation was needed with only fresh water; if about 5.0 g L-1, irrigation was required twice with fresh water and once with saline water; and if not higher than 3.0 g L-1, irrigation could be solely with saline water.展开更多
Aimed at the deficiencies of resources based time Petri nets (RBTPN) in doing scheduling analysis for distributed real-time embedded systems, the assemblage condition of complex scheduling sequences is presented to ...Aimed at the deficiencies of resources based time Petri nets (RBTPN) in doing scheduling analysis for distributed real-time embedded systems, the assemblage condition of complex scheduling sequences is presented to easily compute scheduling length and simplify scheduling analysis. Based on this, a new hierarchical RBTPN model is proposed. The model introduces the definition of transition border set, and represents it as an abstract transition. The abstract transition possesses all resources of the set, and has the highest priority of each resource; the cxecution time of abstract transition is the longest time of all possible scheduling sequences. According to the characteristics and assemblage condition of RBTPN, the refinement conditions of transition border set are given, and the conditions ensure the correction of scheduling analysis. As a result, it is easy for us to understand the scheduling model and perform scheduling analysis.展开更多
With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation ...With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation and load.Accounting for these issues,this paper proposes a multi-timescale coordinated optimization dispatch method for distribution networks.First,the probability box theory was employed to determine the uncertainty intervals of generation and load forecasts,based on which,the requirements for flexibility dispatch and capacity constraints of the grid were calculated and analyzed.Subsequently,a multi-timescale optimization framework was constructed,incorporating the generation and load forecast uncertainties.This framework included optimization models for dayahead scheduling,intra-day optimization,and real-time adjustments,aiming to meet flexibility needs across different timescales and improve the economic efficiency of the grid.Furthermore,an improved soft actor-critic algorithm was introduced to enhance the uncertainty exploration capability.Utilizing a centralized training and decentralized execution framework,a multi-agent SAC network model was developed to improve the decision-making efficiency of the agents.Finally,the effectiveness and superiority of the proposed method were validated using a modified IEEE-33 bus test system.展开更多
In this paper,the multi-agent model about shop logistics is set up. This model has 8 agents: raw materials stock agent,process agent,testing agent,transition agent,production information agent,scheduling agent,process...In this paper,the multi-agent model about shop logistics is set up. This model has 8 agents: raw materials stock agent,process agent,testing agent,transition agent,production information agent,scheduling agent,process agent and stock agent. The scheduling agent has three subagents: manager agent (MA),resource agent (RA) and part agent (PA). MA,PA and RA are communicating equally that guarantees agility of the whole MAS system. The part tasks pass between MA,RA and PA as an integer,which can guarantee the consistency of the data. We use a detailed example about shop logistics scheduling in a semiconductor company to explain the principle. In this example,we use two scheduling strategies: FCFS and SPT. The result data indicates that the average flow time and lingering ratio are changed using different strategy. It is proves that the multi-agent scheduling is useful.展开更多
In response to the production capacity and functionality variations, a genetic algorithm (GA) embedded with deterministic timed Petri nets(DTPN) for reconfigurable production line(RPL) is proposed to solve its s...In response to the production capacity and functionality variations, a genetic algorithm (GA) embedded with deterministic timed Petri nets(DTPN) for reconfigurable production line(RPL) is proposed to solve its scheduling problem. The basic DTPN modules are presented to model the corresponding variable structures in RPL, and then the scheduling model of the whole RPL is constructed. And in the scheduling algorithm, firing sequences of the Petri nets model are used as chromosomes, thus the selection, crossover, and mutation operator do not deal with the elements in the problem space, but the elements of Petri nets model. Accordingly, all the algorithms for GA operations embedded with Petri nets model are proposed. Moreover, the new weighted single-objective optimization based on reconfiguration cost and E/T is used. The results of a DC motor RPL scheduling suggest that the presented DTPN-GA scheduling algorithm has a significant impact on RPL scheduling, and provide obvious improvements over the conventional scheduling method in practice that meets duedate, minimizes reconfiguration cost, and enhances cost effectivity.展开更多
A quadratic programming model is established to choose the blocks to be blasted in a given period. The length of this period depends on the production planning requirements. During the given period, the blocks' pa...A quadratic programming model is established to choose the blocks to be blasted in a given period. The length of this period depends on the production planning requirements. During the given period, the blocks' parameters are available from the geological database of the mine. The objective is to minimize the deviation of the average ore grade of blasted blocks from the standard ore grade required by the mill. Transportation ability constraint. production quantity demand constraint. minimum safety bench constraint. block size constraint and block, bench precedence constraints are considered in forming the programming model. This model has more practical objective function and reasonable constraints compared with the existing model for this kind of problems.展开更多
The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering...The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.展开更多
Two packet scheduling algorithms for rechargeable sensor networks are proposed based on the signal to interference plus noise ratio model.They allocate different transmission slots to conflicting packets and overcome ...Two packet scheduling algorithms for rechargeable sensor networks are proposed based on the signal to interference plus noise ratio model.They allocate different transmission slots to conflicting packets and overcome the challenges caused by the fact that the channel state changes quickly and is uncontrollable.The first algorithm proposes a prioritybased framework for packet scheduling in rechargeable sensor networks.Every packet is assigned a priority related to the transmission delay and the remaining energy of rechargeable batteries,and the packets with higher priority are scheduled first.The second algorithm mainly focuses on the energy efficiency of batteries.The priorities are related to the transmission distance of packets,and the packets with short transmission distance are scheduled first.The sensors are equipped with low-capacity rechargeable batteries,and the harvest-store-use model is used.We consider imperfect batteries.That is,the battery capacity is limited,and battery energy leaks over time.The energy harvesting rate,energy retention rate and transmission power are known.Extensive simulation results indicate that the battery capacity has little effect on the packet scheduling delay.Therefore,the algorithms proposed in this paper are very suitable for wireless sensor networks with low-capacity batteries.展开更多
The platform scheduling problem in battlefield is one of the important problems in military operational research.It needs to minimize mission completing time and meanwhile maximize the mission completing accuracy with...The platform scheduling problem in battlefield is one of the important problems in military operational research.It needs to minimize mission completing time and meanwhile maximize the mission completing accuracy with a limited number of platforms.Though the traditional certain models obtain some good results,uncertain model is still needed to be introduced since the battlefield environment is complex and unstable.An uncertain model is prposed for the platform scheduling problem.Related parameters in this model are set to be fuzzy or stochastic.Due to the inherent disadvantage of the solving methods for traditional models,a new method is proposed to solve the uncertain model.Finally,the practicability and availability of the proposed method are demonstrated with a case of joint campaign.展开更多
IaaS (Infrastructure as a Platform) public cloud is one mainstream service mode for public cloud computing. The design aim of one IaaS public cloud is to enlarge the hardware-usage of whole platform, optimize the virt...IaaS (Infrastructure as a Platform) public cloud is one mainstream service mode for public cloud computing. The design aim of one IaaS public cloud is to enlarge the hardware-usage of whole platform, optimize the virtual machine deployment and enhance the accept rate of service demand. In this paper we create one service model for IaaS public cloud, and based on the waiting-line theory to optimize the service model, the queue length and the configuration of scheduling server. And create one demand-vector based scheduling model, to filter the available host machine according to the match of demand and metadata of available resource. The scheduling model can be bonded with the virtual machine motion to reallocate the resources to guarantee the available rate of the whole platform. The feasibility of the algorithm is verified on our own IaaS public cloud computing platform.展开更多
The fact that outburst traffic in industrial Ethemet was focused on that would bring self-similar phenomenon leading to the delay increase of the cyclical data, and a hybrid priority queue schedule model was proposed ...The fact that outburst traffic in industrial Ethemet was focused on that would bring self-similar phenomenon leading to the delay increase of the cyclical data, and a hybrid priority queue schedule model was proposed in which the outburst data was given the highest priority. Some properties of the self-similar outburst data were proved by network calculus, and its service curve scheduled by the switch was gained. And then the performance of the scheduling algorithm was obtained. The simulation results are close to those calculated by using network calculus model. Some results are of actual significance to the construction of switched industrial Ethernet.展开更多
Scientic Workow Applications(SWFAs)can deliver collaborative tools useful to researchers in executing large and complex scientic processes.Particularly,Scientic Workow Scheduling(SWFS)accelerates the computational pro...Scientic Workow Applications(SWFAs)can deliver collaborative tools useful to researchers in executing large and complex scientic processes.Particularly,Scientic Workow Scheduling(SWFS)accelerates the computational procedures between the available computational resources and the dependent workow jobs based on the researchers’requirements.However,cost optimization is one of the SWFS challenges in handling massive and complicated tasks and requires determining an approximate(near-optimal)solution within polynomial computational time.Motivated by this,current work proposes a novel SWFS cost optimization model effective in solving this challenge.The proposed model contains three main stages:(i)scientic workow application,(ii)targeted computational environment,and(iii)cost optimization criteria.The model has been used to optimize completion time(makespan)and overall computational cost of SWFS in cloud computing for all considered scenarios in this research context.This will ultimately reduce the cost for service consumers.At the same time,reducing the cost has a positive impact on the protability of service providers towards utilizing all computational resources to achieve a competitive advantage over other cloud service providers.To evaluate the effectiveness of this proposed model,an empirical comparison was conducted by employing three core types of heuristic approaches,including Single-based(i.e.,Genetic Algorithm(GA),Particle Swarm Optimization(PSO),and Invasive Weed Optimization(IWO)),Hybrid-based(i.e.,Hybrid-based Heuristics Algorithms(HIWO)),and Hyper-based(i.e.,Dynamic Hyper-Heuristic Algorithm(DHHA)).Additionally,a simulation-based implementation was used for SIPHT SWFA by considering three different sizes of datasets.The proposed model provides an efcient platform to optimally schedule workow tasks by handing data-intensiveness and computational-intensiveness of SWFAs.The results reveal that the proposed cost optimization model attained an optimal Job completion time(makespan)and total computational cost for small and large sizes of the considered dataset.In contrast,hybrid and hyper-based approaches consistently achieved better results for the medium-sized dataset.展开更多
In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted a...In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted according to the real-time network congestion situation.State observer is used under the situation where the state of the controlled plant could not be acquired.The stability criterion of the proposed structure is proved with time-varying state update time.On the basis of the stability of the novel system structure,the compromise between the control performance and the network utilization is realized by using feedback scheduler. Examples are provided to show the advantage of the proposed control structure.展开更多
Finding the right balance between timber production and the management of forest-dependent wildlife species,present a difficult challenge for forest resource managers and policy makers in Okinawa,Japan.A possible expl...Finding the right balance between timber production and the management of forest-dependent wildlife species,present a difficult challenge for forest resource managers and policy makers in Okinawa,Japan.A possible explanation of this can be found in the unique nature of the forest management area which is populated with various kinds of rare and endangered species.This issue has been brought to light as a result of the nomination of northern Okinawa Island in 2018 as a candidate for World Natural Heritage site.The nomination has raised public awareness to the possibility of conflicting management objectives between timber extraction and the conservation of habitat for forest-dependent wildlife species.Managing exclusively for one objective over the other may fail to meet the demand for both forest products and wildlife habitat,ultimately jeopardizing the stability of human and wildlife communities.It is therefore important to achieve a better balance between the objective of timber production and conservation of wildlife habitat.Despite the significance of this subject area,current ongoing discussions on how to effectively manage for forest resources,often lack scientific basis to make sound judgement or evaluate tradeoffs between conflicting objectives.Quantifying the effect of these forest management activities on wildlife habitat provides useful and important information needed to make forest management and policy decisions.In this study we develop a spatial timber harvest scheduling model that incorporates habitat suitability index(HSI)models for the Okinawa Rail(Gallirallus okinawae),an endangered avian species found on Okinawa,Japan.To illustrate how the proposed coupling model assembles spatial information,which ultimately aids the study of forest management effects on wildlife habitat,we apply these models to a forest area in Okinawa and conduct a simple simulation analysis.展开更多
Agile intelligent manufacturing is one of the new manufacturing paradigms that adapt to the fierce globalizing market competition and meet the survival needs of the enterprises, in which the management and control of ...Agile intelligent manufacturing is one of the new manufacturing paradigms that adapt to the fierce globalizing market competition and meet the survival needs of the enterprises, in which the management and control of the production system have surpassed the scope of individual enterprise and embodied some new features including complexity, dynamicity, distributivity, and compatibility. The agile intelligent manufacturing paradigm calls for a production scheduling system that can support the cooperation among various production sectors, the distribution of various resources to achieve rational organization, scheduling and management of production activities. This paper uses multi-agents technology to build an agile intelligent manufacturing-oriented production scheduling system. Using the hybrid modeling method, the resources and functions of production system are encapsulated, and the agent-based production system model is established. A production scheduling-oriented multi-agents architecture is constructed and a multi-agents reference model is given in this paper.展开更多
A method for modeling the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure is provided. For the given n jobs to be processed on m machines, it is assum...A method for modeling the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure is provided. For the given n jobs to be processed on m machines, it is assumed that the processing times and the due dates are nonnegative fuzzy numbers and all the weights are positive, crisp numbers. Based on credibility measure, three parallel machine scheduling problems and a goal-programming model are formulated. Feasible schedules are evaluated not only by their objective values but also by the credibility degree of satisfaction with their precedence constraints. The genetic algorithm is utilized to find the best solutions in a short period of time. An illustrative numerical example is also given. Simulation results show that the proposed models are effective, which can deal with the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure.展开更多
Model predictive control (MPC) could not be reliably applied to real-time control systems because its computation time is not well defined. Implemented as anytime algorithm, MPC task allows computation time to be tr...Model predictive control (MPC) could not be reliably applied to real-time control systems because its computation time is not well defined. Implemented as anytime algorithm, MPC task allows computation time to be traded for control performance, thus obtaining the predictability in time. Optimal feedback scheduling (FS-CBS) of a set of MPC tasks is presented to maximize the global control performance subject to limited processor time. Each MPC task is assigned with a constant bandwidth server (CBS), whose reserved processor time is adjusted dynamically. The constraints in the FS- CBS guarantee scheduler of the total task set and stability of each component. The FS-CBS is shown robust against the variation of execution time of MPC tasks at runtime. Simulation results illustrate its effectiveness.展开更多
The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of...The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels.展开更多
Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of se...Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of service(QoS)and quality of experience(QoE).Edge computing technology extends cloud service functionality to the edge of the mobile network,closer to the task execution end,and can effectivelymitigate the communication latency problem.However,the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management,and the booming development of artificial neural networks provides us withmore powerfulmethods to alleviate this limitation.Therefore,in this paper,we proposed a time series forecasting model incorporating Conv1D,LSTM and GRU for edge computing device resource scheduling,trained and tested the forecasting model using a small self-built dataset,and achieved competitive experimental results.展开更多
基金The National Natural Science Foundation of China(No60673054,90412012)
文摘To achieve high quality of service (QoS) on computational grids, the QoS-aware job scheduling is investigated for a hierarchical decentralized grid architecture that consists of multilevel schedulers. An integrated QoS-aware job dispatching policy is proposed, which correlates priorities of incoming jobs used for job selecting at the local scheduler of the grid node with the job dispatching policies at the global scheduler for computational grids. The stochastic high-level Petri net (SHLPN) model of a two-level hierarchy computational grid architecture is presented, and a model refinement is made to reduce the complexity of the model solution. A performance analysis technique based on the SHLPN is proposed to investigate the QoS-aware job scheduling policy. Numerical results show that the QoS-aware job dispatching policy outperforms the QoS-unaware job dispatching policy in balancing the high-priority jobs, and thus enables priority-based QoS.
基金Project supported by the National Natural Science Foundation of China (Nos. 50339030 and 90202001).
文摘Using a crop-water-salinity production function and a soil-water-salinity dynamic model, optimal irrigation scheduling was developed to maximize net return per irrigated area. Plot and field experiments were used to obtain the crop water sensitivity index, the salinity sensitivity index, and other parameters. Using data collected during 35 years to calculate the 10-day mean precipitation and evaporation, the variation in soil salinity concentrations and in the yields of winter wheat and cotton were simulated for 49 irrigation scheduling that were combined from 7 irrigation schemes over 3 irrigation dates and 7 salinity concentrations of saline irrigation water (fresh water and 6 levels of saline water). Comparison of predicted results with irrigation data obtained from a large area of the field showed that the model was valid and reliable. Based on the analysis of the investment cost of the irrigation that employed deep tube wells or shallow tube wells, a saline water irrigation schedule and a corresponding strategy for groundwater development and utilization were proposed. For wheat or cotton, if the salinity concentration was higher than 7.0 g L-1 in groundwater, irrigation was needed with only fresh water; if about 5.0 g L-1, irrigation was required twice with fresh water and once with saline water; and if not higher than 3.0 g L-1, irrigation could be solely with saline water.
文摘Aimed at the deficiencies of resources based time Petri nets (RBTPN) in doing scheduling analysis for distributed real-time embedded systems, the assemblage condition of complex scheduling sequences is presented to easily compute scheduling length and simplify scheduling analysis. Based on this, a new hierarchical RBTPN model is proposed. The model introduces the definition of transition border set, and represents it as an abstract transition. The abstract transition possesses all resources of the set, and has the highest priority of each resource; the cxecution time of abstract transition is the longest time of all possible scheduling sequences. According to the characteristics and assemblage condition of RBTPN, the refinement conditions of transition border set are given, and the conditions ensure the correction of scheduling analysis. As a result, it is easy for us to understand the scheduling model and perform scheduling analysis.
基金funded by Jilin Province Science and Technology Development Plan Project,grant number 20220203163SF.
文摘With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation and load.Accounting for these issues,this paper proposes a multi-timescale coordinated optimization dispatch method for distribution networks.First,the probability box theory was employed to determine the uncertainty intervals of generation and load forecasts,based on which,the requirements for flexibility dispatch and capacity constraints of the grid were calculated and analyzed.Subsequently,a multi-timescale optimization framework was constructed,incorporating the generation and load forecast uncertainties.This framework included optimization models for dayahead scheduling,intra-day optimization,and real-time adjustments,aiming to meet flexibility needs across different timescales and improve the economic efficiency of the grid.Furthermore,an improved soft actor-critic algorithm was introduced to enhance the uncertainty exploration capability.Utilizing a centralized training and decentralized execution framework,a multi-agent SAC network model was developed to improve the decision-making efficiency of the agents.Finally,the effectiveness and superiority of the proposed method were validated using a modified IEEE-33 bus test system.
基金Supported by the Zhejiang Province Science Foundation of China( M703022)
文摘In this paper,the multi-agent model about shop logistics is set up. This model has 8 agents: raw materials stock agent,process agent,testing agent,transition agent,production information agent,scheduling agent,process agent and stock agent. The scheduling agent has three subagents: manager agent (MA),resource agent (RA) and part agent (PA). MA,PA and RA are communicating equally that guarantees agility of the whole MAS system. The part tasks pass between MA,RA and PA as an integer,which can guarantee the consistency of the data. We use a detailed example about shop logistics scheduling in a semiconductor company to explain the principle. In this example,we use two scheduling strategies: FCFS and SPT. The result data indicates that the average flow time and lingering ratio are changed using different strategy. It is proves that the multi-agent scheduling is useful.
基金This project is supported by Key Science-Technology Project of Shanghai City Tenth Five-Year-Plan, China (No.031111002)Specialized Research Fund for the Doctoral Program of Higher Education, China (No.20040247033)Municipal Key Basic Research Program of Shanghai, China (No.05JC14060)
文摘In response to the production capacity and functionality variations, a genetic algorithm (GA) embedded with deterministic timed Petri nets(DTPN) for reconfigurable production line(RPL) is proposed to solve its scheduling problem. The basic DTPN modules are presented to model the corresponding variable structures in RPL, and then the scheduling model of the whole RPL is constructed. And in the scheduling algorithm, firing sequences of the Petri nets model are used as chromosomes, thus the selection, crossover, and mutation operator do not deal with the elements in the problem space, but the elements of Petri nets model. Accordingly, all the algorithms for GA operations embedded with Petri nets model are proposed. Moreover, the new weighted single-objective optimization based on reconfiguration cost and E/T is used. The results of a DC motor RPL scheduling suggest that the presented DTPN-GA scheduling algorithm has a significant impact on RPL scheduling, and provide obvious improvements over the conventional scheduling method in practice that meets duedate, minimizes reconfiguration cost, and enhances cost effectivity.
文摘A quadratic programming model is established to choose the blocks to be blasted in a given period. The length of this period depends on the production planning requirements. During the given period, the blocks' parameters are available from the geological database of the mine. The objective is to minimize the deviation of the average ore grade of blasted blocks from the standard ore grade required by the mill. Transportation ability constraint. production quantity demand constraint. minimum safety bench constraint. block size constraint and block, bench precedence constraints are considered in forming the programming model. This model has more practical objective function and reasonable constraints compared with the existing model for this kind of problems.
基金National natural science foundation (No:70371040)
文摘The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint.
基金supported by the National Natural Science Foundation of China under Grants 62272256,61832012,and 61771289Major Program of Shandong Provincial Natural Science Foundation for the Fundamental Research under Grant ZR2022ZD03+1 种基金the Pilot Project for Integrated Innovation of Science,Education and Industry of Qilu University of Technology(Shandong Academy of Sciences)under Grant 2022XD001Shandong Province Fundamental Research under Grant ZR201906140028。
文摘Two packet scheduling algorithms for rechargeable sensor networks are proposed based on the signal to interference plus noise ratio model.They allocate different transmission slots to conflicting packets and overcome the challenges caused by the fact that the channel state changes quickly and is uncontrollable.The first algorithm proposes a prioritybased framework for packet scheduling in rechargeable sensor networks.Every packet is assigned a priority related to the transmission delay and the remaining energy of rechargeable batteries,and the packets with higher priority are scheduled first.The second algorithm mainly focuses on the energy efficiency of batteries.The priorities are related to the transmission distance of packets,and the packets with short transmission distance are scheduled first.The sensors are equipped with low-capacity rechargeable batteries,and the harvest-store-use model is used.We consider imperfect batteries.That is,the battery capacity is limited,and battery energy leaks over time.The energy harvesting rate,energy retention rate and transmission power are known.Extensive simulation results indicate that the battery capacity has little effect on the packet scheduling delay.Therefore,the algorithms proposed in this paper are very suitable for wireless sensor networks with low-capacity batteries.
基金supported by the National Natural Science Foundation of China(61573017)
文摘The platform scheduling problem in battlefield is one of the important problems in military operational research.It needs to minimize mission completing time and meanwhile maximize the mission completing accuracy with a limited number of platforms.Though the traditional certain models obtain some good results,uncertain model is still needed to be introduced since the battlefield environment is complex and unstable.An uncertain model is prposed for the platform scheduling problem.Related parameters in this model are set to be fuzzy or stochastic.Due to the inherent disadvantage of the solving methods for traditional models,a new method is proposed to solve the uncertain model.Finally,the practicability and availability of the proposed method are demonstrated with a case of joint campaign.
文摘IaaS (Infrastructure as a Platform) public cloud is one mainstream service mode for public cloud computing. The design aim of one IaaS public cloud is to enlarge the hardware-usage of whole platform, optimize the virtual machine deployment and enhance the accept rate of service demand. In this paper we create one service model for IaaS public cloud, and based on the waiting-line theory to optimize the service model, the queue length and the configuration of scheduling server. And create one demand-vector based scheduling model, to filter the available host machine according to the match of demand and metadata of available resource. The scheduling model can be bonded with the virtual machine motion to reallocate the resources to guarantee the available rate of the whole platform. The feasibility of the algorithm is verified on our own IaaS public cloud computing platform.
基金Project( 60425310) supported by the National Science Fund for Distinguished Young Scholars of ChinaProject(05JJ40118) supported by the Natural Science Foundation of Hunan Province, China
文摘The fact that outburst traffic in industrial Ethemet was focused on that would bring self-similar phenomenon leading to the delay increase of the cyclical data, and a hybrid priority queue schedule model was proposed in which the outburst data was given the highest priority. Some properties of the self-similar outburst data were proved by network calculus, and its service curve scheduled by the switch was gained. And then the performance of the scheduling algorithm was obtained. The simulation results are close to those calculated by using network calculus model. Some results are of actual significance to the construction of switched industrial Ethernet.
基金sponsored by the NWO/TTW project Multi-scale integrated Trafc Observatory for Large Road Networks(MiRRORS)under Grant Number 16270.
文摘Scientic Workow Applications(SWFAs)can deliver collaborative tools useful to researchers in executing large and complex scientic processes.Particularly,Scientic Workow Scheduling(SWFS)accelerates the computational procedures between the available computational resources and the dependent workow jobs based on the researchers’requirements.However,cost optimization is one of the SWFS challenges in handling massive and complicated tasks and requires determining an approximate(near-optimal)solution within polynomial computational time.Motivated by this,current work proposes a novel SWFS cost optimization model effective in solving this challenge.The proposed model contains three main stages:(i)scientic workow application,(ii)targeted computational environment,and(iii)cost optimization criteria.The model has been used to optimize completion time(makespan)and overall computational cost of SWFS in cloud computing for all considered scenarios in this research context.This will ultimately reduce the cost for service consumers.At the same time,reducing the cost has a positive impact on the protability of service providers towards utilizing all computational resources to achieve a competitive advantage over other cloud service providers.To evaluate the effectiveness of this proposed model,an empirical comparison was conducted by employing three core types of heuristic approaches,including Single-based(i.e.,Genetic Algorithm(GA),Particle Swarm Optimization(PSO),and Invasive Weed Optimization(IWO)),Hybrid-based(i.e.,Hybrid-based Heuristics Algorithms(HIWO)),and Hyper-based(i.e.,Dynamic Hyper-Heuristic Algorithm(DHHA)).Additionally,a simulation-based implementation was used for SIPHT SWFA by considering three different sizes of datasets.The proposed model provides an efcient platform to optimally schedule workow tasks by handing data-intensiveness and computational-intensiveness of SWFAs.The results reveal that the proposed cost optimization model attained an optimal Job completion time(makespan)and total computational cost for small and large sizes of the considered dataset.In contrast,hybrid and hyper-based approaches consistently achieved better results for the medium-sized dataset.
文摘In this paper,a novel control structure called feedback scheduling of model-based networked control systems is proposed to cope with a flexible network load and resource constraints.The state update time is adjusted according to the real-time network congestion situation.State observer is used under the situation where the state of the controlled plant could not be acquired.The stability criterion of the proposed structure is proved with time-varying state update time.On the basis of the stability of the novel system structure,the compromise between the control performance and the network utilization is realized by using feedback scheduler. Examples are provided to show the advantage of the proposed control structure.
基金supported by a Grant-in-Aid for Scientific Researches (No. 16K12641&17H00806) from the Ministry of Education, Culture, Sports, Science, and technology of Japan
文摘Finding the right balance between timber production and the management of forest-dependent wildlife species,present a difficult challenge for forest resource managers and policy makers in Okinawa,Japan.A possible explanation of this can be found in the unique nature of the forest management area which is populated with various kinds of rare and endangered species.This issue has been brought to light as a result of the nomination of northern Okinawa Island in 2018 as a candidate for World Natural Heritage site.The nomination has raised public awareness to the possibility of conflicting management objectives between timber extraction and the conservation of habitat for forest-dependent wildlife species.Managing exclusively for one objective over the other may fail to meet the demand for both forest products and wildlife habitat,ultimately jeopardizing the stability of human and wildlife communities.It is therefore important to achieve a better balance between the objective of timber production and conservation of wildlife habitat.Despite the significance of this subject area,current ongoing discussions on how to effectively manage for forest resources,often lack scientific basis to make sound judgement or evaluate tradeoffs between conflicting objectives.Quantifying the effect of these forest management activities on wildlife habitat provides useful and important information needed to make forest management and policy decisions.In this study we develop a spatial timber harvest scheduling model that incorporates habitat suitability index(HSI)models for the Okinawa Rail(Gallirallus okinawae),an endangered avian species found on Okinawa,Japan.To illustrate how the proposed coupling model assembles spatial information,which ultimately aids the study of forest management effects on wildlife habitat,we apply these models to a forest area in Okinawa and conduct a simple simulation analysis.
基金supported by Fundamental Research Funds for the Central Universities (No. N090403005)
文摘Agile intelligent manufacturing is one of the new manufacturing paradigms that adapt to the fierce globalizing market competition and meet the survival needs of the enterprises, in which the management and control of the production system have surpassed the scope of individual enterprise and embodied some new features including complexity, dynamicity, distributivity, and compatibility. The agile intelligent manufacturing paradigm calls for a production scheduling system that can support the cooperation among various production sectors, the distribution of various resources to achieve rational organization, scheduling and management of production activities. This paper uses multi-agents technology to build an agile intelligent manufacturing-oriented production scheduling system. Using the hybrid modeling method, the resources and functions of production system are encapsulated, and the agent-based production system model is established. A production scheduling-oriented multi-agents architecture is constructed and a multi-agents reference model is given in this paper.
基金Sponsored by the Basic Research Foundation of Beijing Institute of Technology (BIT-UBF-200508G4212)
文摘A method for modeling the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure is provided. For the given n jobs to be processed on m machines, it is assumed that the processing times and the due dates are nonnegative fuzzy numbers and all the weights are positive, crisp numbers. Based on credibility measure, three parallel machine scheduling problems and a goal-programming model are formulated. Feasible schedules are evaluated not only by their objective values but also by the credibility degree of satisfaction with their precedence constraints. The genetic algorithm is utilized to find the best solutions in a short period of time. An illustrative numerical example is also given. Simulation results show that the proposed models are effective, which can deal with the parallel machine scheduling problems with fuzzy parameters and precedence constraints based on credibility measure.
基金This work was supported by National Science Foundation of China (No. 50405017).
文摘Model predictive control (MPC) could not be reliably applied to real-time control systems because its computation time is not well defined. Implemented as anytime algorithm, MPC task allows computation time to be traded for control performance, thus obtaining the predictability in time. Optimal feedback scheduling (FS-CBS) of a set of MPC tasks is presented to maximize the global control performance subject to limited processor time. Each MPC task is assigned with a constant bandwidth server (CBS), whose reserved processor time is adjusted dynamically. The constraints in the FS- CBS guarantee scheduler of the total task set and stability of each component. The FS-CBS is shown robust against the variation of execution time of MPC tasks at runtime. Simulation results illustrate its effectiveness.
基金funded by the National Key Research and Development Program of China(2024YFE0106800)Natural Science Foundation of Shandong Province(ZR2021ME199).
文摘The intermittency and volatility of wind and photovoltaic power generation exacerbate issues such as wind and solar curtailment,hindering the efficient utilization of renewable energy and the low-carbon development of energy systems.To enhance the consumption capacity of green power,the green power system consumption optimization scheduling model(GPS-COSM)is proposed,which comprehensively integrates green power system,electric boiler,combined heat and power unit,thermal energy storage,and electrical energy storage.The optimization objectives are to minimize operating cost,minimize carbon emission,and maximize the consumption of wind and solar curtailment.The multi-objective particle swarm optimization algorithm is employed to solve the model,and a fuzzy membership function is introduced to evaluate the satisfaction level of the Pareto optimal solution set,thereby selecting the optimal compromise solution to achieve a dynamic balance among economic efficiency,environmental friendliness,and energy utilization efficiency.Three typical operating modes are designed for comparative analysis.The results demonstrate that the mode involving the coordinated operation of electric boiler,thermal energy storage,and electrical energy storage performs the best in terms of economic efficiency,environmental friendliness,and renewable energy utilization efficiency,achieving the wind and solar curtailment consumption rate of 99.58%.The application of electric boiler significantly enhances the direct accommodation capacity of the green power system.Thermal energy storage optimizes intertemporal regulation,while electrical energy storage strengthens the system’s dynamic regulation capability.The coordinated optimization of multiple devices significantly reduces reliance on fossil fuels.
基金supported in part by the National Natural Science Foundation of China under Grant 62172192,U20A20228,and 62171203in part by the Science and Technology Demonstration Project of Social Development of Jiangsu Province under Grant BE2019631。
文摘Currently,applications accessing remote computing resources through cloud data centers is the main mode of operation,but this mode of operation greatly increases communication latency and reduces overall quality of service(QoS)and quality of experience(QoE).Edge computing technology extends cloud service functionality to the edge of the mobile network,closer to the task execution end,and can effectivelymitigate the communication latency problem.However,the massive and heterogeneous nature of servers in edge computing systems brings new challenges to task scheduling and resource management,and the booming development of artificial neural networks provides us withmore powerfulmethods to alleviate this limitation.Therefore,in this paper,we proposed a time series forecasting model incorporating Conv1D,LSTM and GRU for edge computing device resource scheduling,trained and tested the forecasting model using a small self-built dataset,and achieved competitive experimental results.