Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes...Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes with SiO_(2)and Al_(2)O_(3)ratios were investigated using various techniques.It is found that when SiO_(2)is replaced by Al_(2)O_(3),the Q^(4) to Q^(3) transition of silicon-oxygen network decreases while the aluminum-oxygen network increases,which result in the transformation of Si-O-Si bonds to Si-O-Al bonds and an increase in glass network connectivity even though the intermolecular bond strength decreases.The glass transition temperature(T_(g))increases continuously,while the thermal expansion coefficient increases and high-temperature viscosity first decreases and then increases.Meanwhile,the elastic modulus values increase from 93 to 102 GPa.This indicates that the elastic modulus is mainly affected by packing factor and dissociation energy,and elements with higher packing factors and dissociation energies supplant those with lower values,resulting in increased rigidity within the glass.展开更多
The performance of polymer networks is directly determined by their structure.Understanding the network structure offers insights into optimizing material performance,such as elasticity,toughness,and swelling behavior...The performance of polymer networks is directly determined by their structure.Understanding the network structure offers insights into optimizing material performance,such as elasticity,toughness,and swelling behavior.Herein,in this study we introduce the Dijkstra algorithm from graph theory to characterize polymer networks based on star-shaped multi-armed precursors by employing coarse-grained molecular dynamics simulations coupled with stochastic reaction model.Our research focuses on the structure characteristics of the generated networks,including the number and size of loops,as well as network dispersity characterized by loops.Tracking the number of loops during network generation allows for the identification of the gel point.The size distribution of loops in the network is primarily related to the functionality of the precursors,and the system with fewer precursor arms exhibiting larger average loop sizes.Strain-stress curves indicate that materials with identical functionality and precursor arm lengths generally exhibit superior performance.This method of characterizing network structures helps to refine microscopic structural analysis and contributes to the enhancement and optimization of material properties.展开更多
Existing imaging techniques cannot simultaneously achieve high resolution and a wide field of view,and manual multi-mineral segmentation in shale lacks precision.To address these limitations,we propose a comprehensive...Existing imaging techniques cannot simultaneously achieve high resolution and a wide field of view,and manual multi-mineral segmentation in shale lacks precision.To address these limitations,we propose a comprehensive framework based on generative adversarial network(GAN)for characterizing pore structure properties of shale,which incorporates image augmentation,super-resolution reconstruction,and multi-mineral auto-segmentation.Using real 2D and 3D shale images,the framework was assessed through correlation function,entropy,porosity,pore size distribution,and permeability.The application results show that this framework enables the enhancement of 3D low-resolution digital cores by a scale factor of 8,without paired shale images,effectively reconstructing the unresolved fine-scale pores under a low resolution,rather than merely denoising,deblurring,and edge clarification.The trained GAN-based segmentation model effectively improves manual multi-mineral segmentation results,resulting in a strong resemblance to real samples in terms of pore size distribution and permeability.This framework significantly improves the characterization of complex shale microstructures and can be expanded to other heterogeneous porous media,such as carbonate,coal,and tight sandstone reservoirs.展开更多
To assess the high-temperature creep properties of titanium matrix composites for aircraft skin,the TA15 alloy,TiB/TA15 and TiB/(TA15−Si)composites with network structure were fabricated using low-energy milling and v...To assess the high-temperature creep properties of titanium matrix composites for aircraft skin,the TA15 alloy,TiB/TA15 and TiB/(TA15−Si)composites with network structure were fabricated using low-energy milling and vacuum hot pressing sintering techniques.The results show that introducing TiB and Si can reduce the steady-state creep rate by an order of magnitude at 600℃ compared to the alloy.However,the beneficial effect of Si can be maintained at 700℃ while the positive effect of TiB gradually diminishes due to the pores near TiB and interface debonding.The creep deformation mechanism of the as-sintered TiB/(TA15−Si)composite is primarily governed by dislocation climbing.The high creep resistance at 600℃ can be mainly attributed to the absence of grain boundaryαphases,load transfer by TiB whisker,and the hindrance of dislocation movement by silicides.The low steady-state creep rate at 700℃ is mainly resulted from the elimination of grain boundaryαphases as well as increased dynamic precipitation of silicides andα_(2).展开更多
Background Post-stroke depression(PSD)is a common neuropsychiatric problem associated with a high disease burden and reduced quality of life(QoL).To date,few studies have examined the network structure of depressive s...Background Post-stroke depression(PSD)is a common neuropsychiatric problem associated with a high disease burden and reduced quality of life(QoL).To date,few studies have examined the network structure of depressive symptoms and their relationships with QoL in stroke survivors.Aims This study aimed to explore the network structure of depressive symptoms in PSD and investigate the interrelationships between specific depressive symptoms and QoL among older stroke survivors.Methods This study was based on the 2017–2018 collection of data from a large national survey in China.Depressive symptoms were assessed using the 10-item Centre for Epidemiological Studies Depression Scale(CESD),while QoL was measured with the World Health Organization Quality of Life-brief version.Network analysis was employed to explore the structure of PSD,using expected influence(EI)to identify the most central symptoms and the flow function to investigate the association between depressive symptoms and QoL.Results A total of 1123 stroke survivors were included,with an overall prevalence of depression of 34.3%(n=385;95%confidence interval 31.5%to 37.2%).In the network model of depression,the most central symptoms were CESD3(‘feeling blue/depressed’,EI:1.180),CESD6(‘feeling nervous/fearful’,EI:0.864)and CESD8(‘loneliness’,EI:0.843).In addition,CESD5(‘hopelessness’,EI:−0.195),CESD10(‘sleep disturbances’,EI:−0.169)and CESD4(‘everything was an effort’,EI:−0.150)had strong negative associations with QoL.Conclusion This study found that PSD was common among older Chinese stroke survivors.Given its negative impact on QoL,appropriate interventions targeting central symptoms and those associated with QoL should be developed and implemented for stroke survivors with PSD.展开更多
Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate ...Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific category at each updated timestamp. Then, DSNGA-CSP achieves intra-community and inter-community anonymization separately to retain more of the community structure of the original graph at each timestamp. It anonymizes community subgraphs by the proposed novel -composition method and anonymizes inter-community edges by edge isomorphism. Finally, a novel information loss metric is introduced in DSNGA-CSP to precisely capture the utility of the anonymized graph through original information preservation and anonymous information changes. Extensive experiments conducted on five real-world datasets demonstrate that DSNGA-CSP consistently outperforms existing methods, providing a more effective balance between privacy and utility. Specifically, DSNGA-CSP shows an average utility improvement of approximately 30% compared to TAKG and CTKGA for three dynamic graph datasets, according to the proposed information loss metric IL.展开更多
Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a ...Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a structured mirror array is developed to transversely collimate the chromium atomic beam in two dimensions.The best collimation is obtained when the laser red detunes by natural line-width of transition 7S3 → 7P40 of the chromium atom.The collimation ratio is 0.45 vertically(in x axis),and it is 0.55 horizontally(in y axis).The theoretical model is also simulated,and success of our structured mirror array is achieved.展开更多
Synthetic two-dimensional(2 D) polymers have totally different topology structures compared with traditional linear or branched polymers. The peculiar 2 D structures bring superior properties. Although, from linear ...Synthetic two-dimensional(2 D) polymers have totally different topology structures compared with traditional linear or branched polymers. The peculiar 2 D structures bring superior properties. Although, from linear to 2 D polymers, the study of these new materials is still in its infancy, they already show potential applications especially in optoelectronics, membranes, energy storage and catalysis, etc. In this review, we summarize the recent progress of the 2 D materials from three respects:(1) Chemistry—different types of polymerization reactions or supramolecular assembly to construct the 2 D networks were described;(2) Preparation methods—surface science, crystal engineering approaches and solution synthesis were introduced;(3) Functionalization and some early applications.展开更多
Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk...Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk materials owing to the atomic nature of 2D materials.Plasmonic nanostructures are usually integrated with 2D materials to enhance the light–matter interactions,offering great opportunities for both fundamental research and technological applications.Nanoparticle-on-mirror(NPo M)structures with extremely confined optical fields are highly desired in this aspect.In addition,2D materials provide a good platform for the study of plasmonic fields with subnanometer resolution and quantum plasmonics down to the characteristic length scale of a single atom.A focused and up-to-date review article is highly desired for a timely summary of the progress in this rapidly growing field and to encourage more research efforts in this direction.In this review,we will first introduce the basic concepts of plasmonic modes in NPo M structures.Interactions between plasmons and quasi-particles in 2D materials,e.g.,excitons and phonons,from weak to strong coupling and potential applications will then be described in detail.Related phenomena in subnanometer metallic gaps separated by 2D materials,such as quantum tunneling,will also be touched.We will finally discuss phenomena and physical processes that have not been understood clearly and provide an outlook for future research.We believe that the hybrid systems of2D materials and NPo M structures will be a promising research field in the future.展开更多
Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic c...Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic crystals for TE and TM waves are different from the two-dimensional conventional photonic crystals. Some absolute band gaps and semiDirac points are found. When the medium column radius and the function form of the dielectric constant are modulated, the numbers, width, and position of band gaps are changed, and the semi-Dirac point can either occur or disappear. Therefore,the special band gaps structures and semi-Dirac points can be achieved through the modulation on the two-dimensional function photonic crystals. The results will provide a new design method of optical devices based on the two-dimensional function photonic crystals.展开更多
The algebraic solitary wave and its associated eigenvalue problem in a deep stratified fluid with a free surface and a shallow upper layer were studied. And its vertical structure was examined. An exact solution for t...The algebraic solitary wave and its associated eigenvalue problem in a deep stratified fluid with a free surface and a shallow upper layer were studied. And its vertical structure was examined. An exact solution for the derived 2D Benjamin-Ono equation was obtained, and physical explanation was given with the corresponding dispersion relation. As a special case, the vertical structure of the weakly nonlinear internal wave for the Holmboe density distribution was numerically investigated, and the propagating mechanism of the internal wave was studied by using the ray theory.展开更多
Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etch...Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed.展开更多
The multilayered structure of the European airport network(EAN),composed of connections and flights between European cities,is analyzed through the k-core decomposition of the connections network.This decomposition ...The multilayered structure of the European airport network(EAN),composed of connections and flights between European cities,is analyzed through the k-core decomposition of the connections network.This decomposition allows to identify the core,bridge and periphery layers of the EAN.The core layer includes the best-connected cities,which include important business air traffic destinations.The periphery layer includes cities with lesser connections,which serve low populated areas where air travel is an economic alternative.The remaining cities form the bridge of the EAN,including important leisure travel origins and destinations.The multilayered structure of the EAN affects network robustness,as the EAN is more robust to isolation of nodes of the core,than to the isolation of a combination of core and bridge nodes.展开更多
In this paper, the hydrogen bonding network models of konjac glucomannan (KGM) are predicted in the approach of molecular dynamics (MD). These models have been proved by experiments whose results are consistent wi...In this paper, the hydrogen bonding network models of konjac glucomannan (KGM) are predicted in the approach of molecular dynamics (MD). These models have been proved by experiments whose results are consistent with those from simulation. The results show that the hydrogen bonding network structures of KGM are stable and the key linking points of hydrogen bonding network are at the O(6) and O(2) positions on KGM ring. Moreover, acety has significant influence on hydrogen bonding network and hydrogen bonding network structures are more stable after deacetylation.展开更多
A zinc complex, [Zn(iso)_2(H_2O)_4](iso=C_6H_4NO_2^-), was synthesized and characterized by elemental analysis, thermal analysis and IR spectrum studies. The crystal structure of the complex was determined by X-ray di...A zinc complex, [Zn(iso)_2(H_2O)_4](iso=C_6H_4NO_2^-), was synthesized and characterized by elemental analysis, thermal analysis and IR spectrum studies. The crystal structure of the complex was determined by X-ray diffraction. The crystal crystallizes in the triclinic system, molecular formula ZnC12H16N2O8, Mr=381.64, space group P with a = 6.338(1), b =6.919(1), c=9.277(1), α=96.28(1), β=104.91(1), γ=112.85(1)°, V=352.12(9)?3, Z=1, Dc=1.80g?cm-3 and F(000)=196, μ =1.791mm-1. The crystal structure was solved by direct methods for final R=0.0204 and Rw=0.0542 for 1258 observed reflections with [Fo>4σ(Fo)]. The crystal structure reveals that zinc ion is trans-octahedral with two pyridyl nitrogens and two aque oxygens at the equational positions and two aqua oxygens at the axial positions. The complex forms a three-dimensional network through intermolecular hydrogen bonds.展开更多
This paper deals with a cyclic-periodic structure with a piezoelectric network. In such a system, there is not only mechanical connection but also electrical connection between adjacent periodic sectors. The objective...This paper deals with a cyclic-periodic structure with a piezoelectric network. In such a system, there is not only mechanical connection but also electrical connection between adjacent periodic sectors. The objective is to learn whether the presence of a piezoelectric network would change the dynamic characteristics of the system. The background of the research is about vibration reduction of a bladed disk in an aero-engine, and the system is simulated by a lumped parameter model. The dynamic equations of the system are derived, and then the analytical solution corresponding to the eigenvalue problem is given. The vibration responses to single traveling wave excitations (EO excitations) and multiple traveling wave excitations (NEO excitations) are studied. The results show that the presence of a piezoelectric network would change the natural frequencies of the system compared with those of the system with the piezoelectric shunt circuit. The forced response is sensitive to the connection type and the elements of the network. An energy analysis of the electro-mechanical coupling system has been performed to understand its dynamic behavior, and the following conclusion is obtained: a vibration reduction to excitations whose primary har- monic component is not zero can be achieved by a parallel piezoelectric network, while a reduction to other excitations should be based on a series piezoelectric network.展开更多
Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorith...Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.展开更多
Vibration monitoring by virtual sensing methods has been well developed for linear timeinvariant structures with limited sensors.However,few methods are proposed for Time-Varying(TV)structures which are inevitable in ...Vibration monitoring by virtual sensing methods has been well developed for linear timeinvariant structures with limited sensors.However,few methods are proposed for Time-Varying(TV)structures which are inevitable in aerospace engineering.The core of vibration monitoring for TV structures is to describe the TV structural dynamic characteristics with accuracy and efficiency.This paper propose a new method using the Long Short-Term Memory(LSTM)networks for Continuously Variable Configuration Structures(CVCSs),which is an important subclass of TV structures.The configuration parameters are used to represent the time-varying dynamic characteristics by the‘‘freezing"method.The relationship between TV dynamic characteristics and vibration responses is established by LSTM,and can be generalized to estimate the responses with unknown TV processes benefiting from the time translation invariance of LSTM.A numerical example and a liquid-filled pipe experiment are used to test the performance of the proposed method.The results demonstrate that the proposed method can accurately estimate the unmeasured responses for CVCSs to reveal the actual characteristics in time-domain and modal-domain.Besides,the average one-step estimation time of responses is less than the sampling interval.Thus,the proposed method is promising to on-line estimate the important responses of TV structures.展开更多
Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based s...Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets.展开更多
基金Supported by the National Key Research Program(No.2024-1129-954-112)National Natural Science Foundation of China(No.52372033)Guangxi Science and Technology Major Program(No.AA24263054)。
文摘Alkali-free SiO_(2)-Al_(2)O_(3)-CaO-MgO with different SiO_(2)/Al_(2)O_(3)mass ratios was prepared by conventional melt quenching method.The glass network structure,thermodynamic properties and elastic modulus changes with SiO_(2)and Al_(2)O_(3)ratios were investigated using various techniques.It is found that when SiO_(2)is replaced by Al_(2)O_(3),the Q^(4) to Q^(3) transition of silicon-oxygen network decreases while the aluminum-oxygen network increases,which result in the transformation of Si-O-Si bonds to Si-O-Al bonds and an increase in glass network connectivity even though the intermolecular bond strength decreases.The glass transition temperature(T_(g))increases continuously,while the thermal expansion coefficient increases and high-temperature viscosity first decreases and then increases.Meanwhile,the elastic modulus values increase from 93 to 102 GPa.This indicates that the elastic modulus is mainly affected by packing factor and dissociation energy,and elements with higher packing factors and dissociation energies supplant those with lower values,resulting in increased rigidity within the glass.
基金supported by the National Natural Science Foundation of China(No.22373024,22463006,and 52463015)the joint fund between the Gansu Provincial Science and Technology Plan Project(Natural Science Foundation)(No.23JRRA794)the Open Research Fund of the Songshan Lake Materials Laboratory(No.2023SLABFK11)。
文摘The performance of polymer networks is directly determined by their structure.Understanding the network structure offers insights into optimizing material performance,such as elasticity,toughness,and swelling behavior.Herein,in this study we introduce the Dijkstra algorithm from graph theory to characterize polymer networks based on star-shaped multi-armed precursors by employing coarse-grained molecular dynamics simulations coupled with stochastic reaction model.Our research focuses on the structure characteristics of the generated networks,including the number and size of loops,as well as network dispersity characterized by loops.Tracking the number of loops during network generation allows for the identification of the gel point.The size distribution of loops in the network is primarily related to the functionality of the precursors,and the system with fewer precursor arms exhibiting larger average loop sizes.Strain-stress curves indicate that materials with identical functionality and precursor arm lengths generally exhibit superior performance.This method of characterizing network structures helps to refine microscopic structural analysis and contributes to the enhancement and optimization of material properties.
基金Supported by the National Natural Science Foundation of China(U23A20595,52034010,52288101)National Key Research and Development Program of China(2022YFE0203400)+1 种基金Shandong Provincial Natural Science Foundation(ZR2024ZD17)Fundamental Research Funds for the Central Universities(23CX10004A).
文摘Existing imaging techniques cannot simultaneously achieve high resolution and a wide field of view,and manual multi-mineral segmentation in shale lacks precision.To address these limitations,we propose a comprehensive framework based on generative adversarial network(GAN)for characterizing pore structure properties of shale,which incorporates image augmentation,super-resolution reconstruction,and multi-mineral auto-segmentation.Using real 2D and 3D shale images,the framework was assessed through correlation function,entropy,porosity,pore size distribution,and permeability.The application results show that this framework enables the enhancement of 3D low-resolution digital cores by a scale factor of 8,without paired shale images,effectively reconstructing the unresolved fine-scale pores under a low resolution,rather than merely denoising,deblurring,and edge clarification.The trained GAN-based segmentation model effectively improves manual multi-mineral segmentation results,resulting in a strong resemblance to real samples in terms of pore size distribution and permeability.This framework significantly improves the characterization of complex shale microstructures and can be expanded to other heterogeneous porous media,such as carbonate,coal,and tight sandstone reservoirs.
基金financially supported by the National Key R&D Program of China(No.2022YFB3707405)the National Natural Science Foundation of China(Nos.U22A20113,52171137,52071116)+1 种基金Heilongjiang Provincial Natural Science Foundation,China(No.TD2020E001)Heilongjiang Touyan Team Program,China.
文摘To assess the high-temperature creep properties of titanium matrix composites for aircraft skin,the TA15 alloy,TiB/TA15 and TiB/(TA15−Si)composites with network structure were fabricated using low-energy milling and vacuum hot pressing sintering techniques.The results show that introducing TiB and Si can reduce the steady-state creep rate by an order of magnitude at 600℃ compared to the alloy.However,the beneficial effect of Si can be maintained at 700℃ while the positive effect of TiB gradually diminishes due to the pores near TiB and interface debonding.The creep deformation mechanism of the as-sintered TiB/(TA15−Si)composite is primarily governed by dislocation climbing.The high creep resistance at 600℃ can be mainly attributed to the absence of grain boundaryαphases,load transfer by TiB whisker,and the hindrance of dislocation movement by silicides.The low steady-state creep rate at 700℃ is mainly resulted from the elimination of grain boundaryαphases as well as increased dynamic precipitation of silicides andα_(2).
基金supported by Beijing High Level Public Health Technology Talent Construction Project(Discipline Backbone-01-028)the Beijing Municipal Science&Technology Commission(No.Z181100001518005)+2 种基金the Capital's Funds for Health Improvement and Research(CFH 2024-2-1174)the University of Macao(MYRG-GRG2023-00141-FHS,CPG2025-00021-FHS)the Science and Technology Plan Foundation of Guangzhou(No.202201011663).
文摘Background Post-stroke depression(PSD)is a common neuropsychiatric problem associated with a high disease burden and reduced quality of life(QoL).To date,few studies have examined the network structure of depressive symptoms and their relationships with QoL in stroke survivors.Aims This study aimed to explore the network structure of depressive symptoms in PSD and investigate the interrelationships between specific depressive symptoms and QoL among older stroke survivors.Methods This study was based on the 2017–2018 collection of data from a large national survey in China.Depressive symptoms were assessed using the 10-item Centre for Epidemiological Studies Depression Scale(CESD),while QoL was measured with the World Health Organization Quality of Life-brief version.Network analysis was employed to explore the structure of PSD,using expected influence(EI)to identify the most central symptoms and the flow function to investigate the association between depressive symptoms and QoL.Results A total of 1123 stroke survivors were included,with an overall prevalence of depression of 34.3%(n=385;95%confidence interval 31.5%to 37.2%).In the network model of depression,the most central symptoms were CESD3(‘feeling blue/depressed’,EI:1.180),CESD6(‘feeling nervous/fearful’,EI:0.864)and CESD8(‘loneliness’,EI:0.843).In addition,CESD5(‘hopelessness’,EI:−0.195),CESD10(‘sleep disturbances’,EI:−0.169)and CESD4(‘everything was an effort’,EI:−0.150)had strong negative associations with QoL.Conclusion This study found that PSD was common among older Chinese stroke survivors.Given its negative impact on QoL,appropriate interventions targeting central symptoms and those associated with QoL should be developed and implemented for stroke survivors with PSD.
基金supported by the Natural Science Foundation of China(No.U22A2099)the Innovation Project of Guangxi Graduate Education(YCBZ2023130).
文摘Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific category at each updated timestamp. Then, DSNGA-CSP achieves intra-community and inter-community anonymization separately to retain more of the community structure of the original graph at each timestamp. It anonymizes community subgraphs by the proposed novel -composition method and anonymizes inter-community edges by edge isomorphism. Finally, a novel information loss metric is introduced in DSNGA-CSP to precisely capture the utility of the anonymized graph through original information preservation and anonymous information changes. Extensive experiments conducted on five real-world datasets demonstrate that DSNGA-CSP consistently outperforms existing methods, providing a more effective balance between privacy and utility. Specifically, DSNGA-CSP shows an average utility improvement of approximately 30% compared to TAKG and CTKGA for three dynamic graph datasets, according to the proposed information loss metric IL.
基金Project supported by the Shanghai Nanoscience Foundation,China (Grant Nos. 0852nm07000 and 0952nm07000)the National Natural Science Foundation of China (Grant Nos. 10804084 and 91123022)+1 种基金the National Key Technology R & D Program,China (Grant No. 2006BAF06B08)the Specialized Research Fund for the Doctoral Program of Ministry of High Education of China (Grant No. 200802471008)
文摘Direct-write atom lithography,one of the potential nanofabrication techniques,is restricted by some difficulties in producing optical masks for the deposition of complex structures.In order to make further progress,a structured mirror array is developed to transversely collimate the chromium atomic beam in two dimensions.The best collimation is obtained when the laser red detunes by natural line-width of transition 7S3 → 7P40 of the chromium atom.The collimation ratio is 0.45 vertically(in x axis),and it is 0.55 horizontally(in y axis).The theoretical model is also simulated,and success of our structured mirror array is achieved.
基金financially supported by the National Natural Science Foundation of China(No.21604046)the National Young Thousand Talents Program,Shandong Provincial Natural Science Foundation,China(No.ZR2016XJ004)
文摘Synthetic two-dimensional(2 D) polymers have totally different topology structures compared with traditional linear or branched polymers. The peculiar 2 D structures bring superior properties. Although, from linear to 2 D polymers, the study of these new materials is still in its infancy, they already show potential applications especially in optoelectronics, membranes, energy storage and catalysis, etc. In this review, we summarize the recent progress of the 2 D materials from three respects:(1) Chemistry—different types of polymerization reactions or supramolecular assembly to construct the 2 D networks were described;(2) Preparation methods—surface science, crystal engineering approaches and solution synthesis were introduced;(3) Functionalization and some early applications.
基金supported by the National Natural Science Foundation of China(62205183)the Research Grants Council of Hong Kong(ANR/RGC,Ref.No.A-CUHK404/21).
文摘Light–matter interactions in two-dimensional(2D)materials have been the focus of research since the discovery of graphene.The light–matter interaction length in 2D materials is,however,much shorter than that in bulk materials owing to the atomic nature of 2D materials.Plasmonic nanostructures are usually integrated with 2D materials to enhance the light–matter interactions,offering great opportunities for both fundamental research and technological applications.Nanoparticle-on-mirror(NPo M)structures with extremely confined optical fields are highly desired in this aspect.In addition,2D materials provide a good platform for the study of plasmonic fields with subnanometer resolution and quantum plasmonics down to the characteristic length scale of a single atom.A focused and up-to-date review article is highly desired for a timely summary of the progress in this rapidly growing field and to encourage more research efforts in this direction.In this review,we will first introduce the basic concepts of plasmonic modes in NPo M structures.Interactions between plasmons and quasi-particles in 2D materials,e.g.,excitons and phonons,from weak to strong coupling and potential applications will then be described in detail.Related phenomena in subnanometer metallic gaps separated by 2D materials,such as quantum tunneling,will also be touched.We will finally discuss phenomena and physical processes that have not been understood clearly and provide an outlook for future research.We believe that the hybrid systems of2D materials and NPo M structures will be a promising research field in the future.
基金Project supported by the National Natural Science Foundations of China(Grant No.61275047)the Research Project of Chinese Ministry of Education(Grant No.213009A)the Scientific and Technological Development Foundation of Jilin Province,China(Grant No.20130101031JC)
文摘Two-dimensional function photonic crystals, in which the dielectric constants of medium columns are the functions of space coordinates , are proposed and studied numerically. The band gaps structures of the photonic crystals for TE and TM waves are different from the two-dimensional conventional photonic crystals. Some absolute band gaps and semiDirac points are found. When the medium column radius and the function form of the dielectric constant are modulated, the numbers, width, and position of band gaps are changed, and the semi-Dirac point can either occur or disappear. Therefore,the special band gaps structures and semi-Dirac points can be achieved through the modulation on the two-dimensional function photonic crystals. The results will provide a new design method of optical devices based on the two-dimensional function photonic crystals.
文摘The algebraic solitary wave and its associated eigenvalue problem in a deep stratified fluid with a free surface and a shallow upper layer were studied. And its vertical structure was examined. An exact solution for the derived 2D Benjamin-Ono equation was obtained, and physical explanation was given with the corresponding dispersion relation. As a special case, the vertical structure of the weakly nonlinear internal wave for the Holmboe density distribution was numerically investigated, and the propagating mechanism of the internal wave was studied by using the ray theory.
基金Projects(50874045,51301194)supported by the National Natural Science Foundation of ChinaProject(2144057)supported by the Natural Science Foundation of Beijing Municipality,China
文摘Effect of network structure on plasticity and fracture mode of Zr?Al?Ni?Cu bulk metallic glasses (BMGs) was investigated. The microstructures of transversal and longitudinal sections were exposed by chemical etching and observed by scanning electron microscopy (SEM). The mechanical properties were examined by room-temperature uniaxial compression test. The results show that both plasticity and fracture mode are significantly affected by the network structure and the alteration occurs when the size of the network structure reaches up to a critical value. When the cell size (dc) of the network structure is ~3μm, Zr-based BMGs characterize in plasticity that decreases with increasingdc. The fracture mode gradually transforms from single 45° shear fracture to double 45° shear fracture and then cleavage fracture with increasingdc. In addition, the mechanisms of the transition of the plasticity and the fracture mode for these Zr-based BMGs are also discussed.
文摘The multilayered structure of the European airport network(EAN),composed of connections and flights between European cities,is analyzed through the k-core decomposition of the connections network.This decomposition allows to identify the core,bridge and periphery layers of the EAN.The core layer includes the best-connected cities,which include important business air traffic destinations.The periphery layer includes cities with lesser connections,which serve low populated areas where air travel is an economic alternative.The remaining cities form the bridge of the EAN,including important leisure travel origins and destinations.The multilayered structure of the EAN affects network robustness,as the EAN is more robust to isolation of nodes of the core,than to the isolation of a combination of core and bridge nodes.
基金supported by the National Natural Science Foundation of China(30371009, 30471218) Science Foundation of Fujian Department of Education (JA03059)
文摘In this paper, the hydrogen bonding network models of konjac glucomannan (KGM) are predicted in the approach of molecular dynamics (MD). These models have been proved by experiments whose results are consistent with those from simulation. The results show that the hydrogen bonding network structures of KGM are stable and the key linking points of hydrogen bonding network are at the O(6) and O(2) positions on KGM ring. Moreover, acety has significant influence on hydrogen bonding network and hydrogen bonding network structures are more stable after deacetylation.
文摘A zinc complex, [Zn(iso)_2(H_2O)_4](iso=C_6H_4NO_2^-), was synthesized and characterized by elemental analysis, thermal analysis and IR spectrum studies. The crystal structure of the complex was determined by X-ray diffraction. The crystal crystallizes in the triclinic system, molecular formula ZnC12H16N2O8, Mr=381.64, space group P with a = 6.338(1), b =6.919(1), c=9.277(1), α=96.28(1), β=104.91(1), γ=112.85(1)°, V=352.12(9)?3, Z=1, Dc=1.80g?cm-3 and F(000)=196, μ =1.791mm-1. The crystal structure was solved by direct methods for final R=0.0204 and Rw=0.0542 for 1258 observed reflections with [Fo>4σ(Fo)]. The crystal structure reveals that zinc ion is trans-octahedral with two pyridyl nitrogens and two aque oxygens at the equational positions and two aqua oxygens at the axial positions. The complex forms a three-dimensional network through intermolecular hydrogen bonds.
文摘This paper deals with a cyclic-periodic structure with a piezoelectric network. In such a system, there is not only mechanical connection but also electrical connection between adjacent periodic sectors. The objective is to learn whether the presence of a piezoelectric network would change the dynamic characteristics of the system. The background of the research is about vibration reduction of a bladed disk in an aero-engine, and the system is simulated by a lumped parameter model. The dynamic equations of the system are derived, and then the analytical solution corresponding to the eigenvalue problem is given. The vibration responses to single traveling wave excitations (EO excitations) and multiple traveling wave excitations (NEO excitations) are studied. The results show that the presence of a piezoelectric network would change the natural frequencies of the system compared with those of the system with the piezoelectric shunt circuit. The forced response is sensitive to the connection type and the elements of the network. An energy analysis of the electro-mechanical coupling system has been performed to understand its dynamic behavior, and the following conclusion is obtained: a vibration reduction to excitations whose primary har- monic component is not zero can be achieved by a parallel piezoelectric network, while a reduction to other excitations should be based on a series piezoelectric network.
基金supported by the National Natural Science Foundation of China(7110111671271170)+1 种基金the Program for New Century Excellent Talents in University(NCET-13-0475)the Basic Research Foundation of NPU(JC20120228)
文摘Finding out reasonable structures from bulky data is one of the difficulties in modeling of Bayesian network (BN), which is also necessary in promoting the application of BN. This pa- per proposes an immune algorithm based method (BN-IA) for the learning of the BN structure with the idea of vaccination. Further- more, the methods on how to extract the effective vaccines from local optimal structure and root nodes are also described in details. Finally, the simulation studies are implemented with the helicopter convertor BN model and the car start BN model. The comparison results show that the proposed vaccines and the BN-IA can learn the BN structure effectively and efficiently.
文摘Vibration monitoring by virtual sensing methods has been well developed for linear timeinvariant structures with limited sensors.However,few methods are proposed for Time-Varying(TV)structures which are inevitable in aerospace engineering.The core of vibration monitoring for TV structures is to describe the TV structural dynamic characteristics with accuracy and efficiency.This paper propose a new method using the Long Short-Term Memory(LSTM)networks for Continuously Variable Configuration Structures(CVCSs),which is an important subclass of TV structures.The configuration parameters are used to represent the time-varying dynamic characteristics by the‘‘freezing"method.The relationship between TV dynamic characteristics and vibration responses is established by LSTM,and can be generalized to estimate the responses with unknown TV processes benefiting from the time translation invariance of LSTM.A numerical example and a liquid-filled pipe experiment are used to test the performance of the proposed method.The results demonstrate that the proposed method can accurately estimate the unmeasured responses for CVCSs to reveal the actual characteristics in time-domain and modal-domain.Besides,the average one-step estimation time of responses is less than the sampling interval.Thus,the proposed method is promising to on-line estimate the important responses of TV structures.
基金supported by the National Natural Science Fundation of China(61573285)the Doctoral Fundation of China(2013ZC53037)
文摘Ordering based search methods have advantages over graph based search methods for structure learning of Bayesian networks in terms on the efficiency. With the aim of further increasing the accuracy of ordering based search methods, we first propose to increase the search space, which can facilitate escaping from the local optima. We present our search operators with majorizations, which are easy to implement. Experiments show that the proposed algorithm can obtain significantly more accurate results. With regard to the problem of the decrease on efficiency due to the increase of the search space, we then propose to add path priors as constraints into the swap process. We analyze the coefficient which may influence the performance of the proposed algorithm, the experiments show that the constraints can enhance the efficiency greatly, while has little effect on the accuracy. The final experiments show that, compared to other competitive methods, the proposed algorithm can find better solutions while holding high efficiency at the same time on both synthetic and real data sets.