期刊文献+
共找到3,338篇文章
< 1 2 167 >
每页显示 20 50 100
Performance analysis and design of MIMO-OFDM system using concatenated forward error correction codes 被引量:3
1
作者 Arun Agarwal Saurabh N.Mehta 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1322-1343,共22页
This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shif... This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shift keying(BPSK), quadrature phase shift keying(QPSK), quadrature amplitude modulation(QAM)-16 and QAM-64 with four error correction codes(convolutional code(CC), Reed-Solomon code(RSC)+CC, low density parity check(LDPC)+CC, Turbo+CC) is studied under three channel models(additive white Guassian noise(AWGN), Rayleigh, Rician) and three different antenna configurations(2×2, 2×4, 4×4). The bit error rate(BER) and the peak signal to noise ratio(PSNR) are taken as the measures of performance. The binary data and the color image data are transmitted and the graphs are plotted for various modulations with different channels and error correction codes. Analysis on the performance measures confirm that the Turbo + CC code in 4×4 configurations exhibits better performance. 展开更多
关键词 bit error rate (BER) convolutional code (CC) forward error correction peak signal to noise ratio (PSNR) Turbo code
在线阅读 下载PDF
Lowering the Error Floor of ADMM Penalized Decoder for LDPC Codes 被引量:1
2
作者 Jiao Xiaopeng Mu Jianjun 《China Communications》 SCIE CSCD 2016年第8期127-135,共9页
Decoding by alternating direction method of multipliers(ADMM) is a promising linear programming decoder for low-density parity-check(LDPC) codes. In this paper, we propose a two-step scheme to lower the error floor of... Decoding by alternating direction method of multipliers(ADMM) is a promising linear programming decoder for low-density parity-check(LDPC) codes. In this paper, we propose a two-step scheme to lower the error floor of LDPC codes with ADMM penalized decoder.For the undetected errors that cannot be avoided at the decoder side, we modify the code structure slightly to eliminate low-weight code words. For the detected errors induced by small error-prone structures, we propose a post-processing method for the ADMM penalized decoder. Simulation results show that the error floor can be reduced significantly over three illustrated LDPC codes by the proposed two-step scheme. 展开更多
关键词 LDPC codes linear programming decoding alternating direction method of multipliers(ADMM) error floor
在线阅读 下载PDF
Efficient unequal error protection for online fountain codes 被引量:1
3
作者 SHI Pengcheng WANG Zhenyong +1 位作者 LI Dezhi LYU Haibo 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期286-293,共8页
In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in... In this paper,an efficient unequal error protection(UEP)scheme for online fountain codes is proposed.In the buildup phase,the traversing-selection strategy is proposed to select the most important symbols(MIS).Then,in the completion phase,the weighted-selection strategy is applied to provide low overhead.The performance of the proposed scheme is analyzed and compared with the existing UEP online fountain scheme.Simulation results show that in terms of MIS and the least important symbols(LIS),when the bit error ratio is 10-4,the proposed scheme can achieve 85%and 31.58%overhead reduction,respectively. 展开更多
关键词 online fountain code random graph unequal error protection(UEP) rateless code
在线阅读 下载PDF
A Comparison of Error Correction Models for Student’s Error Codes Based on Deep Learning 被引量:1
4
作者 Tao Lin Jian Wang +2 位作者 Qifan Jian Zhiming Wu Zhenbo Zhang 《计算机教育》 2022年第12期137-142,共6页
Automatically correcting students’code errors using deep learning is an effective way to reduce the burden of teachers and to enhance the effects of students’learning.However,code errors vary greatly,and the adaptab... Automatically correcting students’code errors using deep learning is an effective way to reduce the burden of teachers and to enhance the effects of students’learning.However,code errors vary greatly,and the adaptability of fixing techniques may vary for different types of code errors.How to choose the appropriate methods to fix different types of errors is still an unsolved problem.To this end,this paper first classifies code errors by Java novice programmers based on Delphi analysis,and compares the effectiveness of different deep learning models(CuBERT,GraphCodeBERT and GGNN)fixing different types of errors.The results indicated that the 3 models differed significantly in their classification accuracy on different error codes,while the error correction model based on the Bert structure showed better code correction potential for beginners’codes. 展开更多
关键词 Deep learning code error correction code error classification
在线阅读 下载PDF
A New Class of Nonlinear Error Control Codes Based on Neural Networks 被引量:1
5
作者 Jin Fan Fan Junbo Deng Xingming(School of Computer and Communicalion Engineering,Southwest Jiaolong University),Chengdu 610031, Chiua 《Journal of Modern Transportation》 1995年第2期109-116,共8页
By mcans of stable attractors of discret Hopfield neural network (DHNN) , anew class of nonlinear error control codes is sugsested and some relativetheorems are presented. A kind of single error control codes is also ... By mcans of stable attractors of discret Hopfield neural network (DHNN) , anew class of nonlinear error control codes is sugsested and some relativetheorems are presented. A kind of single error control codes is also given forillustrating this new approach. 展开更多
关键词 error control neural networks nonlinear codes
在线阅读 下载PDF
Global receptive field transformer decoder method on quantum surface code data and syndrome error correction
6
作者 Ao-Qing Li Ce-Wen Tian +2 位作者 Xiao-Xuan Xu Hong-Yang Ma Jun-Qing Liang 《Chinese Physics B》 2025年第3期267-276,共10页
Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in cu... Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in current quantum devices exceed the error correction thresholds required for effective algorithm execution.Therefore,quantum error correction technology is crucial to achieving reliable quantum computing.In this work,we study a topological surface code with a two-dimensional lattice structure that protects quantum information by introducing redundancy across multiple qubits and using syndrome qubits to detect and correct errors.However,errors can occur not only in data qubits but also in syndrome qubits,and different types of errors may generate the same syndromes,complicating the decoding task and creating a need for more efficient decoding methods.To address this challenge,we used a transformer decoder based on an attention mechanism.By mapping the surface code lattice,the decoder performs a self-attention process on all input syndromes,thereby obtaining a global receptive field.The performance of the decoder was evaluated under a phenomenological error model.Numerical results demonstrate that the decoder achieved a decoding accuracy of 93.8%.Additionally,we obtained decoding thresholds of 5%and 6.05%at maximum code distances of 7 and 9,respectively.These results indicate that the decoder used demonstrates a certain capability in correcting noise errors in surface codes. 展开更多
关键词 quantum error correction surface code transformer decoder
原文传递
ERROR-DETECTING CODES AND UNDETECTED ERROR PROBABILITIES
7
作者 徐大专 《Journal of Electronics(China)》 1994年第1期37-43,共7页
The definition of good codes for error-detection is given. It is proved that a (n, k) linear block code in GF(q) are the good code for error-detection, if and only if its dual code is also. A series of new results abo... The definition of good codes for error-detection is given. It is proved that a (n, k) linear block code in GF(q) are the good code for error-detection, if and only if its dual code is also. A series of new results about the good codes for error-detection are derived. New lower bounds for undetected error probabilities are obtained, which are relative to n and k only, and not the weight structure of the codes. 展开更多
关键词 Information theory Linear BLOCK code Dual code Undetected error PROBABILITY GOOD code for error-detection
在线阅读 下载PDF
Matroidal Error Correction Networks and Linear Network Error Correction MDS Codes
8
作者 ZHOU Hang LIU Guangjun 《Wuhan University Journal of Natural Sciences》 CAS 2013年第6期477-483,共7页
In this paper, we further study the connections between linear network error correction codes and representable matroids. We extend the concept of matroidal network introduced by Dougherty et al. to a generalized case... In this paper, we further study the connections between linear network error correction codes and representable matroids. We extend the concept of matroidal network introduced by Dougherty et al. to a generalized case when errors occur in multi- ple channels. Importantly, we show the necessary and sufficient conditions on the existence of linear network error correction mul- ticast/broadcast/dispersion maximum distance separable (MDS) code on a matroidal error correction network. 展开更多
关键词 network error correction code error pattern imagi-nary error channels extended network MATROID
原文传递
Generalized Minimum Rank Distance of Variable-Rate Linear Network Error Correction Codes
9
作者 ZHOU Hang 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2021年第1期19-23,共5页
By extending the notion of the minimum distance for linear network error correction code(LNEC), this paper introduces the concept of generalized minimum rank distance(GMRD) of variable-rate linear network error correc... By extending the notion of the minimum distance for linear network error correction code(LNEC), this paper introduces the concept of generalized minimum rank distance(GMRD) of variable-rate linear network error correction codes. The basic properties of GMRD are investigated. It is proved that GMRD can characterize the error correction/detection capability of variable-rate linear network error correction codes when the source transmits the messages at several different rates. 展开更多
关键词 network error correction code error pattern generalized minimum distance variable-rate
原文传递
Message Authentication Scheme Based on Quantum Error-correction Codes 被引量:1
10
作者 Ying Guo Guihua Zeng Yun Mao 《通讯和计算机(中英文版)》 2006年第7期36-39,共4页
关键词 美国昆腾公司 技术鉴定 编译程序 技术创新
在线阅读 下载PDF
Joint Distortion Model for Progressive Image Transmission Using Error Correcting Arithmetic Codes
11
作者 刘军清 孙军 龙沪强 《Journal of Shanghai Jiaotong university(Science)》 EI 2008年第1期16-20,共5页
A novel joint source channel distortion model was proposed, which can essentially estimate the average distortion in progressive image transmission. To improve the precision of the model, the redundancy generated by a... A novel joint source channel distortion model was proposed, which can essentially estimate the average distortion in progressive image transmission. To improve the precision of the model, the redundancy generated by a forbidden symbol in the arithmetic codes is used to distinguish the quantization distortion and the channel distortion, all the coefficients from the first error one to the end of the sequence are set to be a value within the variance range of the coefficients instead of zero, then the error propagation coming from the entropy coding can be essentially estimated, which is disregarded in the most conventional joint source channel coding (JSCC) systems. The precision of the model in terms of average peak-signal-to-noise has been improved about 0.5 dB compared to classical works. An efficient unequal error protection system based on the model is developed, and can be used in the wireless communication systems. 展开更多
关键词 joint source channel coding (JSCC) distortion model arithmetic codes forbidden symbol unequal error protection
在线阅读 下载PDF
Low-overhead fault-tolerant error correction scheme based on quantum stabilizer codes
12
作者 Xiu-Bo Chen Li-Yun Zhao +4 位作者 Gang Xu Xing-Bo Pan Si-Yi Chen Zhen-Wen Cheng Yi-Xian Yang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期143-150,共8页
Fault-tolerant error-correction(FTEC)circuit is the foundation for achieving reliable quantum computation and remote communication.However,designing a fault-tolerant error correction scheme with a solid error-correcti... Fault-tolerant error-correction(FTEC)circuit is the foundation for achieving reliable quantum computation and remote communication.However,designing a fault-tolerant error correction scheme with a solid error-correction ability and low overhead remains a significant challenge.In this paper,a low-overhead fault-tolerant error correction scheme is proposed for quantum communication systems.Firstly,syndrome ancillas are prepared into Bell states to detect errors caused by channel noise.We propose a detection approach that reduces the propagation path of quantum gate fault and reduces the circuit depth by splitting the stabilizer generator into X-type and Z-type.Additionally,a syndrome extraction circuit is equipped with two flag qubits to detect quantum gate faults,which may also introduce errors into the code block during the error detection process.Finally,analytical results are provided to demonstrate the fault-tolerant performance of the proposed FTEC scheme with the lower overhead of the ancillary qubits and circuit depth. 展开更多
关键词 fault-tolerant error correction quantum stabilizer code gate fault quantum circuit
原文传递
Approximate error correction scheme for three-dimensional surface codes based reinforcement learning
13
作者 曲英杰 陈钊 +1 位作者 王伟杰 马鸿洋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期229-240,共12页
Quantum error correction technology is an important method to eliminate errors during the operation of quantum computers.In order to solve the problem of influence of errors on physical qubits,we propose an approximat... Quantum error correction technology is an important method to eliminate errors during the operation of quantum computers.In order to solve the problem of influence of errors on physical qubits,we propose an approximate error correction scheme that performs dimension mapping operations on surface codes.This error correction scheme utilizes the topological properties of error correction codes to map the surface code dimension to three dimensions.Compared to previous error correction schemes,the present three-dimensional surface code exhibits good scalability due to its higher redundancy and more efficient error correction capabilities.By reducing the number of ancilla qubits required for error correction,this approach achieves savings in measurement space and reduces resource consumption costs.In order to improve the decoding efficiency and solve the problem of the correlation between the surface code stabilizer and the 3D space after dimension mapping,we employ a reinforcement learning(RL)decoder based on deep Q-learning,which enables faster identification of the optimal syndrome and achieves better thresholds through conditional optimization.Compared to the minimum weight perfect matching decoding,the threshold of the RL trained model reaches 0.78%,which is 56%higher and enables large-scale fault-tolerant quantum computation. 展开更多
关键词 fault-tolerant quantum computing surface code approximate error correction reinforcement learning
原文传递
Quantum Codes Do Not Increase Fidelity against Isotropic Errors
14
作者 Jesús Lacalle Luis Miguel Pozo-Coronado +1 位作者 André Luiz Fonseca de Oliveira Rafael Martín-Cuevas 《Journal of Applied Mathematics and Physics》 2023年第2期555-571,共17页
In this article, we study the ability of error-correcting quantum codes to increase the fidelity of quantum states throughout a quantum computation. We analyze arbitrary quantum codes that encode all qubits involved i... In this article, we study the ability of error-correcting quantum codes to increase the fidelity of quantum states throughout a quantum computation. We analyze arbitrary quantum codes that encode all qubits involved in the computation, and we study the evolution of n-qubit fidelity from the end of one application of the correcting circuit to the end of the next application. We assume that the correcting circuit does not introduce new errors, that it does not increase the execution time (i.e. its application takes zero seconds) and that quantum errors are isotropic. We show that the quantum code increases the fidelity of the states perturbed by quantum errors but that this improvement is not enough to justify the use of quantum codes. Namely, we prove that, taking into account that the time interval between the application of the two corrections is multiplied (at least) by the number of qubits n (due to the coding), the best option is not to use quantum codes, since the fidelity of the uncoded state over a time interval n times smaller is greater than that of the state resulting from the quantum code correction. 展开更多
关键词 Quantum error Correcting codes Isotropic Quantum Computing errors Quantum Computing error Fidelity Quantum Computing error Variance
在线阅读 下载PDF
A Construction of Quantum Error-Locating Codes
15
作者 樊继豪 陈汉武 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第1期37-40,共4页
We present the construction of quantum error-locating(QEL) codes based on classical error-locating(EL)codes. Similar to classical EL codes, QEL codes lie midway between quantum error-correcting codes and quantum error... We present the construction of quantum error-locating(QEL) codes based on classical error-locating(EL)codes. Similar to classical EL codes, QEL codes lie midway between quantum error-correcting codes and quantum errordetecting codes. Then QEL codes can locate qubit errors within one sub-block of the received qubit symbols but do not need to determine the exact locations of the erroneous qubits. We show that, an e-error-locating code derived from an arbitrary binary cyclic code with generator polynomial g(x), can lead to a QEL code with e error-locating abilities, only if g(x) does not contain the(1 + x)-factor. 展开更多
关键词 quantum error-correcting code error-locating code cyclic code
原文传递
Homomorphic Error-Control Codes for Linear Network Coding in Packet Networks
16
作者 Xiaodong Han Fei Gao 《China Communications》 SCIE CSCD 2017年第9期178-189,共12页
In this work, the homomorphism of the classic linear block code in linear network coding for the case of binary field and its extensions is studied. It is proved that the classic linear error-control block code is hom... In this work, the homomorphism of the classic linear block code in linear network coding for the case of binary field and its extensions is studied. It is proved that the classic linear error-control block code is homomorphic network error-control code in network coding. That is, if the source packets at the source node for a linear network coding are precoded using a linear block code, then every packet flowing in the network regarding to the source satisfies the same constraints as the source. As a consequence, error detection and correction can be performed at every intermediate nodes of multicast flow, rather than only at the destination node in the conventional way, which can help to identify and correct errors timely at the error-corrupted link and save the cost of forwarding error-corrupted data to the destination node when the intermediate nodes are ignorant of the errors. In addition, three examples are demonstrated which show that homomorphic linear code can be combined with homomorphic signature, McEliece public-key cryptosystem and unequal error protection respectively and thus have a great potential of practical utility. 展开更多
关键词 NETWORK CODING NETWORK errorcorrection homomorphic LINEAR code multi-cast
在线阅读 下载PDF
Quantum secret sharing based on quantum error-correcting codes
17
作者 张祖荣 刘伟涛 李承祖 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第5期91-95,共5页
Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k- 1, 1, k] quantum error-correcting code (QECC) to im... Quantum secret sharing(QSS) is a procedure of sharing classical information or quantum information by using quantum states. This paper presents how to use a [2k- 1, 1, k] quantum error-correcting code (QECC) to implement a quantum (k, 2k-1) threshold scheme. It also takes advantage of classical enhancement of the [2k-1, 1, k] QECC to establish a QSS scheme which can share classical information and quantum information simultaneously. Because information is encoded into QECC, these schemes can prevent intercept-resend attacks and be implemented on some noisy channels. 展开更多
关键词 quantum secret sharing quantum error-correcting code classically enhanced quantumerror-correcting code
原文传递
On Probability of Undetected Error for Hamming Codes over Q-ary Symmetric Channel
18
作者 Manish Gupta Jaskam Singh Bhullar Om Parkash Vinocha 《通讯和计算机(中英文版)》 2011年第4期259-263,共5页
关键词 二进制对称信道 概率 检错 信道编码 信道传输 奇偶校验位 汉明码 性能特点
在线阅读 下载PDF
Secret Data-Driven Carrier-Free Secret Sharing Scheme Based on Error Correction Blocks of QR Codes
19
作者 Song Wan Yuliang Lu +2 位作者 Xuehu Yan Hanlin Liu Longdan Tan 《国际计算机前沿大会会议论文集》 2017年第1期56-57,共2页
In this paper,a novel secret data-driven carrier-free(semi structural formula)visual secret sharing(VSS)scheme with(2,2)threshold based on the error correction blocks of QR codes is investigated.The proposed scheme is... In this paper,a novel secret data-driven carrier-free(semi structural formula)visual secret sharing(VSS)scheme with(2,2)threshold based on the error correction blocks of QR codes is investigated.The proposed scheme is to search two QR codes that altered to satisfy the secret sharing modules in the error correction mechanism from the large datasets of QR codes according to the secret image,which is to embed the secret image into QR codes based on carrier-free secret sharing.The size of secret image is the same or closest with the region from the coordinate of(7,7)to the lower right corner of QR codes.In this way,we can find the QR codes combination of embedding secret information maximization with secret data-driven based on Big data search.Each output share is a valid QR code which can be decoded correctly utilizing a QR code reader and it may reduce the likelihood of attracting the attention of potential attackers.The proposed scheme can reveal secret image visually with the abilities of stacking and XOR decryptions.The secret image can be recovered by human visual system(HVS)without any computation based on stacking.On the other hand,if the light-weight computation device is available,the secret image can be lossless revealed based on XOR operation.In addition,QR codes could assist alignment for VSS recovery.The experimental results show the effectiveness of our scheme. 展开更多
关键词 Visual SECRET sharing QR code error correction BLOCKS Carrier-free Big data DATA-DRIVEN Multiple decryptions
在线阅读 下载PDF
Spatial Image Watermarking by Error-Correction Coding in Gray Codes
20
作者 Tadahiko Kimoto 《Journal of Signal and Information Processing》 2013年第3期259-273,共15页
In this paper, error-correction coding (ECC) in Gray codes is considered and its performance in the protecting of spatial image watermarks against lossy data compression is demonstrated. For this purpose, the differen... In this paper, error-correction coding (ECC) in Gray codes is considered and its performance in the protecting of spatial image watermarks against lossy data compression is demonstrated. For this purpose, the differences between bit patterns of two Gray codewords are analyzed in detail. On the basis of the properties, a method for encoding watermark bits in the Gray codewords that represent signal levels by a single-error-correcting (SEC) code is developed, which is referred to as the Gray-ECC method in this paper. The two codewords of the SEC code corresponding to respective watermark bits are determined so as to minimize the expected amount of distortion caused by the watermark embedding. The stochastic analyses show that an error-correcting capacity of the Gray-ECC method is superior to that of the ECC in natural binary codes for changes in signal codewords. Experiments of the Gray-ECC method were conducted on 8-bit monochrome images to evaluate both the features of watermarked images and the performance of robustness for image distortion resulting from the JPEG DCT-baseline coding scheme. The results demonstrate that, compared with a conventional averaging-based method, the Gray-ECC method yields watermarked images with less amount of signal distortion and also makes the watermark comparably robust for lossy data compression. 展开更多
关键词 GRAY code error-Correcting code Digital WATERMARK Spatial Domain JPEG DCT-Based Compression
暂未订购
上一页 1 2 167 下一页 到第
使用帮助 返回顶部