The acceleration and mode transition performance are two significant performances of Adaptive Cycle Engine(ACE).However,separating the processes of acceleration and mode transition will slow down the response speed of...The acceleration and mode transition performance are two significant performances of Adaptive Cycle Engine(ACE).However,separating the processes of acceleration and mode transition will slow down the response speed of thrust.Therefore,this paper proposes a multi-mode acceleration optimization control method that simultaneously performs ACE acceleration and mode transition.Firstly,an ACE component model with inlet flow characteristics was established,and the performance before and after mode transition were analyzed.Secondly,the principle of ACE acceleration optimization was analyzed,and the Front Variable Area Bypass Injector(FVABI)and Mode Selection Valve(MSV)were adopted in the acceleration process.Finally,based on the Sequential Quadratic Programming(SQP)algorithm,considering the degradation effects of engine components,we optimize the acceleration control plan for fuel and variable geometry mechanisms.The simulation results show that at the subsonic cruise point,the ACE multi-mode acceleration optimization control method can shorten the acceleration time from idle to middle state by 30.33%,and accelerate the thrust response speed by 33.72%.When the compressor flow rate of ACE deteriorates by 2% and the high-pressure turbine efficiency deteriorates by 4%,the adaptive acceleration control plan increases the high-pressure speed by 2.13% and thrust by about 6.82%;within the flight envelope,the acceleration time is reduced by more than 25%,and the thrust response speed is increased by more than 20%.展开更多
In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial deriv...In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial derivative term and the forward and backward Euler method to discretize the time derivative term, the explicit and implicit upwind difference schemes are obtained respectively. It is proved that the explicit upwind scheme is conditionally stable and the implicit upwind scheme is unconditionally stable. Then the convergence of the schemes is derived. Numerical examples verify the results of theoretical analysis.展开更多
A novel variable geometry flame-holder(VGF) based on V-gutter was presented.The structural characteristics of the flame holder were introduced.Experimental study on drag characteristics of the VGF on un-burning and bu...A novel variable geometry flame-holder(VGF) based on V-gutter was presented.The structural characteristics of the flame holder were introduced.Experimental study on drag characteristics of the VGF on un-burning and burning states was conducted in a rectangular combustion test rig.The influence of the change of gutter trailing edge width w on pressure recovery in different operating conditions was analyzed emphatically.Furthermore,drag characteristics in different trailing edge width variation modes were discussed.Results show that:(1) Narrowing w can observably raise the total pressure recovery σ but the highest σ is not obtained at minimum w.(2) The relationship of drag coefficient ψ and w in the un-burning conditions can be well expressed in a form of exponential equation(w/d>0.4).(3) Drag characteristics are not sensitive to the variation modes and speeds of w.(4) In the burning condition,σ decreases with the increasing of w basically and the course can be divided into three stages.The results and experimental data presented in this paper would enhance the phenomenological understanding of this type of VGF,and would contribute to the next experimental study and numerical calculus of this novel VGF.展开更多
To compute the matching performance of diesel engine with variable geometry turboeharger(VGT), the formerly used program is improved through adjustment of turbine mass flow rate and efficiency characteristics. The c...To compute the matching performance of diesel engine with variable geometry turboeharger(VGT), the formerly used program is improved through adjustment of turbine mass flow rate and efficiency characteristics. The calculation result is applied to forecast the performance of J6110Z diesel engine with rotary-vaned VGT70, and to guide the improvement of engine fuel supply. The computed engine performance curve coincides with the experiment result well: the low-speed torque, fuel economy, exhaust temperature and boost pressure of the VGT engine are all improved.展开更多
Variable geometry truss manipulator (VGTM) has potential to work in the future space applications, of which a dynamic model is important to dynamic analysis and control of the system. In this paper, an approach is p...Variable geometry truss manipulator (VGTM) has potential to work in the future space applications, of which a dynamic model is important to dynamic analysis and control of the system. In this paper, an approach is presented to model the dynamic equations of a VGTM by independent variables, which consists of two double-octahedral truss units and a 3-revolute-prismatic-spherical (3-RPS) parallel manipulator. In this ap- proach, the kinematic recursive relations of two adjacent bodies and geometric constrains are used to deduce the kinematic equations of the VGTM, and Jourdain's velocity varia- tion principle is adopted to establish the dynamic equations of the system. The validity of the proposed dynamic model is verified by comparison of numerical simulations with the software ADAMS. Besides, an active controller for trajectory tracking of the system is designed by the computed torque method. The effectiveness of the controller is numer- ically proved.展开更多
With the development of the Internet,image encryption technology has become critical for network security.Traditional methods often suffer from issues such as insufficient chaos,low randomness in key generation,and po...With the development of the Internet,image encryption technology has become critical for network security.Traditional methods often suffer from issues such as insufficient chaos,low randomness in key generation,and poor encryption efficiency.To enhance performance,this paper proposes a new encryption algorithm designed to optimize parallel processing and adapt to images of varying sizes and colors.The method begins by using SHA-384 to extract the hash value of the plaintext image,which is then processed to determine the chaotic system’s initial value and block size.The image is padded and divided into blocks for further processing.A novel two-dimensional infinite collapses hyperchaotic map(2DICHM)is employed to generate the intra-block scrambling sequence,while an improved variable Joseph traversal sequence is used for inter-block scrambling.After removing the padding,3D forward and backward shift diffusions,controlled by the 2D-ICHM sequences,are applied to the scrambled image,producing the ciphertext.Simulation results demonstrate that the proposed algorithm outperforms others in terms of entropy,anti-noise resilience,correlation coefficient,robustness,and encryption efficiency.展开更多
When the variable geometry hypersonic inlet is sealed with ceramic wafers,the cavity flows inside the sealing chamber can be affected by the boundary layer near the side wall.To study the influence of the boundary lay...When the variable geometry hypersonic inlet is sealed with ceramic wafers,the cavity flows inside the sealing chamber can be affected by the boundary layer near the side wall.To study the influence of the boundary layer thickness near the side wall on the flow and leakage characteristics in sealing chamber,the numerical calculation of the cavity flow in the sealing chamber under different inflow boundary layer thicknesses is carried out.The results show that three-dimensional cavity flow structures are close to being asymmetric,and the entrance pressure of the leakage path can also be affected by asymmetry;with the increase of the thickness of the boundary layer,the pressure at the cavity floor and the seal entrance decreases.Finally,the existing leakage prediction model is modified according to the distribution rule of the cavity floor and the flow properties in the leakage path.展开更多
Conventionally,the method to make up for the missing data of middle-shallow layer in the obstacle area is by variable geometry,for example,deviating physical points and adding sources and receivers.And the missing dat...Conventionally,the method to make up for the missing data of middle-shallow layer in the obstacle area is by variable geometry,for example,deviating physical points and adding sources and receivers.And the missing data of middle-shallow layer is evaluated according to the effective coverage of the target layer.Since the traditional method doesn't consider the actual seismic data,it is impossible to actually predict the gap of section and the imaging effect.The paper proposes the evaluation method of data-driven based variable geometry:Firstly,the obstacle avoidance design is realized according to the coordinate range and safe distance of the obstacle area;Secondly,the local similarity of each common image gather(CIG)is calculated,and the contribution of the sources and receivers to the target area is also calculated;Thirdly,according to the variable geometry design,choose the required trace to perform sorting and stacking according to the contribution of the sources and receivers in the CIG,the stack data volume of the whole work area is generated;finally,evaluate the missing data in the obstacle area by the extracted seismic stacked sections in different direction and guide the designer in the infilling plan.Meanwhile,for area with very low signal to noise ratio(SNR),the new method can be used to evaluate the imaging potential and guide the survey design.The new method has achieved very good effect in the production,and the analysis result is very consistent with the processed result of the actual seismic data.展开更多
In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.T...In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.Taking the element density of porousmaterials as the design variable,the volume of porousmaterials as the constraint,and the minimum sound pressure or maximum scattered sound power as the design goal,the topology optimization is carried out by solid isotropic material with penalization(SIMP)method.To get a limpid 0–1 distribution,a smoothing Heaviside-like function is proposed.To obtain the gradient value of the objective function,a sensitivity analysis method based on the adjoint variable method(AVM)is proposed.To find the optimal solution,the optimization problems are solved by the method of moving asymptotes(MMA)based on gradient information.Numerical examples verify the effectiveness of the proposed topology optimization method in the optimization process of two-dimensional acoustic problems.Furthermore,the optimal distribution of sound-absorbingmaterials is highly frequency-dependent and usually needs to be performed within a frequency band.展开更多
The gas temperature within hypersonic boundary layer flow is so high that the specific heat of gas is no longer a constant but relates to temperature. How variable specific heat influences on boundary layer flow stabi...The gas temperature within hypersonic boundary layer flow is so high that the specific heat of gas is no longer a constant but relates to temperature. How variable specific heat influences on boundary layer flow stability is worth researching. The effect of the variable specific heat on the stability of hypersonic boundary layer flows is studied and compared with the case of constant specific heat based on the linear stability theory. It is found that the variable specific heat indeed has some effects on the neutral curves of both the first-mode and the second-mode waves and on the maximum rate of growth also. Therefore, the relationship between specific heat and temperature should be considered in the study of the stability of the boundary layer.展开更多
A spatial motion mechanism was designed which could make all the nozzle vanes rotate a- round the center of ball with the same radius synchronously to realize control of the variable nozzle mixed-flow turbocharger (V...A spatial motion mechanism was designed which could make all the nozzle vanes rotate a- round the center of ball with the same radius synchronously to realize control of the variable nozzle mixed-flow turbocharger (VN-MT). The back and abdomen of the nozzle vane was designed as arc- shaped. A variable nozzle ring perfectly combined with the mixed-flow turbine was made available. The turbine geometric model of VN-MT was established through the computational fluid dynamics (CFD). Compared with nozzleless mixed-flow turbine, the flow range of variable nozzle mixed-flow turbine was broadened tremendously while the peak turbine efficiency point was lower slightly. Flow field analysis in turbine stage showed that the energy was larger and the blade load of rotor was lower than loss of the VN-MT under designed condition the nozzleless mixed-flow turbocharger.展开更多
To study the change mechanism and the control of the variable cycle engine in the process of modal transition,a variable cycle engine model based on component level characteristics is established.The two-dimensional C...To study the change mechanism and the control of the variable cycle engine in the process of modal transition,a variable cycle engine model based on component level characteristics is established.The two-dimensional CFD technology is used to simulate the influence of mode selection valve rotation on the engine flow field,which improves the accuracy of the model.Furthermore,the constant flow control plan is proposed in the modal transition process to reduce the engine installed drag.The constant flow control plan adopts the augmentation linear quadratic regulator control method.Simulation results indicate that the control method is able to effectively control the bypass ratio and demand flow of the variable cycle engine,and make the engine transform smoothly,which ensures the stable operation of the engine in modal transition and the constant demand flow of the engine.展开更多
Variable structure control (VSC) applied to atmospheric disturbance sup-pression is presented. The conditions are stipulated: the sliding mode existenee condi-tion, and invanance condition of atmospheric disturbanee i...Variable structure control (VSC) applied to atmospheric disturbance sup-pression is presented. The conditions are stipulated: the sliding mode existenee condi-tion, and invanance condition of atmospheric disturbanee in the variable structuresystem (VSS). A method of eigenstructure assignment technique for switching surfaeedesign is proposed. Based on different atmospheric disturbanee characteristics, such asrandom turbulence, discrete gust and wind shear, two kinds of control laws are derived that possess strong robustness. An example shows that this control approach isfeasible and effective.展开更多
Hybrid ultrahigh frequency pulse variable polarity gas tungsten arc welding (HPVP-GTAW) for 2A14-T6 high strength aluminum alloy was carried out and the effects of variable polarity frequency with constant pulse cur...Hybrid ultrahigh frequency pulse variable polarity gas tungsten arc welding (HPVP-GTAW) for 2A14-T6 high strength aluminum alloy was carried out and the effects of variable polarity frequency with constant pulse current frequency 40 kHz on weld bead geometry, microstrueture and microhardness were analyzed. Experimental results indicate that, compared to that of the conventional VP-GTAW process, the weld depth and ratio of weld depth to width are improved significantly by the variable polarity frequency in the HPVP-GTAW process, which the ratio of weld depth to width is improved by 36% at equal variable polarity frequency of 100 Hz, and improved by 55% with that of 200 Hz. Weld microstructure and microhardness distribution are changed obviously with the increase of variable polarity frequency. In the conventional VP-GTA W process, the grains in weld central zone are coarser, and the microhardness in weld central zone and fusion zone is about 95 HV and the lowest 82 HV, respectively. The microhardness is enhanced to a certain extent both in the weld central zone and fusion zone with the variation of variable polarity frequency in the HPVP-GTAW process due to the refinement and uniformity of weld microstructure. With the variable polarity frequency of 600 Hz, the microhardness in weld central zone and fusion zone reaches nearly 110 HV and 97 HV, respectively.展开更多
This paper is concerned with further relaxations of the stability analysis of nonlinear Roesser-type two-dimensional (2D) systems in the Takagi-Sugeno fuzzy form. To achieve the goal, a novel slack matrix variable t...This paper is concerned with further relaxations of the stability analysis of nonlinear Roesser-type two-dimensional (2D) systems in the Takagi-Sugeno fuzzy form. To achieve the goal, a novel slack matrix variable technique, which is homogenous polynomially parameter-dependent on the normalized fuzzy weighting functions with arbitrary degree, is developed and the algebraic properties of the normalized fuzzy weighting functions are collected into a set of augmented matrices. Consequently, more information about the normalized fuzzy weighting functions is involved and the relaxation quality of the stability analysis is significantly improved. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed result.展开更多
In this article, we discuss the two-dimensional stagnation-point flow of carbon nanotubes towards a stretching sheet with water as the base fluid under the influence temperature dependent viscosity. Similarity transfo...In this article, we discuss the two-dimensional stagnation-point flow of carbon nanotubes towards a stretching sheet with water as the base fluid under the influence temperature dependent viscosity. Similarity transformations are used to simplify the governing boundary layer equations for nanofluid. This is the first article on the stagnation point flow of CNTs over a stretching sheet with variable viscosity. A well known Reynold's model of viscosity is used. Single wall CNTs are used with water as a base fluid. The resulting nonlinear coupled equations with the relevant boundary conditions are solved numerically using shooting method. The influence of the flow parameters on the dimensionless velocity, temperature, skin friction, and Nusselt numbers are explored and presented in forms of graphs and interpreted physically.展开更多
The robotic drilling always generates the axial vibration along the drill bit and the torsional vibration around the drill bit,which will adversely affect the drilling precision.A vibration control mechanism fixed bet...The robotic drilling always generates the axial vibration along the drill bit and the torsional vibration around the drill bit,which will adversely affect the drilling precision.A vibration control mechanism fixed between the end-effector and the robot is proposed,which can suppress the axial and torsional vibrations based on the principle of vibro-impact(VI)damping.The energy dissipation of the system by vibro-impact damping is analyzed.Then,the influence of the structure parameters on the vibration attenuation effect is studied,and a semi-active vibration control method of variable collision clearance is presented.The simulation results show that the control method has effective vibration control performance.展开更多
A DFN-DEC(discrete fracture network-distinct element code)method based on the MATLAB platform is developed to generate heterogeneous DFN.Subsequently,the effects of the spatial variability(the meanμand the standard d...A DFN-DEC(discrete fracture network-distinct element code)method based on the MATLAB platform is developed to generate heterogeneous DFN.Subsequently,the effects of the spatial variability(the meanμand the standard deviationσ)of the geometric properties(i.e.,the fracture dip D,the trace length T and the spacing S)of both the gently-dipping(denoted with 1)and the steeply-dipping(denoted with 2)fractures on the stability of granite slope are investigated.Results indicate that the proposed DFN-DEC method is robust,generating fracture networks that resemble reality.In addition,the spatial variability of fracture geometry,influencing the structure of granite slope,plays a significant role in slope stability.The mean stability of the slope decreases with the increase ofμ_(D_(1))(the mean of gently-dipping fracture dip),σ_(D_(2))(the mean of steeply-dipping fracture dip),μ_(T_(1))(the mean of gently-dipping fracture trace length),μ_(T_(2))(the mean of steeply-dipping fracture trace length),σ_(T_(1))(the standard deviation of gently-dipping fracture trace length),σ_(T_(2))(the standard deviation of steeply-dipping fracture trace length),and the decrease ofσ_(D_(1))(the standard deviation of gently-dipping fracture dip),μ_(D_(2))(the standard deviation of steeply-dipping fracture dip),μ_(S_(1))(the mean of gently-dipping fracture spacing)andμ_(S_(2))(the mean of steeply-dipping fracture spacing).Among them,μ_(T_(1)),μ_(D_(1))andμ_(S_(1))have the major impact.When the fracture spacing is large,the variability in the fracture geometry becomes less relevant to slope stability.When within some ranges of the fracture spacing,the spatial varying of dips can increase the slope stability by forming an interlaced structure.The results also show that the effects of the variability of trace length on slope stability depend on the variability of dip.These findings highlight the importance of spatial variability in the geometry of fractures to rock slope stability analysis.展开更多
Based on the observation that the moduli of a link variable on a cyclic group modify Connes' distance on this group, we construct several action functionals for this link variable within the framework of noncommut...Based on the observation that the moduli of a link variable on a cyclic group modify Connes' distance on this group, we construct several action functionals for this link variable within the framework of noncommutative geometry. After solving the equations of motion, we find that one type of action gives nontrivial vacuum solution for gravity on this cyclic group in a broad range of coupling constants and that such a solution can be expressed with Chebyshev's polynomials.展开更多
基金supported in part by the National Natural Science Foundation of China(No.52372389)the Jiangsu Province Excellent Postdoctoral Program of China(No.2023ZB494)+1 种基金the Basic Research Program of Jiangsu Province,China(No.BK20241412)the National Science Foundation for Post-doctoral Scientists of China(No.2024M754131)。
文摘The acceleration and mode transition performance are two significant performances of Adaptive Cycle Engine(ACE).However,separating the processes of acceleration and mode transition will slow down the response speed of thrust.Therefore,this paper proposes a multi-mode acceleration optimization control method that simultaneously performs ACE acceleration and mode transition.Firstly,an ACE component model with inlet flow characteristics was established,and the performance before and after mode transition were analyzed.Secondly,the principle of ACE acceleration optimization was analyzed,and the Front Variable Area Bypass Injector(FVABI)and Mode Selection Valve(MSV)were adopted in the acceleration process.Finally,based on the Sequential Quadratic Programming(SQP)algorithm,considering the degradation effects of engine components,we optimize the acceleration control plan for fuel and variable geometry mechanisms.The simulation results show that at the subsonic cruise point,the ACE multi-mode acceleration optimization control method can shorten the acceleration time from idle to middle state by 30.33%,and accelerate the thrust response speed by 33.72%.When the compressor flow rate of ACE deteriorates by 2% and the high-pressure turbine efficiency deteriorates by 4%,the adaptive acceleration control plan increases the high-pressure speed by 2.13% and thrust by about 6.82%;within the flight envelope,the acceleration time is reduced by more than 25%,and the thrust response speed is increased by more than 20%.
文摘In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial derivative term and the forward and backward Euler method to discretize the time derivative term, the explicit and implicit upwind difference schemes are obtained respectively. It is proved that the explicit upwind scheme is conditionally stable and the implicit upwind scheme is unconditionally stable. Then the convergence of the schemes is derived. Numerical examples verify the results of theoretical analysis.
文摘A novel variable geometry flame-holder(VGF) based on V-gutter was presented.The structural characteristics of the flame holder were introduced.Experimental study on drag characteristics of the VGF on un-burning and burning states was conducted in a rectangular combustion test rig.The influence of the change of gutter trailing edge width w on pressure recovery in different operating conditions was analyzed emphatically.Furthermore,drag characteristics in different trailing edge width variation modes were discussed.Results show that:(1) Narrowing w can observably raise the total pressure recovery σ but the highest σ is not obtained at minimum w.(2) The relationship of drag coefficient ψ and w in the un-burning conditions can be well expressed in a form of exponential equation(w/d>0.4).(3) Drag characteristics are not sensitive to the variation modes and speeds of w.(4) In the burning condition,σ decreases with the increasing of w basically and the course can be divided into three stages.The results and experimental data presented in this paper would enhance the phenomenological understanding of this type of VGF,and would contribute to the next experimental study and numerical calculus of this novel VGF.
基金the Ministerial Level Advanced Research Foundation (37256)
文摘To compute the matching performance of diesel engine with variable geometry turboeharger(VGT), the formerly used program is improved through adjustment of turbine mass flow rate and efficiency characteristics. The calculation result is applied to forecast the performance of J6110Z diesel engine with rotary-vaned VGT70, and to guide the improvement of engine fuel supply. The computed engine performance curve coincides with the experiment result well: the low-speed torque, fuel economy, exhaust temperature and boost pressure of the VGT engine are all improved.
基金Project supported by the National Natural Science Foundation of China(Nos.11132001,11272202,and 11472171)the Key Scientific Project of Shanghai Municipal Education Commission(No.14ZZ021)the Natural Science Foundation of Shanghai(No.14ZR1421000)
文摘Variable geometry truss manipulator (VGTM) has potential to work in the future space applications, of which a dynamic model is important to dynamic analysis and control of the system. In this paper, an approach is presented to model the dynamic equations of a VGTM by independent variables, which consists of two double-octahedral truss units and a 3-revolute-prismatic-spherical (3-RPS) parallel manipulator. In this ap- proach, the kinematic recursive relations of two adjacent bodies and geometric constrains are used to deduce the kinematic equations of the VGTM, and Jourdain's velocity varia- tion principle is adopted to establish the dynamic equations of the system. The validity of the proposed dynamic model is verified by comparison of numerical simulations with the software ADAMS. Besides, an active controller for trajectory tracking of the system is designed by the computed torque method. The effectiveness of the controller is numer- ically proved.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62105004 and 52174141)the College Student Innovation and Entrepreneurship Fund Project(Grant No.202210361053)+4 种基金Anhui Mining Machinery and Electrical Equipment Coordination Innovation Center,Anhui University of Science&Technology(Grant No.KSJD202304)the Anhui Province Digital Agricultural Engineering Technology Research Center Open Project(Grant No.AHSZNYGC-ZXKF021)the Talent Recruitment Special Fund of Anhui University of Science and Technology(Grant No.2024yjrc175)the Graduate Innovation Fund Project of Anhui University of Science and Technology(Grant Nos.2024cx2067,2024cx2107,and 2024cx2064)Seed Support Project for Postgraduate Innovation,Entrepreneurship and Practice at Anhui University of Science and Technology(Grant No.2024cxcysj084).
文摘With the development of the Internet,image encryption technology has become critical for network security.Traditional methods often suffer from issues such as insufficient chaos,low randomness in key generation,and poor encryption efficiency.To enhance performance,this paper proposes a new encryption algorithm designed to optimize parallel processing and adapt to images of varying sizes and colors.The method begins by using SHA-384 to extract the hash value of the plaintext image,which is then processed to determine the chaotic system’s initial value and block size.The image is padded and divided into blocks for further processing.A novel two-dimensional infinite collapses hyperchaotic map(2DICHM)is employed to generate the intra-block scrambling sequence,while an improved variable Joseph traversal sequence is used for inter-block scrambling.After removing the padding,3D forward and backward shift diffusions,controlled by the 2D-ICHM sequences,are applied to the scrambled image,producing the ciphertext.Simulation results demonstrate that the proposed algorithm outperforms others in terms of entropy,anti-noise resilience,correlation coefficient,robustness,and encryption efficiency.
基金supported by the Opening Foundation of National State Key Laboratory of High Temperature Gas Dynamics(No.2021KF07)。
文摘When the variable geometry hypersonic inlet is sealed with ceramic wafers,the cavity flows inside the sealing chamber can be affected by the boundary layer near the side wall.To study the influence of the boundary layer thickness near the side wall on the flow and leakage characteristics in sealing chamber,the numerical calculation of the cavity flow in the sealing chamber under different inflow boundary layer thicknesses is carried out.The results show that three-dimensional cavity flow structures are close to being asymmetric,and the entrance pressure of the leakage path can also be affected by asymmetry;with the increase of the thickness of the boundary layer,the pressure at the cavity floor and the seal entrance decreases.Finally,the existing leakage prediction model is modified according to the distribution rule of the cavity floor and the flow properties in the leakage path.
基金sponsored by the project of science and technology of CNPC(2021DJ3504)funded by Continuous research on CS (compressed sensing) seismic exploration technology (03-012021).
文摘Conventionally,the method to make up for the missing data of middle-shallow layer in the obstacle area is by variable geometry,for example,deviating physical points and adding sources and receivers.And the missing data of middle-shallow layer is evaluated according to the effective coverage of the target layer.Since the traditional method doesn't consider the actual seismic data,it is impossible to actually predict the gap of section and the imaging effect.The paper proposes the evaluation method of data-driven based variable geometry:Firstly,the obstacle avoidance design is realized according to the coordinate range and safe distance of the obstacle area;Secondly,the local similarity of each common image gather(CIG)is calculated,and the contribution of the sources and receivers to the target area is also calculated;Thirdly,according to the variable geometry design,choose the required trace to perform sorting and stacking according to the contribution of the sources and receivers in the CIG,the stack data volume of the whole work area is generated;finally,evaluate the missing data in the obstacle area by the extracted seismic stacked sections in different direction and guide the designer in the infilling plan.Meanwhile,for area with very low signal to noise ratio(SNR),the new method can be used to evaluate the imaging potential and guide the survey design.The new method has achieved very good effect in the production,and the analysis result is very consistent with the processed result of the actual seismic data.
基金sponsored by Natural Science Foundation of Henan under Grant No.222300420498.
文摘In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.Taking the element density of porousmaterials as the design variable,the volume of porousmaterials as the constraint,and the minimum sound pressure or maximum scattered sound power as the design goal,the topology optimization is carried out by solid isotropic material with penalization(SIMP)method.To get a limpid 0–1 distribution,a smoothing Heaviside-like function is proposed.To obtain the gradient value of the objective function,a sensitivity analysis method based on the adjoint variable method(AVM)is proposed.To find the optimal solution,the optimization problems are solved by the method of moving asymptotes(MMA)based on gradient information.Numerical examples verify the effectiveness of the proposed topology optimization method in the optimization process of two-dimensional acoustic problems.Furthermore,the optimal distribution of sound-absorbingmaterials is highly frequency-dependent and usually needs to be performed within a frequency band.
基金Project supported by the National Natural Science Foundation of China (Nos. 10772134 and90716007)
文摘The gas temperature within hypersonic boundary layer flow is so high that the specific heat of gas is no longer a constant but relates to temperature. How variable specific heat influences on boundary layer flow stability is worth researching. The effect of the variable specific heat on the stability of hypersonic boundary layer flows is studied and compared with the case of constant specific heat based on the linear stability theory. It is found that the variable specific heat indeed has some effects on the neutral curves of both the first-mode and the second-mode waves and on the maximum rate of growth also. Therefore, the relationship between specific heat and temperature should be considered in the study of the stability of the boundary layer.
基金Supported by the National Natural Science Foundation of China(51009003)
文摘A spatial motion mechanism was designed which could make all the nozzle vanes rotate a- round the center of ball with the same radius synchronously to realize control of the variable nozzle mixed-flow turbocharger (VN-MT). The back and abdomen of the nozzle vane was designed as arc- shaped. A variable nozzle ring perfectly combined with the mixed-flow turbine was made available. The turbine geometric model of VN-MT was established through the computational fluid dynamics (CFD). Compared with nozzleless mixed-flow turbine, the flow range of variable nozzle mixed-flow turbine was broadened tremendously while the peak turbine efficiency point was lower slightly. Flow field analysis in turbine stage showed that the energy was larger and the blade load of rotor was lower than loss of the VN-MT under designed condition the nozzleless mixed-flow turbocharger.
基金co-supported by the National Science and Technology Major Project, China (No. J2019-Ⅲ-0009-0053)the Advanced Jet Propulsion Creativity Center, China (No. HKCX2020020022)
文摘To study the change mechanism and the control of the variable cycle engine in the process of modal transition,a variable cycle engine model based on component level characteristics is established.The two-dimensional CFD technology is used to simulate the influence of mode selection valve rotation on the engine flow field,which improves the accuracy of the model.Furthermore,the constant flow control plan is proposed in the modal transition process to reduce the engine installed drag.The constant flow control plan adopts the augmentation linear quadratic regulator control method.Simulation results indicate that the control method is able to effectively control the bypass ratio and demand flow of the variable cycle engine,and make the engine transform smoothly,which ensures the stable operation of the engine in modal transition and the constant demand flow of the engine.
文摘Variable structure control (VSC) applied to atmospheric disturbance sup-pression is presented. The conditions are stipulated: the sliding mode existenee condi-tion, and invanance condition of atmospheric disturbanee in the variable structuresystem (VSS). A method of eigenstructure assignment technique for switching surfaeedesign is proposed. Based on different atmospheric disturbanee characteristics, such asrandom turbulence, discrete gust and wind shear, two kinds of control laws are derived that possess strong robustness. An example shows that this control approach isfeasible and effective.
基金This work is supported by the National Natural Science Foundation of China (Grant No. 51005011 ) and the Fundamental Research Funds for the Central Universities ( YWF-12-LGJC-001 ).
文摘Hybrid ultrahigh frequency pulse variable polarity gas tungsten arc welding (HPVP-GTAW) for 2A14-T6 high strength aluminum alloy was carried out and the effects of variable polarity frequency with constant pulse current frequency 40 kHz on weld bead geometry, microstrueture and microhardness were analyzed. Experimental results indicate that, compared to that of the conventional VP-GTAW process, the weld depth and ratio of weld depth to width are improved significantly by the variable polarity frequency in the HPVP-GTAW process, which the ratio of weld depth to width is improved by 36% at equal variable polarity frequency of 100 Hz, and improved by 55% with that of 200 Hz. Weld microstructure and microhardness distribution are changed obviously with the increase of variable polarity frequency. In the conventional VP-GTA W process, the grains in weld central zone are coarser, and the microhardness in weld central zone and fusion zone is about 95 HV and the lowest 82 HV, respectively. The microhardness is enhanced to a certain extent both in the weld central zone and fusion zone with the variation of variable polarity frequency in the HPVP-GTAW process due to the refinement and uniformity of weld microstructure. With the variable polarity frequency of 600 Hz, the microhardness in weld central zone and fusion zone reaches nearly 110 HV and 97 HV, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203057 and 51305066)
文摘This paper is concerned with further relaxations of the stability analysis of nonlinear Roesser-type two-dimensional (2D) systems in the Takagi-Sugeno fuzzy form. To achieve the goal, a novel slack matrix variable technique, which is homogenous polynomially parameter-dependent on the normalized fuzzy weighting functions with arbitrary degree, is developed and the algebraic properties of the normalized fuzzy weighting functions are collected into a set of augmented matrices. Consequently, more information about the normalized fuzzy weighting functions is involved and the relaxation quality of the stability analysis is significantly improved. Moreover, the obtained result is formulated in the form of linear matrix inequalities, which can be easily solved via standard numerical software. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed result.
文摘In this article, we discuss the two-dimensional stagnation-point flow of carbon nanotubes towards a stretching sheet with water as the base fluid under the influence temperature dependent viscosity. Similarity transformations are used to simplify the governing boundary layer equations for nanofluid. This is the first article on the stagnation point flow of CNTs over a stretching sheet with variable viscosity. A well known Reynold's model of viscosity is used. Single wall CNTs are used with water as a base fluid. The resulting nonlinear coupled equations with the relevant boundary conditions are solved numerically using shooting method. The influence of the flow parameters on the dimensionless velocity, temperature, skin friction, and Nusselt numbers are explored and presented in forms of graphs and interpreted physically.
基金Supported by the National Natural Science Foundation of China(No.52265013)Natural Science Foundation of Gansu Province(No.20JR5RA457).
文摘The robotic drilling always generates the axial vibration along the drill bit and the torsional vibration around the drill bit,which will adversely affect the drilling precision.A vibration control mechanism fixed between the end-effector and the robot is proposed,which can suppress the axial and torsional vibrations based on the principle of vibro-impact(VI)damping.The energy dissipation of the system by vibro-impact damping is analyzed.Then,the influence of the structure parameters on the vibration attenuation effect is studied,and a semi-active vibration control method of variable collision clearance is presented.The simulation results show that the control method has effective vibration control performance.
基金supported by the National Natural Science Foundation of China(Nos.41807264,41972289)the Engineering Research Center of Rock-Soil Drilling&Excavation and Protection,Ministry of Education(No.202102)+3 种基金the Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education(No.2020KDZ01)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Nos.CUG170686,CUGQY1932)the China Scholarship Council(No.201406410032)the Science and Technology Research Project of Education Department of Hubei Province(Nos.B2019452,B2024509)。
文摘A DFN-DEC(discrete fracture network-distinct element code)method based on the MATLAB platform is developed to generate heterogeneous DFN.Subsequently,the effects of the spatial variability(the meanμand the standard deviationσ)of the geometric properties(i.e.,the fracture dip D,the trace length T and the spacing S)of both the gently-dipping(denoted with 1)and the steeply-dipping(denoted with 2)fractures on the stability of granite slope are investigated.Results indicate that the proposed DFN-DEC method is robust,generating fracture networks that resemble reality.In addition,the spatial variability of fracture geometry,influencing the structure of granite slope,plays a significant role in slope stability.The mean stability of the slope decreases with the increase ofμ_(D_(1))(the mean of gently-dipping fracture dip),σ_(D_(2))(the mean of steeply-dipping fracture dip),μ_(T_(1))(the mean of gently-dipping fracture trace length),μ_(T_(2))(the mean of steeply-dipping fracture trace length),σ_(T_(1))(the standard deviation of gently-dipping fracture trace length),σ_(T_(2))(the standard deviation of steeply-dipping fracture trace length),and the decrease ofσ_(D_(1))(the standard deviation of gently-dipping fracture dip),μ_(D_(2))(the standard deviation of steeply-dipping fracture dip),μ_(S_(1))(the mean of gently-dipping fracture spacing)andμ_(S_(2))(the mean of steeply-dipping fracture spacing).Among them,μ_(T_(1)),μ_(D_(1))andμ_(S_(1))have the major impact.When the fracture spacing is large,the variability in the fracture geometry becomes less relevant to slope stability.When within some ranges of the fracture spacing,the spatial varying of dips can increase the slope stability by forming an interlaced structure.The results also show that the effects of the variability of trace length on slope stability depend on the variability of dip.These findings highlight the importance of spatial variability in the geometry of fractures to rock slope stability analysis.
基金国家攀登计划,国家自然科学基金,Doctoral Programme Foundation of Institution of Higher Education of China
文摘Based on the observation that the moduli of a link variable on a cyclic group modify Connes' distance on this group, we construct several action functionals for this link variable within the framework of noncommutative geometry. After solving the equations of motion, we find that one type of action gives nontrivial vacuum solution for gravity on this cyclic group in a broad range of coupling constants and that such a solution can be expressed with Chebyshev's polynomials.