The Riemann problem for a two-dimensional 2 x 2 nonstrictly hyperbolic system of nonlinear conservation laws has been solved thoroughly for any given initial data which are constant in each quadrant. The non-classical...The Riemann problem for a two-dimensional 2 x 2 nonstrictly hyperbolic system of nonlinear conservation laws has been solved thoroughly for any given initial data which are constant in each quadrant. The non-classical shockwaves, which are labelled as delta-shock waves, appear in some solutions. The solutions have been obtained are not unique. Due to the specific property of the system considered, there are no rarefaction waves in solution. This paper is divided into three parts. The first part constructs Riemann solutions for initial data involving two contact discontinuities while the second considers the case for other initial data. The last part briefly discusses the non-uniqueness of the solutions.展开更多
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el...As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.展开更多
Two-dimensional conjugated metal-organic framework(2D c-MOF)nanosheets have garnered significant research interest owing to their suite of distinctive properties.Consequently,diverse synthetic methodologies have been ...Two-dimensional conjugated metal-organic framework(2D c-MOF)nanosheets have garnered significant research interest owing to their suite of distinctive properties.Consequently,diverse synthetic methodologies have been established for the fabrication of 2D c-MOFs exhibiting welldefined nanosheet morphology.In addition,the structural engineering of 2D c-MOF nanosheets for energy storage and conversion has emerged as a prominent research focus.This review comprehensively summarizes recent advancements in 2D c-MOF nanosheets.We commence with a concise overview of diverse synthesis strategies for these materials.Subsequently,progress in their utilization as electrode materials or catalysts for batteries,supercapacitors,and electrocatalysis/photocatalysis is systematically examined.Finally,prevailing challenges and prospective research directions are discussed.Collectively,this review aims to stimulate the development of sophisticated 2D c-MOF nanosheets for high-performance energy applications.展开更多
Nanoscale confinement environments often affect the transport mechanisms of nanofluids.Understanding the dynamic behavior of molecules in two-dimensional(2D)confined channels is of great importance in the areas of sen...Nanoscale confinement environments often affect the transport mechanisms of nanofluids.Understanding the dynamic behavior of molecules in two-dimensional(2D)confined channels is of great importance in the areas of sensing,catalysis and energy storage.As a popular candidate for a new type of gas sensing material,MXenes have the problem of nonselectivity towards polar gases with slow responses,which severely limits their applications.Here,we report a study on regulating the confinement effect of 2D channels between MXene layers through annealing treatment and ion(Na^(+))intercalation for high-performance ammonia(NH_(3))sensing.Firstly,the annealing treatment accurately modulates the size of the 2D channels to effectively block the entry of large-size gas molecules and improve the selectivity for NH_(3).Ab initio molecular dynamics(AIMD)also confirms that the modulated channel size has a special"nano-pumping effect",which can accelerate the dynamic behavior of NH_(3) molecules in the 2D confined space.Moreover,the intercalation of Na+ions increases the adsorption capacity of NH_(3).Therefore,the"nano-pumping effect"and theintercalation of Na+ions effectively enhance the response speed and sensitivity of MXene to NH_(3),respectively.The experimental results show that the modified Ti_(3)C_(2) exhibits high sensitivity(0.17),rapid response(181 s),excellent selectivity and stability towards NH_(3).展开更多
The present paper deals with the numerical solution of a two-dimensional linear hyperbolic equation by using the element-free Galerkin (EFG) method which is based on the moving least-square approximation for the tes...The present paper deals with the numerical solution of a two-dimensional linear hyperbolic equation by using the element-free Galerkin (EFG) method which is based on the moving least-square approximation for the test and trial functions. A variational method is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Compared with numerical methods based on mesh, the EFG method for hyperbolic problems needs only the scattered nodes instead of meshing the domain of the problem. It neither requires any element connectivity nor suffers much degradation in accuracy when nodal arrangements are very irregular. The effectiveness of the EFG method for two-dimensional hyperbolic problems is investigated by two numerical examples in this paper.展开更多
In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial deriv...In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial derivative term and the forward and backward Euler method to discretize the time derivative term, the explicit and implicit upwind difference schemes are obtained respectively. It is proved that the explicit upwind scheme is conditionally stable and the implicit upwind scheme is unconditionally stable. Then the convergence of the schemes is derived. Numerical examples verify the results of theoretical analysis.展开更多
In this paper,we shall establish the superconvergence properties of the Runge-Kutta dis-continuous Galerkin method for solving two-dimensional linear constant hyperbolic equa-tion,where the upwind-biased numerical flu...In this paper,we shall establish the superconvergence properties of the Runge-Kutta dis-continuous Galerkin method for solving two-dimensional linear constant hyperbolic equa-tion,where the upwind-biased numerical flux is used.By suitably defining the correction function and deeply understanding the mechanisms when the spatial derivatives and the correction manipulations are carried out along the same or different directions,we obtain the superconvergence results on the node averages,the numerical fluxes,the cell averages,the solution and the spatial derivatives.The superconvergence properties in space are pre-served as the semi-discrete method,and time discretization solely produces an optimal order error in time.Some numerical experiments also are given.展开更多
The problem of determining the hyperbolic equation coefficient on two variables is considered. Some additional information is given by the trace of the direct problem solution on the hyperplane x = 0. The theorems of ...The problem of determining the hyperbolic equation coefficient on two variables is considered. Some additional information is given by the trace of the direct problem solution on the hyperplane x = 0. The theorems of local solvability and stability of the solution of the inverse problem are proved.展开更多
This paper is concerned with establishing a reduced-order extrapolating fi- nite volume element (FVE) format based on proper orthogonal decomposition (POD) for two-dimensional (2D) hyperbolic equations. For this...This paper is concerned with establishing a reduced-order extrapolating fi- nite volume element (FVE) format based on proper orthogonal decomposition (POD) for two-dimensional (2D) hyperbolic equations. For this purpose, a semi discrete variational format relative time and a fully discrete FVE format for the 2D hyperbolic equations are built, and a set of snapshots from the very few FVE solutions are extracted on the first very short time interval. Then, the POD basis from the snapshots is formulated, and the reduced-order POD extrapolating FVE format containing very few degrees of freedom but holding sufficiently high accuracy is built. Next, the error estimates of the reduced-order solutions and the algorithm procedure for solving the reduced-order for- mat are furnished. Finally, a numerical example is shown to confirm the correctness of theoretical conclusions. This means that the format is efficient and feasible to solve the 2D hyperbolic equations.展开更多
The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an over...The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.展开更多
A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface...A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.展开更多
This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This m...This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This model introduces a dependence between the two surplus levels,present in both the associated perturbations and the claims resulting from common shocks.Critical levels of capital injection and dividends are established for each of the two risks.The surplus levels are observed discretely at fixed intervals,guiding decisions on capital injection,dividends,and ruin at these junctures.This study employs a two-dimensional Fourier cosine series expansion method to approximate the finite time expected discounted operating cost until ruin.The ensuing approximation error is also quantified.The validity and accuracy of the method are corroborated through numerical examples.Furthermore,the research delves into the optimal capital allocation problem.展开更多
Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major ch...Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major challenge for their practical application.The design of battery separators has become a key aspect in addressing the challenge.MXenes,a promising two-dimensional(2D)material,offer exceptional conductivity,large surface area,high mechanical strength,and active sites for surface reactions.When assembled into layered films,MXenes form highly tunable two-dimensional channels ranging from a few angstroms to over 1 nm.These nanoconfined channels are instrumental in facilitating lithium-ion transport while effectively impeding the shuttle effect of LiPSs,which are essential for improving the specific capacity and cyclic stability of Li-S batteries.Substantial progress has been made in developing MXenes-based separators for Li-S batteries,yet there remains a research gap in summarizing advancements from the perspective of interlayer engineering.This entails maintaining the 2D nanochannels of layered MXenes-based separators while modulating the physicochemical environment within the MXenes interlayers through targeted modifications.This review highlights advancements in in situ modification of MXenes and their integration with 0D,1D,and 2D materials to construct laminated nanocomposite separators for Li-S batteries.The future development directions of MXenes-based materials in Li-S energy storage devices are also outlined,to drive further advancements in MXenes for Li-S battery separators.展开更多
In this paper,we establish a stability estimate for the isoperimetric inequality of horospherically convex domains in hyperbolic plane.This estimate involves a relationship between the Hausdorff distance to a geodesic...In this paper,we establish a stability estimate for the isoperimetric inequality of horospherically convex domains in hyperbolic plane.This estimate involves a relationship between the Hausdorff distance to a geodesic ball and the deficit in the isoperimetric inequality,where the coefficient of the deficit is a universal constant.展开更多
In this paper,we construct new examples of hyperbolic metasurfaces in CP^(3) and CP^(4),and discusses the existence of solutions for a class of Fermat type functional equations.
Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades ...Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades and continue to face persistent challenges related to light transmission,biosafety,and visual appearance.Here,we report the discovery of two-dimensional(2D)TiO_(2),characterized by a micro-sized lateral dimension(~1.6μm)and atomic-scale thickness,which fundamentally resolves these long-standing issues.The 2D structure enables exceptional light management,achieving 80%visible light transparency—rendering it nearly invisible on the skin—while maintaining UV-blocking performance comparable to unmodified rutile TiO_(2)nanoparticles.Its larger lateral size results in a two-orders-of-magnitude reduction in skin penetration(0.96 w/w%),significantly enhancing biosafety.Moreover,the unique layered architecture inherently suppresses the generation of reactive oxygen species(ROS)under sunlight exposure,reducing the ROS generation rate by 50-fold compared to traditional TiO_(2)nanoparticles.Through precise metal element modulation,we further developed the first customizable sunscreen material capable of tuning UV protection ranges and automatically matching diverse skin tones.The 2D TiO_(2)offers a potentially transformative approach to modern sunscreen formulation,combining superior UV protection,enhanced safety and a natural appearance.展开更多
For multidimensional first order semilinear hyperbolic systems of diagonal form without self-interaction,we show the global nonlinear stability of traveling wave solutions.
In recent years,the rapid advancement of mega-constellations in Low Earth Orbit(LEO)has led to the emergence of satellite communication networks characterized by a complex interplay between high-and low-altitude orbit...In recent years,the rapid advancement of mega-constellations in Low Earth Orbit(LEO)has led to the emergence of satellite communication networks characterized by a complex interplay between high-and low-altitude orbits and by unprecedented scale.Traditional network-representation methodologies in Euclidean space are insufficient to capture the dynamics and evolution of high-dimensional complex networks.By contrast,hyperbolic space offers greater scalability and stronger representational capacity than Euclidean-space methods,thereby providing a more suitable framework for representing large-scale satellite communication networks.This paper aims to address the burgeoning demands of large-scale space-air-ground integrated satellite communication networks by providing a comprehensive review of representation-learning methods for large-scale complex networks and their application within hyperbolic space.First,we briefly introduce several equivalent models of hyperbolic space.Then,we summarize existing representation methods and applications for large-scale complex networks.Building on these advances,we propose representation methods for complex satellite communication networks in hyperbolic space and discuss potential application prospects.Finally,we highlight several pressing directions for future research.展开更多
Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high ef...Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high efficiency and reliability.However,the ambiguity surrounding the output flow characteristics of individual two-dimensional pumps poses a significant challenge in achieving precise closed-loop control of the EHA positions.To address this issue,this study established a comprehensive numerical model that included gap leakage to analyze the impact of leakage on the output flow characteristics of a two-dimensional piston pump.The validity of the numerical analysis was indirectly confirmed through meticulous measurements of the leakage and volumetric efficiency,ensuring robust results.The research findings indicated that,at lower pump speeds,leakage significantly affected the output flow rate,leading to potential inefficiencies in the system.Conversely,at higher rotational speeds,the impact of leakage was less pronounced,implying that the influence of leakage on the pump outlet flow must be carefully considered and managed for EHAs to perform position servo control.Additionally,the research demonstrates that two-dimensional motion does not have a unique or additional effect on pump leakage,thus simplifying the design considerations.Finally,the study concluded that maintaining an oil-filled leakage environment is beneficial because it helps reduce the impact of leakage and enhances the overall volumetric efficiency of the pump system.展开更多
Environmental catalysis has been considered one of the important research topics.Some technologies(e.g.,photocatalysis and electrocatalysis)have been intensively developed with the advance of synthetic technologies of...Environmental catalysis has been considered one of the important research topics.Some technologies(e.g.,photocatalysis and electrocatalysis)have been intensively developed with the advance of synthetic technologies of catalytical materials.In 2019,we discussed the development trend of this field,and wrote a roadmap on this topic in Chinese Chemical Letters(30(2019)2065-2088).Nowadays,we discuss it again from a new viewpoint along this road.In this paper,several subtopics are discussed,e.g.,photocatalysis based on titanium dioxide,violet phosphorus,graphitic carbon and covalent organic frameworks,electrocatalysts based on carbon,metal-and covalent-organic framework.Finally,we hope that this roadmap can enrich the development of two-dimensional materials in environmental catalysis with novel understanding,and give useful inspiration to explore new catalysts for practical applications.展开更多
文摘The Riemann problem for a two-dimensional 2 x 2 nonstrictly hyperbolic system of nonlinear conservation laws has been solved thoroughly for any given initial data which are constant in each quadrant. The non-classical shockwaves, which are labelled as delta-shock waves, appear in some solutions. The solutions have been obtained are not unique. Due to the specific property of the system considered, there are no rarefaction waves in solution. This paper is divided into three parts. The first part constructs Riemann solutions for initial data involving two contact discontinuities while the second considers the case for other initial data. The last part briefly discusses the non-uniqueness of the solutions.
基金supported by the NSFC(12474071)Natural Science Foundation of Shandong Province(ZR2024YQ051,ZR2025QB50)+6 种基金Guangdong Basic and Applied Basic Research Foundation(2025A1515011191)the Shanghai Sailing Program(23YF1402200,23YF1402400)funded by Basic Research Program of Jiangsu(BK20240424)Open Research Fund of State Key Laboratory of Crystal Materials(KF2406)Taishan Scholar Foundation of Shandong Province(tsqn202408006,tsqn202507058)Young Talent of Lifting engineering for Science and Technology in Shandong,China(SDAST2024QTB002)the Qilu Young Scholar Program of Shandong University。
文摘As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies.
基金supported by the National Natural Science Foundation of China(Nos.22205196 and 52371240)the Natural Science Foundation of Jiangsu Province(No.BK20210790)the start-up fundings from Yangzhou University.
文摘Two-dimensional conjugated metal-organic framework(2D c-MOF)nanosheets have garnered significant research interest owing to their suite of distinctive properties.Consequently,diverse synthetic methodologies have been established for the fabrication of 2D c-MOFs exhibiting welldefined nanosheet morphology.In addition,the structural engineering of 2D c-MOF nanosheets for energy storage and conversion has emerged as a prominent research focus.This review comprehensively summarizes recent advancements in 2D c-MOF nanosheets.We commence with a concise overview of diverse synthesis strategies for these materials.Subsequently,progress in their utilization as electrode materials or catalysts for batteries,supercapacitors,and electrocatalysis/photocatalysis is systematically examined.Finally,prevailing challenges and prospective research directions are discussed.Collectively,this review aims to stimulate the development of sophisticated 2D c-MOF nanosheets for high-performance energy applications.
基金supported by the National Natural Science Foundation of China(Nos.52422505 and 12274124)the Innovative Research Group Project of the National Natural Science Foundation of China(No.52321002).
文摘Nanoscale confinement environments often affect the transport mechanisms of nanofluids.Understanding the dynamic behavior of molecules in two-dimensional(2D)confined channels is of great importance in the areas of sensing,catalysis and energy storage.As a popular candidate for a new type of gas sensing material,MXenes have the problem of nonselectivity towards polar gases with slow responses,which severely limits their applications.Here,we report a study on regulating the confinement effect of 2D channels between MXene layers through annealing treatment and ion(Na^(+))intercalation for high-performance ammonia(NH_(3))sensing.Firstly,the annealing treatment accurately modulates the size of the 2D channels to effectively block the entry of large-size gas molecules and improve the selectivity for NH_(3).Ab initio molecular dynamics(AIMD)also confirms that the modulated channel size has a special"nano-pumping effect",which can accelerate the dynamic behavior of NH_(3) molecules in the 2D confined space.Moreover,the intercalation of Na+ions increases the adsorption capacity of NH_(3).Therefore,the"nano-pumping effect"and theintercalation of Na+ions effectively enhance the response speed and sensitivity of MXene to NH_(3),respectively.The experimental results show that the modified Ti_(3)C_(2) exhibits high sensitivity(0.17),rapid response(181 s),excellent selectivity and stability towards NH_(3).
基金Project supported by the Natural Science Foundation of Ningbo, China (Grant Nos 2009A610014, 2009A610154, 2008A610020 and 2007A610050)
文摘The present paper deals with the numerical solution of a two-dimensional linear hyperbolic equation by using the element-free Galerkin (EFG) method which is based on the moving least-square approximation for the test and trial functions. A variational method is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Compared with numerical methods based on mesh, the EFG method for hyperbolic problems needs only the scattered nodes instead of meshing the domain of the problem. It neither requires any element connectivity nor suffers much degradation in accuracy when nodal arrangements are very irregular. The effectiveness of the EFG method for two-dimensional hyperbolic problems is investigated by two numerical examples in this paper.
文摘In this paper, we consider the initial-boundary value problem of two-dimensional first-order linear hyperbolic equation with variable coefficients. By using the upwind difference method to discretize the spatial derivative term and the forward and backward Euler method to discretize the time derivative term, the explicit and implicit upwind difference schemes are obtained respectively. It is proved that the explicit upwind scheme is conditionally stable and the implicit upwind scheme is unconditionally stable. Then the convergence of the schemes is derived. Numerical examples verify the results of theoretical analysis.
基金Yuan Xu is supported by the NSFC Grant 11671199Qiang Zhang is supported by the NSFC Grant 11671199.
文摘In this paper,we shall establish the superconvergence properties of the Runge-Kutta dis-continuous Galerkin method for solving two-dimensional linear constant hyperbolic equa-tion,where the upwind-biased numerical flux is used.By suitably defining the correction function and deeply understanding the mechanisms when the spatial derivatives and the correction manipulations are carried out along the same or different directions,we obtain the superconvergence results on the node averages,the numerical fluxes,the cell averages,the solution and the spatial derivatives.The superconvergence properties in space are pre-served as the semi-discrete method,and time discretization solely produces an optimal order error in time.Some numerical experiments also are given.
文摘The problem of determining the hyperbolic equation coefficient on two variables is considered. Some additional information is given by the trace of the direct problem solution on the hyperplane x = 0. The theorems of local solvability and stability of the solution of the inverse problem are proved.
基金Project supported by the National Natural Science Foundation of China(Nos.11271127 and11671106)
文摘This paper is concerned with establishing a reduced-order extrapolating fi- nite volume element (FVE) format based on proper orthogonal decomposition (POD) for two-dimensional (2D) hyperbolic equations. For this purpose, a semi discrete variational format relative time and a fully discrete FVE format for the 2D hyperbolic equations are built, and a set of snapshots from the very few FVE solutions are extracted on the first very short time interval. Then, the POD basis from the snapshots is formulated, and the reduced-order POD extrapolating FVE format containing very few degrees of freedom but holding sufficiently high accuracy is built. Next, the error estimates of the reduced-order solutions and the algorithm procedure for solving the reduced-order for- mat are furnished. Finally, a numerical example is shown to confirm the correctness of theoretical conclusions. This means that the format is efficient and feasible to solve the 2D hyperbolic equations.
基金the support from the National Natural Science Foundation of China(22272004,62272041)the Fundamental Research Funds for the Central Universities(YWF-22-L-1256)+1 种基金the National Key R&D Program of China(2023YFC3402600)the Beijing Institute of Technology Research Fund Program for Young Scholars(No.1870011182126)。
文摘The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.
文摘A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.
基金supported by the Shihezi University High-Level Talents Research Startup Project(Project No.RCZK202521)the National Natural Science Foundation of China(Grant Nos.12271066,11871121,12171405)+1 种基金the Chongqing Natural Science Foundation Joint Fund for Innovation and Development Project(Project No.CSTB2024NSCQLZX0085)the Chongqing Normal University Foundation(Grant No.23XLB018).
文摘This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This model introduces a dependence between the two surplus levels,present in both the associated perturbations and the claims resulting from common shocks.Critical levels of capital injection and dividends are established for each of the two risks.The surplus levels are observed discretely at fixed intervals,guiding decisions on capital injection,dividends,and ruin at these junctures.This study employs a two-dimensional Fourier cosine series expansion method to approximate the finite time expected discounted operating cost until ruin.The ensuing approximation error is also quantified.The validity and accuracy of the method are corroborated through numerical examples.Furthermore,the research delves into the optimal capital allocation problem.
基金supported by Beijing Natural Science Foundation(Nos.2232037 and 2242035)the National Natural Science Foundation of China(Nos.22005012,22105012 and 51803183)+1 种基金Chunhui Plan Cooperative Project of Ministry of Education(No.202201298)the China Postdoctoral Science Foundation Funded Project(No.2023M733520).
文摘Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major challenge for their practical application.The design of battery separators has become a key aspect in addressing the challenge.MXenes,a promising two-dimensional(2D)material,offer exceptional conductivity,large surface area,high mechanical strength,and active sites for surface reactions.When assembled into layered films,MXenes form highly tunable two-dimensional channels ranging from a few angstroms to over 1 nm.These nanoconfined channels are instrumental in facilitating lithium-ion transport while effectively impeding the shuttle effect of LiPSs,which are essential for improving the specific capacity and cyclic stability of Li-S batteries.Substantial progress has been made in developing MXenes-based separators for Li-S batteries,yet there remains a research gap in summarizing advancements from the perspective of interlayer engineering.This entails maintaining the 2D nanochannels of layered MXenes-based separators while modulating the physicochemical environment within the MXenes interlayers through targeted modifications.This review highlights advancements in in situ modification of MXenes and their integration with 0D,1D,and 2D materials to construct laminated nanocomposite separators for Li-S batteries.The future development directions of MXenes-based materials in Li-S energy storage devices are also outlined,to drive further advancements in MXenes for Li-S battery separators.
文摘In this paper,we establish a stability estimate for the isoperimetric inequality of horospherically convex domains in hyperbolic plane.This estimate involves a relationship between the Hausdorff distance to a geodesic ball and the deficit in the isoperimetric inequality,where the coefficient of the deficit is a universal constant.
基金Supported by the National Natural Foundation of China(Grant No.12361028)the Foundation of Education Department of Jiangxi(Grant Nos.GJJ212305 and GJJ2202228)。
文摘In this paper,we construct new examples of hyperbolic metasurfaces in CP^(3) and CP^(4),and discusses the existence of solutions for a class of Fermat type functional equations.
基金supported by the National Key Research and Development Project(No.2019YFA0705403)the National Natural Science Foundation of China(No.T2293693,52273311)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2020B0301030002)and the Shenzhen Basic Research Project(Nos.WDZC20200824091903001,JSGG20220831105402004,JCYJ20220818100806014)Shenzhen Major Science and Technology Projects(Nos.KCXFZ20240903094013018,KCXFZ20240903094203005)。
文摘Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades and continue to face persistent challenges related to light transmission,biosafety,and visual appearance.Here,we report the discovery of two-dimensional(2D)TiO_(2),characterized by a micro-sized lateral dimension(~1.6μm)and atomic-scale thickness,which fundamentally resolves these long-standing issues.The 2D structure enables exceptional light management,achieving 80%visible light transparency—rendering it nearly invisible on the skin—while maintaining UV-blocking performance comparable to unmodified rutile TiO_(2)nanoparticles.Its larger lateral size results in a two-orders-of-magnitude reduction in skin penetration(0.96 w/w%),significantly enhancing biosafety.Moreover,the unique layered architecture inherently suppresses the generation of reactive oxygen species(ROS)under sunlight exposure,reducing the ROS generation rate by 50-fold compared to traditional TiO_(2)nanoparticles.Through precise metal element modulation,we further developed the first customizable sunscreen material capable of tuning UV protection ranges and automatically matching diverse skin tones.The 2D TiO_(2)offers a potentially transformative approach to modern sunscreen formulation,combining superior UV protection,enhanced safety and a natural appearance.
基金supported by the National Natural Science Foundation of China(12371217)the Fundamental Research Funds for the Central Universities(2232022D-27).
文摘For multidimensional first order semilinear hyperbolic systems of diagonal form without self-interaction,we show the global nonlinear stability of traveling wave solutions.
文摘In recent years,the rapid advancement of mega-constellations in Low Earth Orbit(LEO)has led to the emergence of satellite communication networks characterized by a complex interplay between high-and low-altitude orbits and by unprecedented scale.Traditional network-representation methodologies in Euclidean space are insufficient to capture the dynamics and evolution of high-dimensional complex networks.By contrast,hyperbolic space offers greater scalability and stronger representational capacity than Euclidean-space methods,thereby providing a more suitable framework for representing large-scale satellite communication networks.This paper aims to address the burgeoning demands of large-scale space-air-ground integrated satellite communication networks by providing a comprehensive review of representation-learning methods for large-scale complex networks and their application within hyperbolic space.First,we briefly introduce several equivalent models of hyperbolic space.Then,we summarize existing representation methods and applications for large-scale complex networks.Building on these advances,we propose representation methods for complex satellite communication networks in hyperbolic space and discuss potential application prospects.Finally,we highlight several pressing directions for future research.
基金Supported by National Natural Science Foundation of China(Grant No.52205072).
文摘Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high efficiency and reliability.However,the ambiguity surrounding the output flow characteristics of individual two-dimensional pumps poses a significant challenge in achieving precise closed-loop control of the EHA positions.To address this issue,this study established a comprehensive numerical model that included gap leakage to analyze the impact of leakage on the output flow characteristics of a two-dimensional piston pump.The validity of the numerical analysis was indirectly confirmed through meticulous measurements of the leakage and volumetric efficiency,ensuring robust results.The research findings indicated that,at lower pump speeds,leakage significantly affected the output flow rate,leading to potential inefficiencies in the system.Conversely,at higher rotational speeds,the impact of leakage was less pronounced,implying that the influence of leakage on the pump outlet flow must be carefully considered and managed for EHAs to perform position servo control.Additionally,the research demonstrates that two-dimensional motion does not have a unique or additional effect on pump leakage,thus simplifying the design considerations.Finally,the study concluded that maintaining an oil-filled leakage environment is beneficial because it helps reduce the impact of leakage and enhances the overall volumetric efficiency of the pump system.
基金supported by the National Natural Science Foundation of China(Nos.52272290,21972030,52073119,and 52373210)the Natural Science Foundation of Jilin Province(No.20230101029JC)+1 种基金the Fundamental Research Program of Shanxi Province(No.202303021212159)the Monash University Malaysia–ASEAN grant(No.ASE-000010)。
文摘Environmental catalysis has been considered one of the important research topics.Some technologies(e.g.,photocatalysis and electrocatalysis)have been intensively developed with the advance of synthetic technologies of catalytical materials.In 2019,we discussed the development trend of this field,and wrote a roadmap on this topic in Chinese Chemical Letters(30(2019)2065-2088).Nowadays,we discuss it again from a new viewpoint along this road.In this paper,several subtopics are discussed,e.g.,photocatalysis based on titanium dioxide,violet phosphorus,graphitic carbon and covalent organic frameworks,electrocatalysts based on carbon,metal-and covalent-organic framework.Finally,we hope that this roadmap can enrich the development of two-dimensional materials in environmental catalysis with novel understanding,and give useful inspiration to explore new catalysts for practical applications.