Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit...Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.展开更多
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t...Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.展开更多
A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume m...A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume method in a unstructured body-fitted curvilinear coordinates have been used. The results indicate that the separation and the reattachment occur in the Boundary-Layer of the main rocket because of the shock interaction. The shape of the booster nose effects the flow field obviously. In the case of the hemisphere booster nose the pressure has complicate distributions and the separation is very clear. The distance between the booster and main rocket has the evident effect on the flow field. If the distance is smaller the pressure coefficient is bigger the separation zone even the separation bubble occurs.展开更多
The paper establishes the relationship between the settling efficiency and the sizes of the sedimentation tank through the process of numerical simulation, which is taken as one of the constraints to set up a simple o...The paper establishes the relationship between the settling efficiency and the sizes of the sedimentation tank through the process of numerical simulation, which is taken as one of the constraints to set up a simple optimum designing model of sedimentation tank. The feasibility and advantages of this model based on numerical calculation are verified through the application of practical case.展开更多
The breakup of drop covered with vapor film is numerically simulated. The moving particle semi-implicit method is used to solve the 2-dimensional unsteady Navier-Stokes equations for drop, vapor and ambient fluid. The...The breakup of drop covered with vapor film is numerically simulated. The moving particle semi-implicit method is used to solve the 2-dimensional unsteady Navier-Stokes equations for drop, vapor and ambient fluid. The results show that vapor film suppresses the drop breakup and hence the critical Weber number increases with the increasing thickness of vapor film. The breakup process can be divided into two stages. The drop deformation and breakup mainly occur in the later stage. Three breakup mechanisms are unveiled, which are almost the same as that of drop breakup without vapor film except for the stronger Rayleigh-Taylor instability for drop with vapor film. Our simulation results are comparable with the previous experiments.展开更多
Numerical simulations of flow in the melt(CdZnTe) with different conditions are conducted using the finite-difference method.When the top surface of the melt is solid wall under microgravity condition,the thermocapill...Numerical simulations of flow in the melt(CdZnTe) with different conditions are conducted using the finite-difference method.When the top surface of the melt is solid wall under microgravity condition,the thermocapillary convection is caused in the melt by the surface tension gradient on the free surface.As the Marangoni number is small,the flow is steady thermocapillary convection.As the Marangoni number exceeds the critical value,the steady flow transits into unstable thermocapillary convection.When the top surface of the melt is free surface under microgravity,two roll cells are observed in the melt,which are driven by both the surface tension gradients on the upper and lower free surfaces.When the top surface of the melt is free surface under gravity condition,the effect of the buoyancy on the flow is little as the Marangoni number is small.With the Marangoni number increasing,the effect of the buoyancy increases,which makes the upper roll cell weaken and the lower roll cell strengthen.展开更多
Loess soils are widely distributed worldwide and typical in northwest China,and excessive agricultural irrigation has caused landslides in the area,specifically in the Heifangtai loess region in Lanzhou,Gansu,China.Ge...Loess soils are widely distributed worldwide and typical in northwest China,and excessive agricultural irrigation has caused landslides in the area,specifically in the Heifangtai loess region in Lanzhou,Gansu,China.Geophysical exploration is an essential method in landslide engineering geological surveys,and geological surveying,drilling,geophysical prospecting,monitoring,and other methods are used for performing engineering geological evaluation and obtaining comprehensive basic data for landslide protection design and construction.The theoretical feasibility of using geophysical methods in loess landslide detection is essential.On the basis of the shallow geological structure of the Heifangtai landslide region in Lanzhou,Gansu,China,a typical geoelectric model of the magnetotelluric method was established,and the loess landslide area was modeled through a two-dimensional finite element method,forward numerical simulation,and engineering geological analysis.The distribution characteristics of the magnetotelluric field were determined.This is a typical application of the geological process analysis method in geophysical exploration.This study provides the typical stratigraphic structure and electrical characteristics of different groundwater distributions in Heifangtai,Gansu,China,verifies the accuracy of forward modeling and calculation results,and provides a detailed theoretical basis for landslide detection through magnetotelluric methods.Through the numerical simulation of the forward modeling of the Heifangtai landslide region in Lanzhou,Gansu,China,this study can provide a detailed geophysical basis for landslide investigation,corroborate results of geological investigation and landslide design,and facilitate the sustainable development of agriculture in Heifangtai.展开更多
The numerical simulation using the multiple relaxation time lattice Boltzmann method (MRT-LBM) is carried out for the purpose of investigating the two-dimensional flow around three circular cylinders. Among these th...The numerical simulation using the multiple relaxation time lattice Boltzmann method (MRT-LBM) is carried out for the purpose of investigating the two-dimensional flow around three circular cylinders. Among these three circular cylinders, one of the three cylinders on which a forced in-line vibrating is used to do this research and attempt to find out the effects of the moving cylinder and the other two rigid cylinders on the wake characteristics and vortex formation. As a benchmark problem to discuss the problem of lift coefficient r.m.s for these cylinders with spacing ratios T/ D between other rigid side-by-side cylinders, and the calculation is carried out with two compared cases at Reynolds number of 100, two of the cylinders are rigid and the other one is an in-line vibrated cylinder lying downstream, in addition, forced vibrating amplitude and frequency are A/D = 0.5 and fv= 0.4 (where A is the forced amplitude, D is the cylinder diameter, and fv stands for the vibrating frequency, respectively). The calculated results not only indicate that the spacing ratios T/D (T is the center-to-center spacing between the two upstream cylinders) have influence on the wake patterns and the formation of vortex shedding, but also analyze the lift coefficient r.m.s for the three cylinders with the spacing ratios S/D (where S is the center-to-center spacing between the center of upstream two side-by-side cylinders and downstream cylinder).展开更多
This study deals with the general numerical model to simulate the two-dimensional tidal flow, flooding wave (long wave) and shallow water waves (short wave). The foundational model is based on nonlinear Boussinesq equ...This study deals with the general numerical model to simulate the two-dimensional tidal flow, flooding wave (long wave) and shallow water waves (short wave). The foundational model is based on nonlinear Boussinesq equations. Numerical method for modelling the short waves is investigated in detail. The forces, such as Coriolis forces, wind stress, atmosphere and bottom friction, are considered. A two-dimensional implicit difference scheme of Boussinesq equations is proposed. The low-reflection outflow open boundary is suggested. By means of this model,both velocity fields of circulation current in a channel with step expansion and the wave diffraction behind a semi-infinite breakwater are computed, and the results are satisfactory.展开更多
The mechanism and the course of two_dimensional nonlinear dynamic system of interspecific interaction were dealt with systematically. By extending the Lotka_Volterra model from the viewpoint of biomechanics, it develo...The mechanism and the course of two_dimensional nonlinear dynamic system of interspecific interaction were dealt with systematically. By extending the Lotka_Volterra model from the viewpoint of biomechanics, it developed new models of two_dimensional nonlinear autonomous and nonautonomous dynamic systems, with its equilibrium point's stability and the existence and stability of its periodical solutions analyzed, and did numerical simulation experiments on its dynamics course. The results show that efficiency of interaction between two populations, time_varying effort, and change direction of action coefficient and reaction coefficient have important influences on the stability of dynamic system, that too large or too small interspecific interaction efficiency and contrary change direction of action coefficient and reaction coefficient may result in the nonstability of the system, and thus it is difficult for two populations to coexist, and that time_varying active force contributes to system stability.展开更多
Numerical simulation of a two-dimensional nonlinear sloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liqu...Numerical simulation of a two-dimensional nonlinear sloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.展开更多
Hydrogen displays the potential to partially replace pulverized coal injection(PCI)in the blast furnace,and it can reduce CO_(2)emissions.In this paper,a three-dimensional mathematical model of hydrogen and pulverized...Hydrogen displays the potential to partially replace pulverized coal injection(PCI)in the blast furnace,and it can reduce CO_(2)emissions.In this paper,a three-dimensional mathematical model of hydrogen and pulverized coal co-injection in blast furnace tuyere was established through numerical simulation,and the effect of hydrogen injection and oxygen enrichment interaction on pulverized coal combustion and raceway smelting was investigated.The simulation results indicate that when the coal injection rate decreased from 36 to 30t/h and the hydrogen injection increased from 0 to 3600 m^(3)/h,the CO_(2)emissions decreased from 1860 to 1551 kg/t,which represents a16.6%reduction,and the pulverized coal burnout decreased from 70.1%to 63.7%.The heat released from hydrogen combustion can not only promote the volatilization of pulverized coal but also affect the combustion reaction between volatilization and oxygen,which resulted in a decrease in the temperature at the end of the raceway.Co-injection of hydrogen with PCI increased the wall temperature near the upper half part of the raceway and at the outlet of the tuyere,which required a high cooling efficiency to extend the service life of the blast furnace.The increase in oxygen level compensated for the decreased average temperature in the raceway due to hydrogen injection.The increase in the oxygen content by 3%while maintaining constant hydrogen and PCI injection rates increased the burnout and average raceway temperature by 4.2%and 43 K,respectively.The mole fraction of CO and H_(2) production increased by 0.04 and 0.02,respectively.Burnout can be improved through optimization of the particle size distribution of pulverized coal.展开更多
Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthqu...Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes.展开更多
The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to ...The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.展开更多
A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocit...A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocity field during the filling process and the temperature field during the solidification process of the alloy melt under different process parameters were obtained.Based on the simulation results,a Zr-based amorphous alloy micro-gear was prepared via casting.The results indicate that increasing the suction casting temperature enhances the fluidity of alloy melt but induces unstable flow rate during filling,which is detrimental to complete filling.Zr-based amorphous micro-gears with a module of 0.6 mm,a tooth top diameter of 8 mm,and 10 teeth were prepared through the suction casting.X-ray diffraction and differential scanning calorimetry analyses confirm that the fabricated micro-gear exhibits characteristic amorphous structural features,demonstrating well-defined geometrical contours and satisfactory forming completeness.展开更多
To further reduce the explosive thickness and to improve the bonding quality of titanium/steel composite plates,explosive welding experiments of TA1/Q235 were conducted using a low detonation velocity explosive(53#)un...To further reduce the explosive thickness and to improve the bonding quality of titanium/steel composite plates,explosive welding experiments of TA1/Q235 were conducted using a low detonation velocity explosive(53#)under the guidance of the explosive welding lower limit principle with the flyer plate thicknesses of 1,2,and 4 mm and gaps of 3,6,and 8 mm.The weldability window for titanium/steel explosive welding was calculated,and a quantitative relationship between dynamic and static process parameters was developed.Aβ-V_(p) high-speed inclined collision model was proposed,and two-dimensional numerical simulations for the explosive welding tests were performed using the smoothed particle hydrodynamics(SPH)algorithm,revealing the growth evolution mechanisms of the typical waveform morphology characteristics.Through microstructural characterization techniques,such as optical microscope,scanning electron microscope,energy dispersive spectrometer,and electron backscattered diffractometer,and mechanical property tests in terms of shear strength,bending performance,and impact toughness,the microstructure and mechanical properties of the interfaces of explosively welded TA1/Q235 composite plates were investigated.Results show that the quality of interface bonding is excellent,presenting typical waveform morphology with an average interface shear strength above 330 MPa and an average impact toughness exceeding 81 J.All samples can be bent to 180°without significant delamination or cracking defects.展开更多
Heat treatment processes, such as annealing and quenching, are crucial in determining residual stress evolution, microstructural changes and mechanical properties of metallic materials, with residual stresses playing ...Heat treatment processes, such as annealing and quenching, are crucial in determining residual stress evolution, microstructural changes and mechanical properties of metallic materials, with residual stresses playing a greater role in the performance of components. This paper investigates the effect of heat treatment on residual stresses induced in AISI 1025, manufactured using LENS. Finite element model was developed and simulated to analyze residual stress development. AISI 1025 samples suitable for tool and die applications in Fused Deposition Modelling (FDM) filament production, were fabricated using Laser Engineered Net Shaping (LENS) process, followed by heat treatment where annealing and quenching processes were done. The material’s microstructure, residual stress and hardness of heat-treated samples under investigation, were compared against the as-built samples. The results indicated that after annealing, tensile residual stresses were reduced by 93%, resulting in a reduced crack growth rate, compared to the as-built sample, although the hardness was reduced significantly by 25%. On the other hand, high tensile residual stresses of 425 ± 14 MPa were recorded after quenching process with an improvement of hardness by 21%.展开更多
We proposed a new technique route of directional solidification for the manufacture of super slab.A 7-t laboratory-scale thick slab was casted and characterised for trial.To further understand the process,the evolutio...We proposed a new technique route of directional solidification for the manufacture of super slab.A 7-t laboratory-scale thick slab was casted and characterised for trial.To further understand the process,the evolution of the multiple physical fields during the directional solidification was simulated and verified.Similar to the convectional ingot casting,a negative segregated cone of equiaxed grains was formed at the bottom,and a seriously positive segregated region was formed beneath the top surface of the slab.Specific measures on the lateral walls,base plate,and free surface were strongly recommended to ensure that the slab is relatively directionally casted.A water-cooling copper base plate accelerates the solidification rate and the columnar growth along the vertical direction.It inhibits the sedimentation of equiaxed grains and enlarges the columnar zone.Based on the simulation analysis,it can be concluded that the directional solidification technique route is promising to manufacture super slab with lower segregation level,and less porosities and inclusions.展开更多
In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components ...In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components in aircraft.The interfacial plastic flow behavior and bonding mechanism of this process were investigated by a developed coupling EulerianLagrangian numerical model using software ABAQUS and a novel thermo-physical simulation method with designed embedded hot compression specimen.In addition,the formation mechanism and control method of welding defects caused by uneven plastic flow were discussed.The results reveal that the plastic flow along oscillating direction of this process is even and sufficient.In the direction perpendicular to oscillation,thermo-plastic metals mainly flow downward along welding interface under coupling of shear stress and interfacial pressure,resulting in the interfacial plastic zone shown as an inverted“V”shape.The upward plastic flow in this direction is relatively weak,and only a small amount of flash is extruded from top of joint.Moreover,the wedge block and welding components at top of joint are always in un-steady friction stage,leading to nonuniform temperature field distribution and un-welded defects.According to the results of numerical simulation,high oscillating frequency combined with low pressure and small amplitude is considered as appropriate parameter selection scheme to improve the upward interfacial plastic flow at top of joint and suppress the un-welded defects.The results of thermo-physical simulation illustrate that continuous dynamic recrystallization(CDRX)induces the bonding of interface,accompanying by intense dislocation movement and creation of many low-angle grain boundaries.In the interfacial bonding area,grain orientation is random with relatively low texture density(5.0 mud)owing to CDRX.展开更多
基金National Key Research and Development Program of China(2022YFB4600902)Shandong Provincial Science Foundation for Outstanding Young Scholars(ZR2024YQ020)。
文摘Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.
基金Supported by the National Natural Science Foundation of China under Grant No.51975138the High-Tech Ship Scientific Research Project from the Ministry of Industry and Information Technology under Grant No.CJ05N20the National Defense Basic Research Project under Grant No.JCKY2023604C006.
文摘Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates.
文摘A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume method in a unstructured body-fitted curvilinear coordinates have been used. The results indicate that the separation and the reattachment occur in the Boundary-Layer of the main rocket because of the shock interaction. The shape of the booster nose effects the flow field obviously. In the case of the hemisphere booster nose the pressure has complicate distributions and the separation is very clear. The distance between the booster and main rocket has the evident effect on the flow field. If the distance is smaller the pressure coefficient is bigger the separation zone even the separation bubble occurs.
文摘The paper establishes the relationship between the settling efficiency and the sizes of the sedimentation tank through the process of numerical simulation, which is taken as one of the constraints to set up a simple optimum designing model of sedimentation tank. The feasibility and advantages of this model based on numerical calculation are verified through the application of practical case.
基金supported by the National Natural Science Foundation of China(Grant Nos.50325620 and 10372050).
文摘The breakup of drop covered with vapor film is numerically simulated. The moving particle semi-implicit method is used to solve the 2-dimensional unsteady Navier-Stokes equations for drop, vapor and ambient fluid. The results show that vapor film suppresses the drop breakup and hence the critical Weber number increases with the increasing thickness of vapor film. The breakup process can be divided into two stages. The drop deformation and breakup mainly occur in the later stage. Three breakup mechanisms are unveiled, which are almost the same as that of drop breakup without vapor film except for the stronger Rayleigh-Taylor instability for drop with vapor film. Our simulation results are comparable with the previous experiments.
基金supported by the National Natural Science Foundatin of China (Grant No. 50676112)
文摘Numerical simulations of flow in the melt(CdZnTe) with different conditions are conducted using the finite-difference method.When the top surface of the melt is solid wall under microgravity condition,the thermocapillary convection is caused in the melt by the surface tension gradient on the free surface.As the Marangoni number is small,the flow is steady thermocapillary convection.As the Marangoni number exceeds the critical value,the steady flow transits into unstable thermocapillary convection.When the top surface of the melt is free surface under microgravity,two roll cells are observed in the melt,which are driven by both the surface tension gradients on the upper and lower free surfaces.When the top surface of the melt is free surface under gravity condition,the effect of the buoyancy on the flow is little as the Marangoni number is small.With the Marangoni number increasing,the effect of the buoyancy increases,which makes the upper roll cell weaken and the lower roll cell strengthen.
文摘Loess soils are widely distributed worldwide and typical in northwest China,and excessive agricultural irrigation has caused landslides in the area,specifically in the Heifangtai loess region in Lanzhou,Gansu,China.Geophysical exploration is an essential method in landslide engineering geological surveys,and geological surveying,drilling,geophysical prospecting,monitoring,and other methods are used for performing engineering geological evaluation and obtaining comprehensive basic data for landslide protection design and construction.The theoretical feasibility of using geophysical methods in loess landslide detection is essential.On the basis of the shallow geological structure of the Heifangtai landslide region in Lanzhou,Gansu,China,a typical geoelectric model of the magnetotelluric method was established,and the loess landslide area was modeled through a two-dimensional finite element method,forward numerical simulation,and engineering geological analysis.The distribution characteristics of the magnetotelluric field were determined.This is a typical application of the geological process analysis method in geophysical exploration.This study provides the typical stratigraphic structure and electrical characteristics of different groundwater distributions in Heifangtai,Gansu,China,verifies the accuracy of forward modeling and calculation results,and provides a detailed theoretical basis for landslide detection through magnetotelluric methods.Through the numerical simulation of the forward modeling of the Heifangtai landslide region in Lanzhou,Gansu,China,this study can provide a detailed geophysical basis for landslide investigation,corroborate results of geological investigation and landslide design,and facilitate the sustainable development of agriculture in Heifangtai.
基金Support by the National Natural Science Foundation of China under Grant Nos.10932010 and 11072220the Natural Science Foundation of Zhejiang Province under Grant Nos.Y607425,Z6090556the Foundation Project for Youths of Zhijiang Normal University under Grant No.KJ20090102
文摘The numerical simulation using the multiple relaxation time lattice Boltzmann method (MRT-LBM) is carried out for the purpose of investigating the two-dimensional flow around three circular cylinders. Among these three circular cylinders, one of the three cylinders on which a forced in-line vibrating is used to do this research and attempt to find out the effects of the moving cylinder and the other two rigid cylinders on the wake characteristics and vortex formation. As a benchmark problem to discuss the problem of lift coefficient r.m.s for these cylinders with spacing ratios T/ D between other rigid side-by-side cylinders, and the calculation is carried out with two compared cases at Reynolds number of 100, two of the cylinders are rigid and the other one is an in-line vibrated cylinder lying downstream, in addition, forced vibrating amplitude and frequency are A/D = 0.5 and fv= 0.4 (where A is the forced amplitude, D is the cylinder diameter, and fv stands for the vibrating frequency, respectively). The calculated results not only indicate that the spacing ratios T/D (T is the center-to-center spacing between the two upstream cylinders) have influence on the wake patterns and the formation of vortex shedding, but also analyze the lift coefficient r.m.s for the three cylinders with the spacing ratios S/D (where S is the center-to-center spacing between the center of upstream two side-by-side cylinders and downstream cylinder).
基金Supported by the Fund of National Nature Sciences of China
文摘This study deals with the general numerical model to simulate the two-dimensional tidal flow, flooding wave (long wave) and shallow water waves (short wave). The foundational model is based on nonlinear Boussinesq equations. Numerical method for modelling the short waves is investigated in detail. The forces, such as Coriolis forces, wind stress, atmosphere and bottom friction, are considered. A two-dimensional implicit difference scheme of Boussinesq equations is proposed. The low-reflection outflow open boundary is suggested. By means of this model,both velocity fields of circulation current in a channel with step expansion and the wave diffraction behind a semi-infinite breakwater are computed, and the results are satisfactory.
文摘The mechanism and the course of two_dimensional nonlinear dynamic system of interspecific interaction were dealt with systematically. By extending the Lotka_Volterra model from the viewpoint of biomechanics, it developed new models of two_dimensional nonlinear autonomous and nonautonomous dynamic systems, with its equilibrium point's stability and the existence and stability of its periodical solutions analyzed, and did numerical simulation experiments on its dynamics course. The results show that efficiency of interaction between two populations, time_varying effort, and change direction of action coefficient and reaction coefficient have important influences on the stability of dynamic system, that too large or too small interspecific interaction efficiency and contrary change direction of action coefficient and reaction coefficient may result in the nonstability of the system, and thus it is difficult for two populations to coexist, and that time_varying active force contributes to system stability.
文摘Numerical simulation of a two-dimensional nonlinear sloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.
基金financially supported by the National Natural Science Foundation of China(No.51904026)the Fundamental Research Funds for the Central Universities(No.06500108)。
文摘Hydrogen displays the potential to partially replace pulverized coal injection(PCI)in the blast furnace,and it can reduce CO_(2)emissions.In this paper,a three-dimensional mathematical model of hydrogen and pulverized coal co-injection in blast furnace tuyere was established through numerical simulation,and the effect of hydrogen injection and oxygen enrichment interaction on pulverized coal combustion and raceway smelting was investigated.The simulation results indicate that when the coal injection rate decreased from 36 to 30t/h and the hydrogen injection increased from 0 to 3600 m^(3)/h,the CO_(2)emissions decreased from 1860 to 1551 kg/t,which represents a16.6%reduction,and the pulverized coal burnout decreased from 70.1%to 63.7%.The heat released from hydrogen combustion can not only promote the volatilization of pulverized coal but also affect the combustion reaction between volatilization and oxygen,which resulted in a decrease in the temperature at the end of the raceway.Co-injection of hydrogen with PCI increased the wall temperature near the upper half part of the raceway and at the outlet of the tuyere,which required a high cooling efficiency to extend the service life of the blast furnace.The increase in oxygen level compensated for the decreased average temperature in the raceway due to hydrogen injection.The increase in the oxygen content by 3%while maintaining constant hydrogen and PCI injection rates increased the burnout and average raceway temperature by 4.2%and 43 K,respectively.The mole fraction of CO and H_(2) production increased by 0.04 and 0.02,respectively.Burnout can be improved through optimization of the particle size distribution of pulverized coal.
基金supported by the National Natural Science Foundation of China (Grant No.52108361)the Sichuan Science and Technology Program of China (Grant No.2023YFS0436)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (Grant No.SKLGP2022Z015).
文摘Bedding parallel stepped rock slopes exist widely in nature and are used in slope engineering.They are characterized by complex topography and geological structure and are vulnerable to shattering under strong earthquakes.However,no previous studies have assessed the mechanisms underlying seismic failure in rock slopes.In this study,large-scale shaking table tests and numerical simulations were conducted to delineate the seismic failure mechanism in terms of acceleration,displacement,and earth pressure responses combined with shattering failure phenomena.The results reveal that acceleration response mutations usually occur within weak interlayers owing to their inferior performance,and these mutations may transform into potential sliding surfaces,thereby intensifying the nonlinear seismic response characteristics.Cumulative permanent displacements at the internal corners of the berms can induce quasi-rigid displacements at the external corners,leading to greater permanent displacements at the internal corners.Therefore,the internal corners are identified as the most susceptible parts of the slope.In addition,the concept of baseline offset was utilized to explain the mechanism of earth pressure responses,and the result indicates that residual earth pressures at the internal corners play a dominant role in causing deformation or shattering damage.Four evolutionary deformation phases characterize the processes of seismic responses and shattering failure of the bedding parallel stepped rock slope,i.e.the formation of tensile cracks at the internal corners of the berm,expansion of tensile cracks and bedding surface dislocation,development of vertical tensile cracks at the rear edge,and rock mass slipping leading to slope instability.Overall,this study provides a scientific basis for the seismic design of engineering slopes and offers valuable insights for further studies on preventing seismic disasters in bedding parallel stepped rock slopes.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2021B0301030001)the National Key Research and Development Program of China(Grant No.2021YFB3802300)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(Grant No.JCKYS2022212004)。
文摘The graded density impactor(GDI)dynamic loading technique is crucial for acquiring the dynamic physical property parameters of materials used in weapons.The accuracy and timeliness of GDI structural design are key to achieving controllable stress-strain rate loading.In this study,we have,for the first time,combined one-dimensional fluid computational software with machine learning methods.We first elucidated the mechanisms by which GDI structures control stress and strain rates.Subsequently,we constructed a machine learning model to create a structure-property response surface.The results show that altering the loading velocity and interlayer thickness has a pronounced regulatory effect on stress and strain rates.In contrast,the impedance distribution index and target thickness have less significant effects on stress regulation,although there is a matching relationship between target thickness and interlayer thickness.Compared with traditional design methods,the machine learning approach offers a10^(4)—10^(5)times increase in efficiency and the potential to achieve a global optimum,holding promise for guiding the design of GDI.
基金National Natural Science Foundation of China(51971103)Key Research and Development Program in Gansu Province(20YF8GA052)。
文摘A suction casting experiment was conducted on Zr_(55)Cu_(30)Al_(10)Ni_(5)(at%)amorphous alloy.Using ProCAST software,numerical simulations were performed to analyze the filling and solidification processes.The velocity field during the filling process and the temperature field during the solidification process of the alloy melt under different process parameters were obtained.Based on the simulation results,a Zr-based amorphous alloy micro-gear was prepared via casting.The results indicate that increasing the suction casting temperature enhances the fluidity of alloy melt but induces unstable flow rate during filling,which is detrimental to complete filling.Zr-based amorphous micro-gears with a module of 0.6 mm,a tooth top diameter of 8 mm,and 10 teeth were prepared through the suction casting.X-ray diffraction and differential scanning calorimetry analyses confirm that the fabricated micro-gear exhibits characteristic amorphous structural features,demonstrating well-defined geometrical contours and satisfactory forming completeness.
基金Jiangsu Provincial Natural Science Foundation of China(BK20211232)2023 Major Science and Technology Projects of Nanjing City(202309011)。
文摘To further reduce the explosive thickness and to improve the bonding quality of titanium/steel composite plates,explosive welding experiments of TA1/Q235 were conducted using a low detonation velocity explosive(53#)under the guidance of the explosive welding lower limit principle with the flyer plate thicknesses of 1,2,and 4 mm and gaps of 3,6,and 8 mm.The weldability window for titanium/steel explosive welding was calculated,and a quantitative relationship between dynamic and static process parameters was developed.Aβ-V_(p) high-speed inclined collision model was proposed,and two-dimensional numerical simulations for the explosive welding tests were performed using the smoothed particle hydrodynamics(SPH)algorithm,revealing the growth evolution mechanisms of the typical waveform morphology characteristics.Through microstructural characterization techniques,such as optical microscope,scanning electron microscope,energy dispersive spectrometer,and electron backscattered diffractometer,and mechanical property tests in terms of shear strength,bending performance,and impact toughness,the microstructure and mechanical properties of the interfaces of explosively welded TA1/Q235 composite plates were investigated.Results show that the quality of interface bonding is excellent,presenting typical waveform morphology with an average interface shear strength above 330 MPa and an average impact toughness exceeding 81 J.All samples can be bent to 180°without significant delamination or cracking defects.
文摘Heat treatment processes, such as annealing and quenching, are crucial in determining residual stress evolution, microstructural changes and mechanical properties of metallic materials, with residual stresses playing a greater role in the performance of components. This paper investigates the effect of heat treatment on residual stresses induced in AISI 1025, manufactured using LENS. Finite element model was developed and simulated to analyze residual stress development. AISI 1025 samples suitable for tool and die applications in Fused Deposition Modelling (FDM) filament production, were fabricated using Laser Engineered Net Shaping (LENS) process, followed by heat treatment where annealing and quenching processes were done. The material’s microstructure, residual stress and hardness of heat-treated samples under investigation, were compared against the as-built samples. The results indicated that after annealing, tensile residual stresses were reduced by 93%, resulting in a reduced crack growth rate, compared to the as-built sample, although the hardness was reduced significantly by 25%. On the other hand, high tensile residual stresses of 425 ± 14 MPa were recorded after quenching process with an improvement of hardness by 21%.
基金the National Natural Science Foundation of China(No.52074182)Joint Funds of the National Natural Science Foundation of China(No.U23A20612).
文摘We proposed a new technique route of directional solidification for the manufacture of super slab.A 7-t laboratory-scale thick slab was casted and characterised for trial.To further understand the process,the evolution of the multiple physical fields during the directional solidification was simulated and verified.Similar to the convectional ingot casting,a negative segregated cone of equiaxed grains was formed at the bottom,and a seriously positive segregated region was formed beneath the top surface of the slab.Specific measures on the lateral walls,base plate,and free surface were strongly recommended to ensure that the slab is relatively directionally casted.A water-cooling copper base plate accelerates the solidification rate and the columnar growth along the vertical direction.It inhibits the sedimentation of equiaxed grains and enlarges the columnar zone.Based on the simulation analysis,it can be concluded that the directional solidification technique route is promising to manufacture super slab with lower segregation level,and less porosities and inclusions.
基金co-supported by the National Natural Science Foundation of China(Nos.52105411,52105400and 52305420)the China Postdoctoral Science Foundation(No.2023M742830)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX2023008).
文摘In this study,a new linear friction welding(LFW)process,embedded LFW process,was put forward,which was mainly applied to combination manufacturing of long or overlong loadcarrying titanium alloy structural components in aircraft.The interfacial plastic flow behavior and bonding mechanism of this process were investigated by a developed coupling EulerianLagrangian numerical model using software ABAQUS and a novel thermo-physical simulation method with designed embedded hot compression specimen.In addition,the formation mechanism and control method of welding defects caused by uneven plastic flow were discussed.The results reveal that the plastic flow along oscillating direction of this process is even and sufficient.In the direction perpendicular to oscillation,thermo-plastic metals mainly flow downward along welding interface under coupling of shear stress and interfacial pressure,resulting in the interfacial plastic zone shown as an inverted“V”shape.The upward plastic flow in this direction is relatively weak,and only a small amount of flash is extruded from top of joint.Moreover,the wedge block and welding components at top of joint are always in un-steady friction stage,leading to nonuniform temperature field distribution and un-welded defects.According to the results of numerical simulation,high oscillating frequency combined with low pressure and small amplitude is considered as appropriate parameter selection scheme to improve the upward interfacial plastic flow at top of joint and suppress the un-welded defects.The results of thermo-physical simulation illustrate that continuous dynamic recrystallization(CDRX)induces the bonding of interface,accompanying by intense dislocation movement and creation of many low-angle grain boundaries.In the interfacial bonding area,grain orientation is random with relatively low texture density(5.0 mud)owing to CDRX.