Accurately identifying key nodes is essential for evaluating network robustness and controlling information propagation in complex network analysis. However, current research methods face limitations in applicability ...Accurately identifying key nodes is essential for evaluating network robustness and controlling information propagation in complex network analysis. However, current research methods face limitations in applicability and accuracy. To address these challenges, this study introduces the K-GCN model, which integrates neighborhood k-shell distribution analysis with Graph Convolutional Network(GCN) technology to enhance key node identification in complex networks. The K-GCN model first leverages neighborhood k-shell distributions to calculate entropy values for each node, effectively quantifying node importance within the network. These entropy values are then used as key features within the GCN, which subsequently formulates intelligent strategies to maximize network connectivity disruption by removing a minimal set of nodes, thereby impacting the overall network architecture. Through iterative interactions with the environment, the GCN continuously refines its strategies, achieving precise identification of key nodes in the network. Unlike traditional methods, the K-GCN model not only captures local node features but also integrates the network structure and complex interrelations between neighboring nodes, significantly improving the accuracy and efficiency of key node identification.Experimental validation in multiple real-world network scenarios demonstrates that the K-GCN model outperforms existing methods.展开更多
This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid s...This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results.展开更多
This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of ...This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.展开更多
Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model ...Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.展开更多
This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling m...This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.展开更多
This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading d...This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh–Hurwitz criterion, Lyapunov method and La Salle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate(γ1, γ2), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the easter...Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the eastern coastal areas to the inland,the migration direction and pattern of the floating population have undergone certain changes.Using the 2017 China Migrants Dynamic Survey(CMDS),excluding Hong Kong,Macao,and Taiwan regions of China,organized by China’s National Health Commission,the relationship matrix of the floating population is constructed according to the inflow place of the interviewees and their outflow place(the location of the registered residence)in the questionnaire survey.We then apply the complex network model to analyze the migration direction and network pattern of China’s floating population from the city scale.The migration network shows an obvious hierarchical agglomeration.The first-,second-,third-and fourth-tier distribution cities are municipalities directly under the central government,provincial capital cities,major cities in the central and western regions and ordinary cities in all provinces,respectively.The migration trend is from the central and western regions to the eastern coastal areas.The migration network has‘small world’characteristics,forming nine communities.It shows that most node cities in the same community are closely linked and geographically close,indicating that the migration network of floating population is still affected by geographical proximity.Narrowing the urban-rural and regional differences will promote the rational distribution this population.It is necessary to strengthen the reform of the registered residence system,so that the floating population can enjoy urban public services comparable to other populations,and allow migrants to live and work in peace.展开更多
According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was d...According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was developed using principles from complex network theory.The vulnerability and risk level of each edge in this model were calculated,and high-risk edges and disaster chains were identified.The analysis reveals that the edge“floods→building collapses”has the highest vulnerability.Implementing measures to mitigate this edge is crucial for delaying the spread of secondary disasters.The highest risk is associated with the edge“building collapses→casualties,”and increased risks are also identified for chains such as“earthquake→building collapses→casualties,”“earthquake→landslides and debris flows→dammed lakes,”and“dammed lakes→floods→building collapses.”Following an earthquake,the prompt implementation of measures is crucial to effectively disrupt these chains and minimize the damage from secondary disasters.展开更多
Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight...Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.展开更多
This article briefly reviews the topic of complex network synchronization,with its graph-theoretic criterion,showing that the homogeneous and symmetrical network structures are essential for optimal synchronization.Fu...This article briefly reviews the topic of complex network synchronization,with its graph-theoretic criterion,showing that the homogeneous and symmetrical network structures are essential for optimal synchronization.Furthermore,it briefly reviews the notion of higher-order network topologies and shows their promising potential in application to evaluating the optimality of network synchronizability.展开更多
Using complex network methods,we construct undirected and directed heatwave networks to systematically analyze heatwave events over China from 1961 to 2023,exploring their spatiotemporal evolution patterns in differen...Using complex network methods,we construct undirected and directed heatwave networks to systematically analyze heatwave events over China from 1961 to 2023,exploring their spatiotemporal evolution patterns in different regions.The findings reveal a significant increase in heatwaves since the 2000s,with the average occurrence rising from approximately 3 to 5 times,and their duration increasing from 15 to around 30 days,nearly doubling.An increasing trend of“early onset and late withdrawal”of heatwaves has become more pronounced each year.In particular,eastern regions experience heatwaves that typically start earlier and tend to persist into September,exhibiting greater interannual variability compared to western areas.The middle and lower reaches of the Yangtze River and Xinjiang are identified as high-frequency heatwave areas.Complex network analysis reveals the dynamics of heatwave propagation,with degree centrality and synchronization distance indicating that the middle and lower reaches of the Yangtze River,Northeast China,and Xinjiang are key nodes in heatwave spread.Additionally,network divergence analysis shows that Xinjiang acts as a“source”area for heatwaves,exporting heat to surrounding regions,while the central region functions as a major“sink,”receiving more heatwave events.Further analysis from 1994 to 2023 indicates that heatwave events exhibit stronger network centrality and more complex synchronization patterns.These results suggest that complex networks provide a refined framework for depicting the spatiotemporal dynamics of heatwave propagation,offering new avenues for studying their occurrence and development patterns.展开更多
Information spreading has been investigated for many years,but the mechanism of why the information explosively catches on overnight is still under debate.This explosive spreading phenomenon was usually considered dri...Information spreading has been investigated for many years,but the mechanism of why the information explosively catches on overnight is still under debate.This explosive spreading phenomenon was usually considered driven separately by social reinforcement or higher-order interactions.However,due to the limitations of empirical data and theoretical analysis,how the higher-order network structure affects the explosive information spreading under the role of social reinforcement has not been fully explored.In this work,we propose an information-spreading model by considering the social reinforcement in real and synthetic higher-order networks,describable as hypergraphs.Depending on the average group size(hyperedge cardinality)and node membership(hyperdegree),we observe two different spreading behaviors:(i)The spreading progress is not sensitive to social reinforcement,resulting in the information localized in a small part of nodes;(ii)a strong social reinforcement will promote the large-scale spread of information and induce an explosive transition.Moreover,a large average group size and membership would be beneficial to the appearance of the explosive transition.Further,we display that the heterogeneity of the node membership and group size distributions benefit the information spreading.Finally,we extend the group-based approximate master equations to verify the simulation results.Our findings may help us to comprehend the rapidly information-spreading phenomenon in modern society.展开更多
Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions ...Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions affect EMF remain largely unknown.Here,we investigated variation in three measures of diversity(alpha diversity,community composition and network complexity)among rare,intermediate,and abundant taxa across a latitudinal gradient spanning five forest plots in Yunnan Province,China and examined their contributions on EMF.We aimed to characterize the diversity distributions of bacterial groups across latitudes and to assess the differences in the mechanisms underlying their contributions to EMF.We found that multifaceted diversity(i.e.,diversity assessed by the three different metrics)of rare,intermediate,and abundant bacteria generally decreased with increasing latitude.More importantly,we found that rare bacterial taxa tended to be more diverse,but they contributed less to EMF than intermediate or abundant bacteria.Among the three dimensions of diversity we assessed,only community composition significantly affected EMF across all locations,while alpha diversity had a negative effect,and network complexity showed no significant impact.Our study further emphasizes the importance of intermediate and abundant bacterial taxa as well as community composition to EMF and provides a theoretical basis for investigating the mechanisms by which belowground microorganisms drive EMF along a latitudinal gradient.展开更多
Numerous studies have examined the impact ofwater quality degradation on bacterial community structure,yet insights into its effects on the bacterial ecological networks remain scarce.In this study,we investigated the...Numerous studies have examined the impact ofwater quality degradation on bacterial community structure,yet insights into its effects on the bacterial ecological networks remain scarce.In this study,we investigated the diversity,composition,assembly patterns,ecological networks,and environmental determinants of bacterial communities across 20 ponds to understand the impact of water quality degradation.Our findings revealed that water quality degradation significantly reduces the α-diversity of bacterial communities in water samples,while sediment samples remain unaffected.Additionally,water quality deterioration increases the complexity of bacterial networks in water samples but reduces it in sediment samples.These shifts in bacterial communities were primarily governed by deterministic processes,with heterogeneous selection being particularly influential.Through redundancy analysis(RDA),multiple regression on matrices(MRM),and Mantel tests,we identified dissolved oxygen(DO),ammonium nitrogen(NH_(4)^(+)-N),and C/N ratio as key factors affecting the composition and network complexity of bacterial communities in both water and sediment.Overall,this study contributes a novel perspective on the effect ofwater quality deterioration on microbial ecosystems and provides valuable insights for improving ecological evaluations and biomonitoring practices related to water quality management.展开更多
Neuropsychological tests,such as the Rey-Osterrieth complex figure(ROCF)test,help detect mild cognitive impairment(MCI)in adults by assessing cognitive abilities such as planning,organization,and memory.Furthermore,th...Neuropsychological tests,such as the Rey-Osterrieth complex figure(ROCF)test,help detect mild cognitive impairment(MCI)in adults by assessing cognitive abilities such as planning,organization,and memory.Furthermore,they are inexpensive and minimally invasive,making them excellent tools for early screening.In this paper,we propose the use of image analysis models to characterize the relationship between an individual’s ROCF drawing and their cognitive state.This task is usually framed as a classification problem and is solved using deep learning models,due to their success in the last decade.In order to achieve good performance,these models need to be trained with a large number of examples.Given that our data availability is limited,we alternatively treat our task as a similarity learning problem,performing pairwise ROCF drawing comparisons to define groups that represent different cognitive states.This way of working could lead to better data utilization and improved model performance.To solve the similarity learning problem,we propose a siamese neural network(SNN)that exploits the distances of arbitrary ROCF drawings to the ideal representation of the ROCF.Our proposal is compared against various deep learning models designed for classification using a public dataset of 528 ROCF copy drawings,which are associated with either healthy individuals or those with MCI.Quantitative results are derived from a scheme involving multiple rounds of evaluation,employing both a dedicated test set and 14-fold cross-validation.Our SNN proposal demonstrates superiority in validation performance,and test results comparable to those of the classification-based deep learning models.展开更多
We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It cha...We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It characterizes the process of infectious disease transmission among residents between communities through the SE2IHR model considering two types of infectors. By depicting a more fine-grained social structure and combining further simulation experiments, the study validates the crucial role of various prevention and control measures implemented by communities as primary executors in controlling the epidemic. Research shows that the geographical boundaries of communities and the social interaction patterns of residents have a significant impact on the spread of the epidemic, where early detection, isolation and treatment strategies at community level are essential for controlling the spread of the epidemic. In addition, the study explores the collaborative governance model and institutional advantages of communities and residents in epidemic prevention and control.展开更多
The dissemination of information across various locations is an ubiquitous occurrence,however,prevalent methodologies for multi-source identification frequently overlook the fact that sources may initiate disseminatio...The dissemination of information across various locations is an ubiquitous occurrence,however,prevalent methodologies for multi-source identification frequently overlook the fact that sources may initiate dissemination at distinct initial moments.Although there are many research results of multi-source identification,the challenge of locating sources with varying initiation times using a limited subset of observational nodes remains unresolved.In this study,we provide the backward spread tree theorem and source centrality theorem,and develop a backward spread centrality algorithm to identify all the information sources that trigger the spread at different start times.The proposed algorithm does not require prior knowledge of the number of sources,however,it can estimate both the initial spread moment and the spread duration.The core concept of this algorithm involves inferring suspected sources through source centrality theorem and locating the source from the suspected sources with linear programming.Extensive experiments from synthetic and real network simulation corroborate the superiority of our method in terms of both efficacy and efficiency.Furthermore,we find that our method maintains robustness irrespective of the number of sources and the average degree of network.Compared with classical and state-of-the art source identification methods,our method generally improves the AUROC value by 0.1 to 0.2.展开更多
The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective meth...The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.12031002)。
文摘Accurately identifying key nodes is essential for evaluating network robustness and controlling information propagation in complex network analysis. However, current research methods face limitations in applicability and accuracy. To address these challenges, this study introduces the K-GCN model, which integrates neighborhood k-shell distribution analysis with Graph Convolutional Network(GCN) technology to enhance key node identification in complex networks. The K-GCN model first leverages neighborhood k-shell distributions to calculate entropy values for each node, effectively quantifying node importance within the network. These entropy values are then used as key features within the GCN, which subsequently formulates intelligent strategies to maximize network connectivity disruption by removing a minimal set of nodes, thereby impacting the overall network architecture. Through iterative interactions with the environment, the GCN continuously refines its strategies, achieving precise identification of key nodes in the network. Unlike traditional methods, the K-GCN model not only captures local node features but also integrates the network structure and complex interrelations between neighboring nodes, significantly improving the accuracy and efficiency of key node identification.Experimental validation in multiple real-world network scenarios demonstrates that the K-GCN model outperforms existing methods.
基金Project supported by Jilin Provincial Science and Technology Development Plan(Grant No.20220101137JC).
文摘This paper study the finite time internal synchronization and the external synchronization(hybrid synchronization)for duplex heterogeneous complex networks by time-varying intermittent control.There few study hybrid synchronization of heterogeneous duplex complex networks.Therefore,we study the finite time hybrid synchronization of heterogeneous duplex networks,which employs the time-varying intermittent control to drive the duplex heterogeneous complex networks to achieve hybrid synchronization in finite time.To be specific,the switch frequency of the controllers can be changed with time by devise Lyapunov function and boundary function,the internal synchronization and external synchronization are achieved simultaneously in finite time.Finally,numerical examples are presented to illustrate the validness of theoretical results.
基金Supported by the National Natural Science Foundation of China(62476082)。
文摘This paper investigates modified fixed-time synchronization(FxTS)of complex networks(CNs)with time-varying delays based on continuous and discontinuous controllers.First,for the sake of making the settling time(ST)of FxTS is independent of the initial values and parameters of the CNs,a modified fixed-time(FxT)stability theorem is proposed,where the ST is determined by an arbitrary positive number given in advance.Then,continuous controller and discontinuous controller are designed to realize the modified FxTS target of CNs.In addition,based on the designed controllers,CNs can achieve synchronization at any given time,or even earlier.And control strategies effectively solve the problem of ST related to the parameters of CNs.Finally,an appropriate simulation example is conducted to examine the effectiveness of the designed control strategies.
基金support from the National Natural Science Foundation of China(Grant No.T2293771)the STI 2030-Major Projects(Grant No.2022ZD0211400)the Sichuan Province Outstanding Young Scientists Foundation(Grant No.2023NSFSC1919)。
文摘Independent cascade(IC)models,by simulating how one node can activate another,are important tools for studying the dynamics of information spreading in complex networks.However,traditional algorithms for the IC model implementation face significant efficiency bottlenecks when dealing with large-scale networks and multi-round simulations.To settle this problem,this study introduces a GPU-based parallel independent cascade(GPIC)algorithm,featuring an optimized representation of the network data structure and parallel task scheduling strategies.Specifically,for this GPIC algorithm,we propose a network data structure tailored for GPU processing,thereby enhancing the computational efficiency and the scalability of the IC model.In addition,we design a parallel framework that utilizes the full potential of GPU's parallel processing capabilities,thereby augmenting the computational efficiency.The results from our simulation experiments demonstrate that GPIC not only preserves accuracy but also significantly boosts efficiency,achieving a speedup factor of 129 when compared to the baseline IC method.Our experiments also reveal that when using GPIC for the independent cascade simulation,100-200 simulation rounds are sufficient for higher-cost studies,while high precision studies benefit from 500 rounds to ensure reliable results,providing empirical guidance for applying this new algorithm to practical research.
文摘This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.
基金Project supported the Natural Science Foundation of Zhejiang Province, China (Grant No. LQN25F030011)the Fundamental Research Project of Hangzhou Dianzi University (Grant No. KYS065624391)+1 种基金the National Natural Science Foundation of China (Grant No. 61573148)the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2019A050520001)。
文摘This paper investigates a new SEIQR(susceptible–exposed–infected–quarantined–recovered) epidemic model with quarantine mechanism on heterogeneous complex networks. Firstly, the nonlinear SEIQR epidemic spreading dynamic differential coupling model is proposed. Then, by using mean-field theory and the next-generation matrix method, the equilibriums and basic reproduction number are derived. Theoretical results indicate that the basic reproduction number significantly relies on model parameters and topology of the underlying networks. In addition, the globally asymptotic stability of equilibrium and the permanence of the disease are proved in detail by the Routh–Hurwitz criterion, Lyapunov method and La Salle's invariance principle. Furthermore, we find that the quarantine mechanism, that is the quarantine rate(γ1, γ2), has a significant effect on epidemic spreading through sensitivity analysis of basic reproduction number and model parameters. Meanwhile, the optimal control model of quarantined rate and analysis method are proposed, which can optimize the government control strategies and reduce the number of infected individual. Finally, numerical simulations are given to verify the correctness of theoretical results and a practice application is proposed to predict and control the spreading of COVID-19.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.
基金Under the auspices of the Fund of Social Sciences Research,Ministry of Education of China(No.17YJA840011)。
文摘Since China’s reform and opening-up,the growing disparity between urban and rural areas and regions has led to massive migration.With China’s Rural Revitalization Strategy and the industrial transfer from the eastern coastal areas to the inland,the migration direction and pattern of the floating population have undergone certain changes.Using the 2017 China Migrants Dynamic Survey(CMDS),excluding Hong Kong,Macao,and Taiwan regions of China,organized by China’s National Health Commission,the relationship matrix of the floating population is constructed according to the inflow place of the interviewees and their outflow place(the location of the registered residence)in the questionnaire survey.We then apply the complex network model to analyze the migration direction and network pattern of China’s floating population from the city scale.The migration network shows an obvious hierarchical agglomeration.The first-,second-,third-and fourth-tier distribution cities are municipalities directly under the central government,provincial capital cities,major cities in the central and western regions and ordinary cities in all provinces,respectively.The migration trend is from the central and western regions to the eastern coastal areas.The migration network has‘small world’characteristics,forming nine communities.It shows that most node cities in the same community are closely linked and geographically close,indicating that the migration network of floating population is still affected by geographical proximity.Narrowing the urban-rural and regional differences will promote the rational distribution this population.It is necessary to strengthen the reform of the registered residence system,so that the floating population can enjoy urban public services comparable to other populations,and allow migrants to live and work in peace.
基金National Key Research and Development Program of China(No.2022YFC3803000).
文摘According to news reports on severe earthquakes since 2008,a total of 51 cases with magnitudes of 6.0 or above were analyzed,and 14 frequently occurring secondary disasters were identified.A disaster chain model was developed using principles from complex network theory.The vulnerability and risk level of each edge in this model were calculated,and high-risk edges and disaster chains were identified.The analysis reveals that the edge“floods→building collapses”has the highest vulnerability.Implementing measures to mitigate this edge is crucial for delaying the spread of secondary disasters.The highest risk is associated with the edge“building collapses→casualties,”and increased risks are also identified for chains such as“earthquake→building collapses→casualties,”“earthquake→landslides and debris flows→dammed lakes,”and“dammed lakes→floods→building collapses.”Following an earthquake,the prompt implementation of measures is crucial to effectively disrupt these chains and minimize the damage from secondary disasters.
基金supported by the Key R&D Projects in Jiangsu Province(BE2021729)the Key Primary Research Project of Primary Strengthening Program(KYZYJKKCJC23001).
文摘Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.
基金Hong Kong Research Grants Council under the GRF(9043664).
文摘This article briefly reviews the topic of complex network synchronization,with its graph-theoretic criterion,showing that the homogeneous and symmetrical network structures are essential for optimal synchronization.Furthermore,it briefly reviews the notion of higher-order network topologies and shows their promising potential in application to evaluating the optimality of network synchronizability.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2022YFE0136000 and 2024YFC3013100)the Joint Meteorological Fund(Grant No.U2342211)+1 种基金the Joint Research Project for Meteorological Capacity Improvement(Grant No.22NLTSZ004)the National Meteorological Information Center(Grant No.NMICJY202301)。
文摘Using complex network methods,we construct undirected and directed heatwave networks to systematically analyze heatwave events over China from 1961 to 2023,exploring their spatiotemporal evolution patterns in different regions.The findings reveal a significant increase in heatwaves since the 2000s,with the average occurrence rising from approximately 3 to 5 times,and their duration increasing from 15 to around 30 days,nearly doubling.An increasing trend of“early onset and late withdrawal”of heatwaves has become more pronounced each year.In particular,eastern regions experience heatwaves that typically start earlier and tend to persist into September,exhibiting greater interannual variability compared to western areas.The middle and lower reaches of the Yangtze River and Xinjiang are identified as high-frequency heatwave areas.Complex network analysis reveals the dynamics of heatwave propagation,with degree centrality and synchronization distance indicating that the middle and lower reaches of the Yangtze River,Northeast China,and Xinjiang are key nodes in heatwave spread.Additionally,network divergence analysis shows that Xinjiang acts as a“source”area for heatwaves,exporting heat to surrounding regions,while the central region functions as a major“sink,”receiving more heatwave events.Further analysis from 1994 to 2023 indicates that heatwave events exhibit stronger network centrality and more complex synchronization patterns.These results suggest that complex networks provide a refined framework for depicting the spatiotemporal dynamics of heatwave propagation,offering new avenues for studying their occurrence and development patterns.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12305043 and 12165016)the Natural Science Foundation of Jiangsu Province(Grant No.BK20220511)+1 种基金the Project of Undergraduate Scientific Research(Grant No.22A684)the support from the Jiangsu Specially-Appointed Professor Program。
文摘Information spreading has been investigated for many years,but the mechanism of why the information explosively catches on overnight is still under debate.This explosive spreading phenomenon was usually considered driven separately by social reinforcement or higher-order interactions.However,due to the limitations of empirical data and theoretical analysis,how the higher-order network structure affects the explosive information spreading under the role of social reinforcement has not been fully explored.In this work,we propose an information-spreading model by considering the social reinforcement in real and synthetic higher-order networks,describable as hypergraphs.Depending on the average group size(hyperedge cardinality)and node membership(hyperdegree),we observe two different spreading behaviors:(i)The spreading progress is not sensitive to social reinforcement,resulting in the information localized in a small part of nodes;(ii)a strong social reinforcement will promote the large-scale spread of information and induce an explosive transition.Moreover,a large average group size and membership would be beneficial to the appearance of the explosive transition.Further,we display that the heterogeneity of the node membership and group size distributions benefit the information spreading.Finally,we extend the group-based approximate master equations to verify the simulation results.Our findings may help us to comprehend the rapidly information-spreading phenomenon in modern society.
基金supported by the Fundamental Research Funds of Chinese Academy of Forestry(Nos.CAFYBB2022SY037,CAFYBB2021ZA002 and CAFYBB2022QC002)the Basic Research Foundation of Yunnan Province(Grant No.202201AT070264).
文摘Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions affect EMF remain largely unknown.Here,we investigated variation in three measures of diversity(alpha diversity,community composition and network complexity)among rare,intermediate,and abundant taxa across a latitudinal gradient spanning five forest plots in Yunnan Province,China and examined their contributions on EMF.We aimed to characterize the diversity distributions of bacterial groups across latitudes and to assess the differences in the mechanisms underlying their contributions to EMF.We found that multifaceted diversity(i.e.,diversity assessed by the three different metrics)of rare,intermediate,and abundant bacteria generally decreased with increasing latitude.More importantly,we found that rare bacterial taxa tended to be more diverse,but they contributed less to EMF than intermediate or abundant bacteria.Among the three dimensions of diversity we assessed,only community composition significantly affected EMF across all locations,while alpha diversity had a negative effect,and network complexity showed no significant impact.Our study further emphasizes the importance of intermediate and abundant bacterial taxa as well as community composition to EMF and provides a theoretical basis for investigating the mechanisms by which belowground microorganisms drive EMF along a latitudinal gradient.
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LTGS24D010004)the National Natural Science Foundation of China grant(No.42307064)+2 种基金the National Students’platform for innovation and entrepreneurship training program(No.202410346054)Hangzhou“Young science and technology talent cultivation”project(No.4305F45623004)the Fundamental Research Funds for Climbing Project from Hangzhou Normal University(No.KYQD-2023-217).
文摘Numerous studies have examined the impact ofwater quality degradation on bacterial community structure,yet insights into its effects on the bacterial ecological networks remain scarce.In this study,we investigated the diversity,composition,assembly patterns,ecological networks,and environmental determinants of bacterial communities across 20 ponds to understand the impact of water quality degradation.Our findings revealed that water quality degradation significantly reduces the α-diversity of bacterial communities in water samples,while sediment samples remain unaffected.Additionally,water quality deterioration increases the complexity of bacterial networks in water samples but reduces it in sediment samples.These shifts in bacterial communities were primarily governed by deterministic processes,with heterogeneous selection being particularly influential.Through redundancy analysis(RDA),multiple regression on matrices(MRM),and Mantel tests,we identified dissolved oxygen(DO),ammonium nitrogen(NH_(4)^(+)-N),and C/N ratio as key factors affecting the composition and network complexity of bacterial communities in both water and sediment.Overall,this study contributes a novel perspective on the effect ofwater quality deterioration on microbial ecosystems and provides valuable insights for improving ecological evaluations and biomonitoring practices related to water quality management.
文摘Neuropsychological tests,such as the Rey-Osterrieth complex figure(ROCF)test,help detect mild cognitive impairment(MCI)in adults by assessing cognitive abilities such as planning,organization,and memory.Furthermore,they are inexpensive and minimally invasive,making them excellent tools for early screening.In this paper,we propose the use of image analysis models to characterize the relationship between an individual’s ROCF drawing and their cognitive state.This task is usually framed as a classification problem and is solved using deep learning models,due to their success in the last decade.In order to achieve good performance,these models need to be trained with a large number of examples.Given that our data availability is limited,we alternatively treat our task as a similarity learning problem,performing pairwise ROCF drawing comparisons to define groups that represent different cognitive states.This way of working could lead to better data utilization and improved model performance.To solve the similarity learning problem,we propose a siamese neural network(SNN)that exploits the distances of arbitrary ROCF drawings to the ideal representation of the ROCF.Our proposal is compared against various deep learning models designed for classification using a public dataset of 528 ROCF copy drawings,which are associated with either healthy individuals or those with MCI.Quantitative results are derived from a scheme involving multiple rounds of evaluation,employing both a dedicated test set and 14-fold cross-validation.Our SNN proposal demonstrates superiority in validation performance,and test results comparable to those of the classification-based deep learning models.
基金Project supported by the Ministry of Education of China in the later stage of philosophy and social science research(Grant No.19JHG091)the National Natural Science Foundation of China(Grant No.72061003)+1 种基金the Major Program of National Social Science Fund of China(Grant No.20&ZD155)the Guizhou Provincial Science and Technology Projects(Grant No.[2020]4Y172)。
文摘We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It characterizes the process of infectious disease transmission among residents between communities through the SE2IHR model considering two types of infectors. By depicting a more fine-grained social structure and combining further simulation experiments, the study validates the crucial role of various prevention and control measures implemented by communities as primary executors in controlling the epidemic. Research shows that the geographical boundaries of communities and the social interaction patterns of residents have a significant impact on the spread of the epidemic, where early detection, isolation and treatment strategies at community level are essential for controlling the spread of the epidemic. In addition, the study explores the collaborative governance model and institutional advantages of communities and residents in epidemic prevention and control.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62103375,62006106,61877055,and 62171413)the Philosophy and Social Science Planning Project of Zhejinag Province,China(Grant No.22NDJC009Z)+1 种基金the Education Ministry Humanities and Social Science Foundation of China(Grant No.19YJCZH056)the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY23F030003,LY22F030006,and LQ21F020005).
文摘The dissemination of information across various locations is an ubiquitous occurrence,however,prevalent methodologies for multi-source identification frequently overlook the fact that sources may initiate dissemination at distinct initial moments.Although there are many research results of multi-source identification,the challenge of locating sources with varying initiation times using a limited subset of observational nodes remains unresolved.In this study,we provide the backward spread tree theorem and source centrality theorem,and develop a backward spread centrality algorithm to identify all the information sources that trigger the spread at different start times.The proposed algorithm does not require prior knowledge of the number of sources,however,it can estimate both the initial spread moment and the spread duration.The core concept of this algorithm involves inferring suspected sources through source centrality theorem and locating the source from the suspected sources with linear programming.Extensive experiments from synthetic and real network simulation corroborate the superiority of our method in terms of both efficacy and efficiency.Furthermore,we find that our method maintains robustness irrespective of the number of sources and the average degree of network.Compared with classical and state-of-the art source identification methods,our method generally improves the AUROC value by 0.1 to 0.2.
基金funded by the National Natural Science Foundation of China(No.51974268)Open Fund of Key Laboratory of Ministry of Education for Improving Oil and Gas Recovery(NEPUEOR-2022-03)Research and Innovation Fund for Graduate Students of Southwest Petroleum University(No.2022KYCX005)。
文摘The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.