期刊文献+
共找到433,175篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of Parallel-Plate Geometry on Mode Transition Behavior in Argon Microplasmas: Two-Dimensional Simulation
1
作者 Xiang-Mei Liu Yuan-Hong Song +1 位作者 Wei Jiang Wen-Zhu Jia 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第4期66-69,共4页
A two-dimensional self-consistent fluid model is employed to investigate radio-frequency process parameters on the plasma properties in Ar microdischarges. The neutral gas density and temperature balance equations are... A two-dimensional self-consistent fluid model is employed to investigate radio-frequency process parameters on the plasma properties in Ar microdischarges. The neutral gas density and temperature balance equations are taken into account. We mainly investigate the effect of the electrode gap on the spatial distribution of the electron density and electron temperature profiles, due to a mode transition from the regime(secondary electrons emission is responsible for the significant ionization) to the regime(sheath oscillations and bulk electrons are responsible for sustaining discharge) induced by a sudden decrease of electron density and electron temperature.The pressure, radio-frequency sources frequency and voltage effects on the electron density are also elaborately investigated. 展开更多
关键词 two-dimensional simulation
原文传递
Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations 被引量:1
2
作者 姜帅 贾锐 +4 位作者 陶科 侯彩霞 孙恒超 于志泳 李勇滔 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期481-490,共10页
Interdigitated back contact(IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrys... Interdigitated back contact(IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO_2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO_2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO_2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm.Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance. 展开更多
关键词 polycrystalline silicon SIO2 solar cell PASSIVATION simulation IBC
原文传递
The Two-Dimensional Simulation Study of Flow Pattern near Guiding Wall of Oxidation Ditch 被引量:1
3
作者 Wei Chen Mingming Xu 《Journal of Water Resource and Protection》 2010年第9期814-817,共4页
Guiding wall is used to change the flow of the oxidation ditch as supporting structure, it widely uses eccentric setting, and its setting parameters are mostly empirical judgments. According to fluent software that si... Guiding wall is used to change the flow of the oxidation ditch as supporting structure, it widely uses eccentric setting, and its setting parameters are mostly empirical judgments. According to fluent software that simulates the velocity distribution of the guiding wall, to discuss the settings of the guiding wall in different length of downstream extension, eccentricity and guiding wall radius, so to work out its optimized settings. 展开更多
关键词 GUIDING WALL the Length of DOWNSTREAM EXTENSION ECCENTRICITY simulation
暂未订购
Two-Dimensional Simulation of a Dual Frequency Sheath Near an Electrode with a Cylindrical Hole
4
作者 戴忠玲 刘传生 王友年 《Plasma Science and Technology》 SCIE EI CAS CSCD 2009年第3期283-289,共7页
The characteristics of a collisional dual frequency (DF) sheath near an electrode with a cylindrical hole are studied by utilizing a two-dimensional model which includes time-dependent fluid equations coupled with t... The characteristics of a collisional dual frequency (DF) sheath near an electrode with a cylindrical hole are studied by utilizing a two-dimensional model which includes time-dependent fluid equations coupled with the Poisson equation and an equivalent-circuit model, The effects of the gas pressure on the two-dimensional profiles of the potential, electric field, ion fluid velocity in a DF sheath are investigated. The simulation results show that the cylindrical hole on the electrode has a significant influence on the DF sheath structure, i.e., the sheath profile tends to wrap around the contour of the hole feature. Moreover, it is shown that the structure of the DF sheath is different from that of a single frequency (SF) sheath because the profile of the DF sheath is modulated by the combination of the high and low frequency sources. In addition the characteristics of the DF sheath are obviously affected by the collisional effects in the DF sheath. 展开更多
关键词 dual frequency sheath two-dimensional numerical simulation
在线阅读 下载PDF
Two-Dimensional Simulation of Hydrogen Direct-Current Discharge Plasma
5
作者 刘竞业 张明 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第8期693-698,共6页
A two-dimensional model of a weakly-ionized hydrogen direct-current (DC) discharge at low pressure is simulated. In the model, the metal electron overflow and secondary electron emission coefficient at the cathode s... A two-dimensional model of a weakly-ionized hydrogen direct-current (DC) discharge at low pressure is simulated. In the model, the metal electron overflow and secondary electron emission coefficient at the cathode spot axe introduced to represent the relationship between the electron and ion density, and the electron energy distribution function is expressed by kinetic theory. The electron current density and reaction constant reasonably set on the boundary are discussed. It is determined that 11 collision reactions play a major role in low pressure and weakly ionized hydrogen discharge. On this basis, the relationship between mobility, electrode spacing, and breakdown voltage is verified. Good agreement is achieved between the simulation curve and Paschen curve. 展开更多
关键词 HYDROGEN electrode spacing MOBILITY ionizing COLLISION simulation
在线阅读 下载PDF
Two-dimensional Simulation for Hydrogen/Air Combustion in a Monolith Reactor 被引量:1
6
作者 洪若瑜 丁剑敏 Vlachos D G 《过程工程学报》 EI CAS CSCD 北大核心 2005年第1期10-17,共8页
Recent studies on hydrogen combustion were reviewed briefly. The laminar flow and combustion of premixed hydrogen/air mixture in a cylindrical channel of a monolith reactor with and without catalytic wall was numerica... Recent studies on hydrogen combustion were reviewed briefly. The laminar flow and combustion of premixed hydrogen/air mixture in a cylindrical channel of a monolith reactor with and without catalytic wall was numerically modeled by solving two-dimensional (2-D) Navier-Stokes (N-S) equations, energy equation, and species equations. Eight gas species and twenty reversible gas reactions were considered. The control volume technique and the SIMPLE algorithm were used to solve the partial differential equations. The streamlines of the flow field, temperature contours, the entrance length, and the concentration fields were computed. It is found that the entrance zone plays an important role on flow and temperature as well as species distribution. Therefore, the flow cannot be assumed either as fully developed or as plug flow. There is a small but strong thermal expansion zone between the wall and the entrance. Both diffusion and convection affect the heat and mass transfer processes in the expansion zone. Thus the equations of momentum, energy and species conservations should be used to describe hydrogen/air combustion in the monolith reactor. The hot-spot location and concentration field of the homogeneous combustion is strongly influenced by the inlet velocity and temperature, and the equivalence ratio. The catalytic combustion of premixed hydrogen/air mixture over platinum catalyst-coated wall in a cylindrical channel was also simulated. 展开更多
关键词 蜂窝状催化剂 二维模拟 空气燃烧 反应器 氢气
在线阅读 下载PDF
Quantum Simulation of Two-Dimensional U(1) Gauge Theory in Rydberg and Rydberg-Dressed Atom Arrays
7
作者 Zheng Zhou Zheng Yan +2 位作者 Changle Liu Yan Chen Xue-Feng Zhang 《Chinese Physics Letters》 2025年第5期43-61,共19页
Simulating U(1) quantum gauge theories with spatial dimensions greater than one is of great physical significance. Here we propose a simple realization of U(1) gauge theory with Rydberg and Rydberg-dressed atom arrays... Simulating U(1) quantum gauge theories with spatial dimensions greater than one is of great physical significance. Here we propose a simple realization of U(1) gauge theory with Rydberg and Rydberg-dressed atom arrays. Within the experimentally accessible range, we find that the various aspects of the U(1) gauge theory can be well simulated, such as the emergence of topological sectors, incommensurability, and the Rokhsar–Kivelson point that hosts deconfined charge excitations and degenerate topological sectors. Our proposal is promising to implement experimentally and exhibits pronounced quantum dynamics. 展开更多
关键词 emergence topological sectors degenerate topological secto topological sectors U gauge theory Rydberg dressed atoms deconfined charge excitations rokhsar kivelson point quantum simulation
原文传递
Numerical Simulation of Two-Dimensional Shock/Boundary-Layer Interaction between a Rocket and Booster 被引量:1
8
作者 孙为民 夏南 谭发生 《Advances in Manufacturing》 SCIE CAS 2000年第S1期25-28,共4页
A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume m... A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume method in a unstructured body-fitted curvilinear coordinates have been used. The results indicate that the separation and the reattachment occur in the Boundary-Layer of the main rocket because of the shock interaction. The shape of the booster nose effects the flow field obviously. In the case of the hemisphere booster nose the pressure has complicate distributions and the separation is very clear. The distance between the booster and main rocket has the evident effect on the flow field. If the distance is smaller the pressure coefficient is bigger the separation zone even the separation bubble occurs. 展开更多
关键词 numerical simulation shock/boundary-layer interaction AERODYNAMICS
在线阅读 下载PDF
Two-Dimensional Static Numerical Modeling and Simulation of AlGaN/GaN HEMT
9
作者 薛丽君 夏洋 +6 位作者 刘明 王燕 邵雪 鲁净 马杰 谢常青 余志平 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第2期298-303,共6页
AIGaN/GaN HEMTs are investigated by numerical simulation from the self-consistent solution of Schr6dinger-Poisson-hydrodynamic (HD) systems. The influences of polarization charge and quantum effects are considered i... AIGaN/GaN HEMTs are investigated by numerical simulation from the self-consistent solution of Schr6dinger-Poisson-hydrodynamic (HD) systems. The influences of polarization charge and quantum effects are considered in this model. Then the two-dimensional conduction band and electron distribution, electron temperature characteristics, Id versus Vd and Id versus Vg, transfer characteristics and transconductance curves are obtained. Corresponding analysis and discussion based on the simulation results are subsequently given. 展开更多
关键词 AIGaN/GaN HEMT 2D modeling and simulation polarization charges quantum effects
在线阅读 下载PDF
Two-Dimensional MXene-Based Advanced Sensors for Neuromorphic Computing Intelligent Application
10
作者 Lin Lu Bo Sun +2 位作者 Zheng Wang Jialin Meng Tianyu Wang 《Nano-Micro Letters》 2026年第2期664-691,共28页
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el... As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies. 展开更多
关键词 two-dimensional MXenes SENSOR Neuromorphic computing Multimodal intelligent system Wearable electronics
在线阅读 下载PDF
Bridging the gap:A scoping review of wet and dry lab simulation training in orthopaedic surgical education
11
作者 Sari Wathiq Al Hajaj Chandramohan Ravichandran +4 位作者 Karthic Swaminathan Sanjeevi Bharadwaj Vishnu V Nair Hussein Shoukry Sriram Srinivasan 《World Journal of Orthopedics》 2026年第1期132-139,共8页
BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints... BACKGROUND Orthopaedic surgical education has traditionally depended on the apprenticeship model of“see one,do one,teach one”.However,reduced operative exposure,stricter work-hour regulations,medicolegal constraints,and patient safety concerns have constrained its practicality.Simulation-based training has become a reliable,safe,and cost-efficient alternative.Dry lab techniques,especially virtual and augmented reality,make up 78%of current dry lab research,whereas wet labs still set the standard for anatomical realism.AIM To evaluate the effectiveness,limitations,and future directions of wet and dry lab simulation in orthopaedic training.METHODS A scoping review was carried out across four databases-PubMed,Cochrane Library,Web of Science,and EBSCOhost-up to 2025.Medical Subject Headings included:"Orthopaedic Education","Wet Lab","Dry Lab","Simulation Training","Virtual Reality",and"Surgical Procedure".Eligible studies focused on orthopaedic or spinal surgical education,employed wet or dry lab techniques,and assessed training effectiveness.Exclusion criteria consisted of non-English publications,abstracts only,non-orthopaedic research,and studies unrelated to simulation.Two reviewers independently screened titles,abstracts,and full texts,resolving discrepancies with a third reviewer.RESULTS From 1851 records,101 studies met inclusion:78 on dry labs,7 on wet labs,4 on both.Virtual reality(VR)simulations were most common,with AI increasingly used for feedback and assessment.Cadaveric training remains the gold standard for accuracy and tactile feedback,while dry labs-especially VR-offer scalability,lower cost(40%-60%savings in five studies),and accessibility for novices.Senior residents prefer wet labs for complex tasks;juniors favour dry labs for basics.Challenges include limited transferability data,lack of standard outcome metrics,and ethical concerns about cadaver use and AI assessment.CONCLUSION Wet and dry labs each have unique strengths in orthopaedic training.A hybrid approach combining both,supported by standardised assessments and outcome studies,is most effective.Future efforts should aim for uniform reporting,integrating new technologies,and policy support for hybrid curricula to enhance skills and patient care. 展开更多
关键词 Orthopaedic education Wet lab Dry lab simulation training Virtual reality Surgical procedure
在线阅读 下载PDF
Typhoon Kompasu(2118)simulation with planetary boundary layer and cloud physics parameterization improvements
12
作者 Xiaowei Tan Zhiqiu Gao Yubin Li 《Atmospheric and Oceanic Science Letters》 2026年第1期41-46,共6页
This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the pred... This study introduces a new ocean surface friction velocity scheme and a modified Thompson cloud microphysics parameterization scheme into the CMA-TYM model.The impact of these two parameterization schemes on the prediction of the movement track and intensity of Typhoon Kompasu in 2021 is examined.Additionally,the possible reasons for their effects on tropical cyclone(TC)intensity prediction are analyzed.Statistical results show that both parameterization schemes improve the predictions of Typhoon Kompasu’s track and intensity.The influence on track prediction becomes evident after 60 h of model integration,while the significant positive impact on intensity prediction is observed after 66 h.Further analysis reveals that these two schemes affect the timing and magnitude of extreme TC intensity values by influencing the evolution of the TC’s warm-core structure. 展开更多
关键词 Tropical cyclone Numerical simulation Planetary boundary layer parameterization SCHEME Cloud physics scheme
在线阅读 下载PDF
Numerical Simulation of the Welding Deformation of Marine Thin Plates Based on a Temperature Gradient-thermal Strain Method
13
作者 Lin Wang Yugang Miao +3 位作者 Zhenjian Zhuo Chunxiang Lin Benshun Zhang Duanfeng Han 《哈尔滨工程大学学报(英文版)》 2026年第1期122-135,共14页
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t... Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates. 展开更多
关键词 Marine thin plate Welding deformation Numerical simulation Temperature gradient-thermal strain method Shell element
在线阅读 下载PDF
Simulation of two-dimensional interior ballistics model of solid propellant electrothermal-chem ical launch with discharge rod plasma generator 被引量:6
14
作者 Yan-jie Ni Yong Jin +3 位作者 Niankai Cheng Chun-xia Yang Hai-yuan Li Bao-ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第4期249-256,共8页
Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-d... Instead of the capillary plasma generator(CPG),a discharge rod plasma generator(DRPG)is used in the30 mm electrothermal-chemical(ETC)gun to improve the ignition uniformity of the solid propellant.An axisymmetric two-dimensional interior ballistics model of the solid propellant ETC gun(2D-IB-SPETCG)is presented to describe the process of the ETC launch.Both calculated pressure and projectile muzzle velocity accord well with the experimental results.The feasibility of the 2D-IB-SPETCG model is proved.Depending on the experimental data and initial parameters,detailed distribution of the ballistics parameters can be simulated.With the distribution of pressure and temperature of the gas phase and the propellant,the influence of plasma during the ignition process can be analyzed.Because of the radial flowing plasma,the propellant in the area of the DRPG is ignited within 0.01 ms,while all propellant in the chamber is ignited within 0.09 ms.The radial ignition delay time is much less than the axial delay time.During the ignition process,the radial pressure difference is less than 5 MPa at the place 0.025 m away from the breech.The radial ignition uniformity is proved.The temperature of the gas increases from several thousand K(conventional ignition)to several ten thousand K(plasma ignition).Compare the distribution of the density and temperature of the gas,we know that low density and high temperature gas appears near the exits of the DRPG,while high density and low temperature gas appears at the wall near the breech.The simulation of the 2D-IB-SPETCG model is an effective way to investigate the interior ballistics process of the ETC launch.The 2D-IB-SPETC model can be used for prediction and improvement of experiments. 展开更多
关键词 Electrothermal-chemical LAUNCH Interior BALLISTICS simulation Two-phase flow two-dimensional model
在线阅读 下载PDF
Carbon Footprint and Economic Analysis of LNG-fueled Fishing Vessel Using Real Engine Performance Simulation
15
作者 Momir Sjerić Maja Perčić +1 位作者 Ivana Jovanović Nikola Vladimir 《哈尔滨工程大学学报(英文版)》 2026年第1期259-276,共18页
Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This st... Analysis of the environmental and economic performance of fishing vessels has received limited attention compared with other ship types despite their notable contribution to global greenhouse gas(GHG)emissions.This study evaluates the carbon footprint(CF)and economic viability of a liquefied natural gas(LNG)-fueled fishing vessel,using real engine operation simulations to provide precise and dynamic evaluation of fuel consumption and GHG emissions.Operational profiles are obtained through the utilization of onboard monitoring systems,whereas engine performance is simulated using the 1D/0D AVL Boost^(TM)model.Life cycle assessment(LCA)is conducted to quantify the environmental impact,whereas life cycle cost assessment(LCCA)is performed to analyze the profitability of LNG as an alternative fuel.The potential impact of the future fuel price uncertainties is addressed using Monte Carlo simulations.The LCA findings indicate that LNG has the potential to reduce the CF of the vessel by 14%to 16%,in comparison to a diesel power system configuration that serves as the baseline scenario.The LCCA results further indicate that the total cost of an LNG-powered ship is lower by 9.5%-13.8%,depending on the share of LNG and pilot fuels.This finding highlights the potential of LNG to produce considerable environmental benefits while addressing economic challenges under diverse operational and fuel price conditions. 展开更多
关键词 1D/0D simulation Carbon footprint Fishing vessels Life cycle assessment Life cycle cost assessment Liquefied natural gas
在线阅读 下载PDF
Application of numerical simulation on optimum design of two-dimensional sedimentation tanks in the wastewater treatment plant 被引量:4
16
作者 ZENG Guang-ming,ZHANG Shuo-fu, QIN Xiao-sheng, HUANG Guo-he, LI Jian-bing (Department of Environmental Science and Engineering of Hunan University, Changsha 410082, China.) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2003年第3期346-350,共5页
The paper establishes the relationship between the settling efficiency and the sizes of the sedimentation tank through the process of numerical simulation, which is taken as one of the constraints to set up a simple o... The paper establishes the relationship between the settling efficiency and the sizes of the sedimentation tank through the process of numerical simulation, which is taken as one of the constraints to set up a simple optimum designing model of sedimentation tank. The feasibility and advantages of this model based on numerical calculation are verified through the application of practical case. 展开更多
关键词 numerical simulation sedimentation tank optimum design
在线阅读 下载PDF
Simultaneous transverse and spanwise OH*-chemiluminescence imaging of lean blowoff events in two-dimensional bluff-body stabilized premixed flames
17
作者 Xiaoyang WANG Chen FU +7 位作者 Kunpeng LIU Meng WANG Jie LI Juan YU Yingwen YAN Jinghua LI Xiaonan GE Yi GAO 《Chinese Journal of Aeronautics》 2025年第5期109-120,共12页
This study systematically investigated the Lean Blowoff(LBO)limits of Two-Dimensional(2D)bluff-body stabilized premixed flames by varying the air mass flow rate,inflowtemperature,bluff-body width,and fuel type.The dat... This study systematically investigated the Lean Blowoff(LBO)limits of Two-Dimensional(2D)bluff-body stabilized premixed flames by varying the air mass flow rate,inflowtemperature,bluff-body width,and fuel type.The data of LBO limits were analyzed and fittedaccording to the Damk?hler(Da)and Reynolds(Re)numbers,and the fitting accuracy of LBO datawas highly improved by a modified characteristic length simultaneously considering the length andwidth of the bluff body,which is usually neglected in the previous studies.Moreover,to our knowl-edge,this is the first time that simultaneous transverse and spanwise OH*-Chemiluminescence(CL)imaging has been performed to examine the three-dimensional behavior of the LBO process.The flame stability is heavily affected by the mass and energy transport between reactants andproducts in both directions,potentially leading to the flame pinch-off.The intensity and positionof the upstream flame after pinch-off are decisive to the occurrence of the following LBO.Whenthe upstream flame after pinch-off is weak and close to the bluff body,it cannot re-ignite thedownstream unburnt gas.Subsequently,a permanent downstream extinction occurs,and theLBO takes place.The results help understand the LBO mechanism of 2D bluff-body stabilizedflames. 展开更多
关键词 Lean blowoff two-dimensional bluff-body stabilized flame OH*-chemiluminescence simultaneous transverse and spanwise imaging Combustion
原文传递
CYCLIC HARDENING BEHAVIOR OF POLYCRYSTALS WITH PENETRABLE GRAIN BOUNDARIES:TWO-DIMENSIONAL DISCRETE DISLOCATION DYNAMICS SIMULATION 被引量:3
18
作者 Chuantao Hou Zhenhuan Li Minsheng Huang Chaojun Ouyang 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第4期295-306,共12页
A two-dimensional discrete dislocation dynamics (DDD) technology by Giessen and Needleman (1995), which has been extended by integrating a dislocation-grain boundary interaction model, is used to computationally a... A two-dimensional discrete dislocation dynamics (DDD) technology by Giessen and Needleman (1995), which has been extended by integrating a dislocation-grain boundary interaction model, is used to computationally analyze the micro-cyclic plastic response of polycrystals containing micron-sized grains, with special attentions to significant influence of dislocationpenetrable grain boundaries (GBs) on the micro-plastic cyclic responses of polycrystals and underlying dislocation mechanism. Toward this end, a typical polycrystalline rectangular specimen under simple tension-compression loading is considered. Results show that, with the increase of cycle accumulative strain, continual dislocation accumulation and enhanced dislocation-dislocation interactions induce the cyclic hardening behavior; however, when a dynamic balance among dislocation nucleation, penetration through GB and dislocation annihilation is approximately established, cyclic stress gradually tends to saturate. In addition, other factors, including the grain size, cyclic strain amplitude and its history, also have considerable influences on the cyclic hardening and saturation. 展开更多
关键词 discrete dislocation dynamics simulation cyclic micro-plasticity size effect POLYCRYSTALS grain boundary penetrability
在线阅读 下载PDF
Molecular simulation of penetration separation for ethanol/water mixtures using two-dimensional nanoweb graphynes 被引量:1
19
作者 Wei Zhang Zhijun Xu Xiaoning Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第2期286-292,共7页
Graphyne is expected to be a new-class of highly-efficient sieving membranes due to its controllable uniform pore structure and ultrathin single-atom thickness. Herein, we computationally investigate the permeation pe... Graphyne is expected to be a new-class of highly-efficient sieving membranes due to its controllable uniform pore structure and ultrathin single-atom thickness. Herein, we computationally investigate the permeation performance of liquid ethanol–water mixtures across polyporous two-dimensional γ-graphyne sheets. It was found that, in the mixture, ethanol with larger molecular diameter permeates faster through the graphyne pores than water. The simulations demonstrate that pristine graphynes could act as highly-efficient ethanol-permselective membranes for separation of ethanol–water mixtures, with ethanol permeability remarkably higher than conventional membranes. This separation mechanism is distinctly different from the molecular-size dependent sieving process. The stronger hydrophobic interfacial affinity between graphyne and ethanol makes ethanol molecules preferentially adsorb on graphyne surface and selectively penetrate through graphyne pores. This penetration mechanism provides new understanding of molecular transport through atomically thick two-dimensional nanoporous membranes and this work is expected to be valuable in the potential development of highly-efficient membranes for liquid-phase mixture separation. 展开更多
关键词 Graphynes MEMBRANE SEPARATION ETHANOL/WATER MOLECULAR simulation
在线阅读 下载PDF
TWO-DIMENSIONAL SIMULATION OF FLOWS IN PLANE-WALL DIFFUSERS 被引量:1
20
作者 Yuan Ming-shun Department of Hydraulic Engineering,Tsinghua University,Beijing 100084,P.R.China 《Journal of Hydrodynamics》 SCIE EI CSCD 1992年第4期43-53,共11页
A numerical model has been developed for computing turbulent flow in plane-wall diffuser.The model solves the weakly compressible flow equations with the application of the Smagorinsky's subgrid-scale turbulence m... A numerical model has been developed for computing turbulent flow in plane-wall diffuser.The model solves the weakly compressible flow equations with the application of the Smagorinsky's subgrid-scale turbulence model and the boundary conditions of partial slip and no slip at the solid wall.Application examples include two-dimensional calculations of unstalled and stalled flows in diffusers of small diverging angle,as well as transitory stall flow in a symmetric diffuser of 16°total angle.For the unstalled and stalled flows,the calculated pressure recovery and velocity profile are compared with experimental data.For the transitory stall flow,the com- putational result shows the unsteady flow features including the vortex shedding and stall washout phenomena that have been experimentally observed. 展开更多
关键词 DIFFUSER turbulent flow separation transitory stall Large-eddy simulation
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部