期刊文献+
共找到86,773篇文章
< 1 2 250 >
每页显示 20 50 100
Experimental study on energy storage and dissipation characteristics of granite under two-dimensional compression with constant confining pressure 被引量:19
1
作者 SU You-qiang GONG Feng-qiang +1 位作者 LUO Song LIU Zhi-xiang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第3期848-865,共18页
To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were pe... To study the energy storage and dissipation characteristics of deep rock under two-dimensional compression with constant confining pressure,the single cyclic loading-unloading two-dimensional compression tests were performed on granite specimens with two height-to-width(H/W)ratios under five confining pressures.Three energy density parameters(input energy density,elastic energy density and dissipated energy density)in the axial and lateral directions of granite specimens under different confining pressures were calculated using the area integral method.The experimental results show that,for the specimens with a specific H/W ratio,these three energy density parameters in the axial and lateral directions increase nonlinearly with the confining pressure as quadratic polynomial functions.Under constant confining pressure compression,the linear energy storage law of granite specimens in the axial and lateral directions was founded.Using the linear energy storage law in different directions,the elastic energy density in various directions(axial elastic energy density,lateral elastic energy density and total elastic energy density)of granite under any specific confining pressures can be calculated.When the H/W ratio varies from 1:1 to 2:1,the lateral compression energy storage coefficient increases and the corresponding axial compression energy storage coefficient decreases,while the total compression energy storage coefficient is almost independent of the H/W ratio. 展开更多
关键词 rock mechanics two-dimensional compression linear energy storage law single cyclic loading-unloading height-to-width ratio
在线阅读 下载PDF
Two-Dimensional MXene-Based Advanced Sensors for Neuromorphic Computing Intelligent Application
2
作者 Lin Lu Bo Sun +2 位作者 Zheng Wang Jialin Meng Tianyu Wang 《Nano-Micro Letters》 2026年第2期664-691,共28页
As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and el... As emerging two-dimensional(2D)materials,carbides and nitrides(MXenes)could be solid solutions or organized structures made up of multi-atomic layers.With remarkable and adjustable electrical,optical,mechanical,and electrochemical characteristics,MXenes have shown great potential in brain-inspired neuromorphic computing electronics,including neuromorphic gas sensors,pressure sensors and photodetectors.This paper provides a forward-looking review of the research progress regarding MXenes in the neuromorphic sensing domain and discussed the critical challenges that need to be resolved.Key bottlenecks such as insufficient long-term stability under environmental exposure,high costs,scalability limitations in large-scale production,and mechanical mismatch in wearable integration hinder their practical deployment.Furthermore,unresolved issues like interfacial compatibility in heterostructures and energy inefficiency in neu-romorphic signal conversion demand urgent attention.The review offers insights into future research directions enhance the fundamental understanding of MXene properties and promote further integration into neuromorphic computing applications through the convergence with various emerging technologies. 展开更多
关键词 two-dimensional MXenes SENSOR Neuromorphic computing Multimodal intelligent system Wearable electronics
在线阅读 下载PDF
Experimental Investigation of a Fixed-geometry Two-dimensional Mixed-compression Supersonic Inlet with Sweep-forward High- light and Bleed Slot in an Inverted "X"-type Layout 被引量:11
3
作者 Wan Dawei Guo Rongwei 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第4期304-312,共9页
A fixed-geometry two-dimensional mixed-compression supersonic inlet with sweep-forward high-light and bleed slot in an inverted "X"-form layout was tested in a wind tunnel. Results indicate: (1) with increases of... A fixed-geometry two-dimensional mixed-compression supersonic inlet with sweep-forward high-light and bleed slot in an inverted "X"-form layout was tested in a wind tunnel. Results indicate: (1) with increases of the free stream Mach number, the total pressure recovery decreases, while the mass flow ratio increases to the maximum at the design point and then decreases; (2) when the angle of attack, a, is less than 6°, the total pressure recovery of both side inlets tends to decrease, but, on the lee side inlet, its values are higher than those on the windward side inlet, and the mass flow ratio on lee side inlet increases first and then falls, while on the windward side it keeps declining slowly with the sum of mass flow on both sides remaining almost constant; (3) with the attack angle, a, rising from 6° to 9°, both total pressure recovery and mass flow ratio on the lee side inlet fall quickly, but on the windward side inlet can be observed decreases in the total pressure recovery and increases in the mass flow ratio; (4) by comparing the velocity and back pressure characterristics of the inlet with a bleed slot to those of the inlet without, it stands to reason that the existence of a bleed slot has not only widened the steady working range of inlet, but also made an enormous improvement in its performance at high Mach numbers. Besides, this paper also presents an example to show how this type of inlet is designed. 展开更多
关键词 aerospace propulsion system supersonic inlet two-dimensional mixed-compression experimental investigation bleed slot "X"-type sweep-forward high-light
在线阅读 下载PDF
Application of the Artificial Compression Method to the Simulation of Two-Dimensional Frontogenesis
4
作者 杨宏伟 王斌 季仲贞 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第5期863-869,共7页
The artificial compression method (ACM) that is generally used to capture the contact discontinuity in nonviscous flows is used here in the simulation of quasi-geostrophic ideal frontogenesis in two dimensions. A comp... The artificial compression method (ACM) that is generally used to capture the contact discontinuity in nonviscous flows is used here in the simulation of quasi-geostrophic ideal frontogenesis in two dimensions. A comparison is made among the result of the ACM, the simulation result of Cullen, and the exact solution of the semi-geostrophic equations. The simulated front in this paper is more prominent than Cullen&#8242;s and is much closer to the exact solution. 展开更多
关键词 artificial compression method FRONTOGENESIS QUASI-GEOSTROPHIC semi-geostrophic
在线阅读 下载PDF
Quasi-static magnetic compression of field-reversed configuration plasma:amended scalings and limits from two-dimensional MHD equilibrium
5
作者 Abba Alhaji BALA 朱平 +8 位作者 李浩龙 丁永华 刘家兴 万遂 何莹 李达 王能超 饶波 王之江 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第2期58-67,共10页
In this work,several key scaling laws of the quasi-static magnetic compression of field reversed configuration(FRC)plasma(Spencer et al 1983 Phys.Fluids 261564)are amended from a series of two-dimensional FRC MHD equi... In this work,several key scaling laws of the quasi-static magnetic compression of field reversed configuration(FRC)plasma(Spencer et al 1983 Phys.Fluids 261564)are amended from a series of two-dimensional FRC MHD equilibriums numerically obtained using the Grad–Shafranov equation solver NIMEQ.Based on the new scaling for the elongation and the magnetic fields at the separatrix and the wall,the empirically stable limits for the compression ratio,the fusion gain,and the neutron yield are evaluated,which may serve as a more accurate estimate for the upper ceiling of performance from the magnetic compression of FRC plasma as a potential fusion energy as well as neutron source devices. 展开更多
关键词 magneto-hydrodynamic equilibrium Grad-Shafranov equation field reversed configuration NIMEQ magnetic compression
在线阅读 下载PDF
TWO-DIMENSIONAL RIEMANN PROBLEMS:FROM SCALAR CONSERVATION LAWS TO COMPRESSIBLE EULER EQUATIONS 被引量:4
6
作者 李杰权 盛万成 +1 位作者 张同 郑玉玺 《Acta Mathematica Scientia》 SCIE CSCD 2009年第4期777-802,共26页
In this paper we survey the authors' and related work on two-dimensional Riemann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four s... In this paper we survey the authors' and related work on two-dimensional Riemann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four sections: 1. Historical review. 2. Scalar conservation laws. 3. Euler equations. 4. Simplified models. 展开更多
关键词 two-dimensional Riemann problem compressible Euler equation reflection of shocks interaction of rarefaction waves delta-shocks
在线阅读 下载PDF
Wearable Biodevices Based on Two-Dimensional Materials:From Flexible Sensors to Smart Integrated Systems 被引量:1
7
作者 Yingzhi Sun Weiyi He +3 位作者 Can Jiang Jing Li Jianli Liu Mingjie Liu 《Nano-Micro Letters》 2025年第5期207-255,共49页
The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an over... The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices. 展开更多
关键词 two-dimensional material Wearable biodevice Flexible sensor Smart integrated system Healthcare
在线阅读 下载PDF
Highly Efficient Lattice Boltzmann Model for Compressible Fluids:Two-Dimensional Case 被引量:2
8
作者 CHEN Feng XU Ai-Guo +3 位作者 ZHANG Guang-Cai GAN Yan-Biao CHENG Tao LI Ying-Jun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第10期681-693,共13页
We present a highly efficient lattice Boltzmann model for simulating compressible flows. This model is based on the combination of an appropriate finite difference scheme, a 16-discrete-velocity model [Kataoka and Tsu... We present a highly efficient lattice Boltzmann model for simulating compressible flows. This model is based on the combination of an appropriate finite difference scheme, a 16-discrete-velocity model [Kataoka and Tsutahara, Phys. Rev. E 69 (2004) 035701(R)] and reasonable dispersion and dissipation terms. The dispersion term effectively reduces the oscillation at the discontinuity and enhances numerical precision. The dissipation term makes the new model more easily meet with the yon Neumann stability condition. This model works for both high-speed and low-speed flows with arbitrary specific-heat-ratio. With the new model simulation results for the well-known benchmark problems get a high accuracy compared with the analytic or experimental ones. The used benchmark tests include (i) Shock tubes such as the Sod, Lax, Sjogreen, Colella explosion wave, and collision of two strong shocks, (ii) Regular and Mach shock reflections, and (iii) Shock wave reaction on cylindrical bubble problems. With a more realistic equation of state or free-energy functional, the new model has the potential tostudy the complex procedure of shock wave reaction on porous materials. 展开更多
关键词 lattice Boltzmann method compressible flows specific-heat-ratio von Neumann stability analysis
在线阅读 下载PDF
Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries
9
作者 CHEN Xiaoli LUO Zhihong +3 位作者 XIONG Yuzhu WANG Aihua CHEN Xue SHAO Jiaojing 《无机化学学报》 北大核心 2025年第8期1661-1671,共11页
A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface... A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property. 展开更多
关键词 vermiculite nanosheets two-dimensional materials INTERLAYER shuttle effect lithium-sulfur batteries
在线阅读 下载PDF
Finite-Time Expected Present Value of Operating Costs until Ruin in a Two-Dimensional Risk Model with Periodic Observation
10
作者 TENG Ye XIE Jiayi ZHANG Zhimin 《应用概率统计》 北大核心 2025年第5期748-765,共18页
This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This m... This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This model introduces a dependence between the two surplus levels,present in both the associated perturbations and the claims resulting from common shocks.Critical levels of capital injection and dividends are established for each of the two risks.The surplus levels are observed discretely at fixed intervals,guiding decisions on capital injection,dividends,and ruin at these junctures.This study employs a two-dimensional Fourier cosine series expansion method to approximate the finite time expected discounted operating cost until ruin.The ensuing approximation error is also quantified.The validity and accuracy of the method are corroborated through numerical examples.Furthermore,the research delves into the optimal capital allocation problem. 展开更多
关键词 two-dimensional risk model Fourier cosine expansion capital injection DIVIDEND
在线阅读 下载PDF
Progressive failure of frozen sodium sulfate saline sandy soil under uniaxial compression 被引量:1
11
作者 Dongyong Wang Bo Shao +2 位作者 Jilin Qi Wenyu Cui Liyun Peng 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4646-4656,共11页
The progressive failure characteristics of geomaterial are a remarkable and challenging topic in geotechnical engineering.To study the effect of salt content and temperature on the progressive failure characteristics ... The progressive failure characteristics of geomaterial are a remarkable and challenging topic in geotechnical engineering.To study the effect of salt content and temperature on the progressive failure characteristics of frozen sodium sulfate saline sandy soil,a series of uniaxial compression tests were performed by integrating digital image correlation(DIC)technology into the testing apparatus.The evolution law of the uniaxial compression strength(UCS),the failure strain,and the formation of the shear band of the frozen sodium sulfate saline sandy soil were analyzed.The test results show that within the scope of this study,with the increase of salt content,both the UCS and the shear band angle initially decrease with increasing salt content before showing an increase.In contrast,the failure strain and the width of the shear band exhibit an initial increase followed by a decrease in the samples.In addition,to investigate the brittle failure characteristics of frozen sodium sulfate saline sandy soil,two classic brittleness evaluation methods were employed to quantitatively assess the brittleness level for the soil samples.The findings suggest that the failure characteristics under all test conditions in this study belong to the transition stage between brittle and ductile,indicating that frozen sodium sulfate saline sandy soil exhibits certain brittle behavior under uniaxial compression conditions,and the brittleness index basically decreases and then increases with the rise in salt content. 展开更多
关键词 Frozen sodium sulfate saline sandy soil Uniaxial compression test Digital image correlation Progressive failure Brittleness index
在线阅读 下载PDF
Effect of Current Density and Strain Rate on Deformation Resistance During Electrically-Assisted Compression of AlCr_(1.3)TiNi_(2) Eutectic High-Entropy Alloys
12
作者 Wang Fanghui Li Hushan +6 位作者 Zhang Hao Ding Ziheng Bao Jianxing Ding Chaogang Shan Debin Guo Bin Xu Jie 《稀有金属材料与工程》 北大核心 2025年第5期1121-1126,共6页
The effect of deformation resistance of AlCr_(1.3)TiNi_(2) eutectic high-entropy alloys under various current densities and strain rates was investigated during electrically-assisted compression.Results show that at c... The effect of deformation resistance of AlCr_(1.3)TiNi_(2) eutectic high-entropy alloys under various current densities and strain rates was investigated during electrically-assisted compression.Results show that at current density of 60 A/mm^(2) and strain rate of 0.1 s^(−1),the ultimate tensile stress shows a significant decrease from approximately 3000 MPa to 1900 MPa with reduction ratio of about 36.7%.However,as current density increases,elongation decreases due to intermediate temperature embrittlement.This is because the current induces Joule effect,which then leads to stress concentration and more defect formation.Moreover,the flow stress is decreased with the increase in strain rate at constant current density. 展开更多
关键词 eutectic high-entropy alloy electrically-assisted compression deformation resistance flow stress
原文传递
Effects of aggregate size distribution and carbon nanotubes on the mechanical properties of cemented gangue backfill samples under true triaxial compression
13
作者 Qian Yin Fan Wen +7 位作者 Zhigang Tao Hai Pu Tianci Deng Yaoyao Meng Qingbin Meng Hongwen Jing Bo Meng Jiangyu Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期311-324,共14页
The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compressio... The mechanical behavior of cemented gangue backfill materials(CGBMs)is closely related to particle size distribution(PSD)of aggregates and properties of cementitious materials.Consequently,the true triaxial compression tests,CT scanning,SEM,and EDS tests were conducted on cemented gangue backfill samples(CGBSs)with various carbon nanotube concentrations(P_(CNT))that satisfied fractal theory for the PSD of aggregates.The mechanical properties,energy dissipations,and failure mechanisms of the CGBSs under true triaxial compression were systematically analyzed.The results indicate that appropriate carbon nanotubes(CNTs)effectively enhance the mechanical properties and energy dissipations of CGBSs through micropore filling and microcrack bridging,and the optimal effect appears at P_(CNT)of 0.08wt%.Taking PSD fractal dimension(D)of 2.500 as an example,compared to that of CGBS without CNT,the peak strength(σ_(p)),axial peak strain(ε_(1,p)),elastic strain energy(Ue),and dissipated energy(U_(d))increased by 12.76%,29.60%,19.05%,and90.39%,respectively.However,excessive CNTs can reduce the mechanical properties of CGBSs due to CNT agglomeration,manifesting a decrease inρ_(p),ε_(1,p),and the volumetric strain increment(Δε_(v))when P_(CNT)increases from 0.08wt%to 0.12wt%.Moreover,the addition of CNTs improved the integrity of CGBS after macroscopic failure,and crack extension in CGBSs appeared in two modes:detour and pass through the aggregates.Theσ_(p)and U_(d)firstly increase and then decrease with increasing D,and porosity shows the opposite trend.Theε_(1,p)andΔε_(v)are negatively correlated with D,and CGBS with D=2.150 has the maximum deformation parameters(ε_(1,p)=0.05079,Δε_(v)=0.01990)due to the frictional slip effect caused by coarse aggregates.With increasing D,the failure modes of CGBSs are sequentially manifested as oblique shear failure,"Y-shaped"shear failure,and conjugate shear failure. 展开更多
关键词 cemented gangue backfill materials particle size distribution true triaxial compression test carbon nanotubes mechanical properties failure modes
在线阅读 下载PDF
Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow:Two-Dimensional Case 被引量:1
14
作者 GAN Yan-Biao XU Ai-Guo +3 位作者 ZHANG Guang-Cai ZHANG Ping ZHANG Lei LI Ying-Jun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第7期201-210,共10页
Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow... Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc. 展开更多
关键词 lattice Boltzmann method high-speed compressible flow von Neumann analysis
在线阅读 下载PDF
MXenes-based separators with nanoconfined two-dimensional channels for high-performance lithium-sulfur battery
15
作者 Yi-Hui Zhao Shuai Li +6 位作者 Yu-Lu Huo Zhen Li Lan-Lan Hou Yong-Qiang Wen Xiao-Xian Zhao Jian-Jun Song Jing-Chong Liu 《Rare Metals》 2025年第5期2921-2944,共24页
Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major ch... Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major challenge for their practical application.The design of battery separators has become a key aspect in addressing the challenge.MXenes,a promising two-dimensional(2D)material,offer exceptional conductivity,large surface area,high mechanical strength,and active sites for surface reactions.When assembled into layered films,MXenes form highly tunable two-dimensional channels ranging from a few angstroms to over 1 nm.These nanoconfined channels are instrumental in facilitating lithium-ion transport while effectively impeding the shuttle effect of LiPSs,which are essential for improving the specific capacity and cyclic stability of Li-S batteries.Substantial progress has been made in developing MXenes-based separators for Li-S batteries,yet there remains a research gap in summarizing advancements from the perspective of interlayer engineering.This entails maintaining the 2D nanochannels of layered MXenes-based separators while modulating the physicochemical environment within the MXenes interlayers through targeted modifications.This review highlights advancements in in situ modification of MXenes and their integration with 0D,1D,and 2D materials to construct laminated nanocomposite separators for Li-S batteries.The future development directions of MXenes-based materials in Li-S energy storage devices are also outlined,to drive further advancements in MXenes for Li-S battery separators. 展开更多
关键词 Lithium-sulfur battery MXenes SEPARATOR two-dimensional materials two-dimensional nanochannels
原文传递
TWO-DIMENSIONAL STRESS WAVE ANALYSIS IN INCOMPRESSIBLE ELASTIC SOLIDS 被引量:1
16
作者 唐之景 丁启财 李永池 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第8期701-712,共12页
Two-dimensional stress wares in n general incompressible elastic solid are investigated. First, baxic equations for simple wares and shock waves are presented for a general strain energy junction. Then the characteris... Two-dimensional stress wares in n general incompressible elastic solid are investigated. First, baxic equations for simple wares and shock waves are presented for a general strain energy junction. Then the characteristic ware speeds and the associated characteristic vectors are deduced. It is shown that there usually exist two simple waves and two shock wares. Finally, two examples are given for the case of plane strain deformation and antiplane strain deformation, respectively. It is proved that, in the case of plane strain deformation, the oblique reflection problem of a plane shock is not solvable in general. 展开更多
关键词 two-dimensional STRESS WAVE ANALYSIS IN INcompressIBLE ELASTIC SOLIDS
在线阅读 下载PDF
Effect of Temperature on Interface Microstructure and Mechanical Properties of AZ31/Al/Ta Composites Prepared by Vacuum Hot Compression Bonding
17
作者 Yu Zhilei Li Jingli +2 位作者 Han Xiuzhu Li Bairui Xue Zhiyong 《稀有金属材料与工程》 北大核心 2025年第11期2749-2756,共8页
AZ31/Al/Ta composites were prepared using the vacuum hot compression bonding(VHCB)method.The effect of hot compressing temperature on the interface microstructure evolution,phase constitution,and shear strength at the... AZ31/Al/Ta composites were prepared using the vacuum hot compression bonding(VHCB)method.The effect of hot compressing temperature on the interface microstructure evolution,phase constitution,and shear strength at the interface was investigated.Moreover,the interface bonding mechanisms of the AZ31/Al/Ta composites during the VHCB process were explored.The results demonstrate that as the VHCB temperature increases,the phase composition of the interface between Mg and Al changes from the Mg-Al brittle intermetallic compounds(Al_(12)Mg_(17)and Al_(3)Mg_(2))to the Al-Mg solid solution.Meanwhile,the width of the Al/Ta interface diffusion layer at 450℃increases compared to that at 400℃.The shear strengths are 24 and 46 MPa at 400 and 450℃,respectively.The interfacial bonding mechanism of AZ31/Al/Ta composites involves the coexistence of diffusion and mechanical meshing.Avoiding the formation of brittle phases at the interface can significantly improve interfacial bonding strength. 展开更多
关键词 AZ31/Al/Ta composites microstructure mechanical properties vacuum hot compression bonding
原文传递
IDCE:Integrated Data Compression and Encryption for Enhanced Security and Efficiency
18
作者 Muhammad Usama Arshad Aziz +2 位作者 Suliman A.Alsuhibany Imtiaz Hassan Farrukh Yuldashev 《Computer Modeling in Engineering & Sciences》 2025年第4期1029-1048,共20页
Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive da... Data compression plays a vital role in datamanagement and information theory by reducing redundancy.However,it lacks built-in security features such as secret keys or password-based access control,leaving sensitive data vulnerable to unauthorized access and misuse.With the exponential growth of digital data,robust security measures are essential.Data encryption,a widely used approach,ensures data confidentiality by making it unreadable and unalterable through secret key control.Despite their individual benefits,both require significant computational resources.Additionally,performing them separately for the same data increases complexity and processing time.Recognizing the need for integrated approaches that balance compression ratios and security levels,this research proposes an integrated data compression and encryption algorithm,named IDCE,for enhanced security and efficiency.Thealgorithmoperates on 128-bit block sizes and a 256-bit secret key length.It combines Huffman coding for compression and a Tent map for encryption.Additionally,an iterative Arnold cat map further enhances cryptographic confusion properties.Experimental analysis validates the effectiveness of the proposed algorithm,showcasing competitive performance in terms of compression ratio,security,and overall efficiency when compared to prior algorithms in the field. 展开更多
关键词 Chaotic maps SECURITY data compression data encryption integrated compression and encryption
在线阅读 下载PDF
Two-Dimensional TiO_(2)Ultraviolet Filters for Sunscreens
19
作者 Ling QiuHui-Ming Cheng Ruoning Yang +10 位作者 Jiefu Chen Xiang Li Yaxin Zhang Baofu Ding Yujiangsheng Xu Shaoqiang Luo Shaohua Ma Xingang Ren Gang Liu Ling Qiu Hui-Ming Cheng 《Nano-Micro Letters》 2025年第12期108-119,共12页
Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades ... Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades and continue to face persistent challenges related to light transmission,biosafety,and visual appearance.Here,we report the discovery of two-dimensional(2D)TiO_(2),characterized by a micro-sized lateral dimension(~1.6μm)and atomic-scale thickness,which fundamentally resolves these long-standing issues.The 2D structure enables exceptional light management,achieving 80%visible light transparency—rendering it nearly invisible on the skin—while maintaining UV-blocking performance comparable to unmodified rutile TiO_(2)nanoparticles.Its larger lateral size results in a two-orders-of-magnitude reduction in skin penetration(0.96 w/w%),significantly enhancing biosafety.Moreover,the unique layered architecture inherently suppresses the generation of reactive oxygen species(ROS)under sunlight exposure,reducing the ROS generation rate by 50-fold compared to traditional TiO_(2)nanoparticles.Through precise metal element modulation,we further developed the first customizable sunscreen material capable of tuning UV protection ranges and automatically matching diverse skin tones.The 2D TiO_(2)offers a potentially transformative approach to modern sunscreen formulation,combining superior UV protection,enhanced safety and a natural appearance. 展开更多
关键词 two-dimensional Titanium dioxide SUNSCREEN BIOSAFETY
在线阅读 下载PDF
Analysis of Leakage Effects on Outlet Flow Characteristics of a Two-dimensional Piston Pump
20
作者 Yu Huang Hanyu Xu +2 位作者 Wei Shao Chuan Ding Li Liu 《Chinese Journal of Mechanical Engineering》 2025年第3期545-557,共13页
Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high ef... Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high efficiency and reliability.However,the ambiguity surrounding the output flow characteristics of individual two-dimensional pumps poses a significant challenge in achieving precise closed-loop control of the EHA positions.To address this issue,this study established a comprehensive numerical model that included gap leakage to analyze the impact of leakage on the output flow characteristics of a two-dimensional piston pump.The validity of the numerical analysis was indirectly confirmed through meticulous measurements of the leakage and volumetric efficiency,ensuring robust results.The research findings indicated that,at lower pump speeds,leakage significantly affected the output flow rate,leading to potential inefficiencies in the system.Conversely,at higher rotational speeds,the impact of leakage was less pronounced,implying that the influence of leakage on the pump outlet flow must be carefully considered and managed for EHAs to perform position servo control.Additionally,the research demonstrates that two-dimensional motion does not have a unique or additional effect on pump leakage,thus simplifying the design considerations.Finally,the study concluded that maintaining an oil-filled leakage environment is beneficial because it helps reduce the impact of leakage and enhances the overall volumetric efficiency of the pump system. 展开更多
关键词 two-dimensional piston pump LEAKAGE Numerical simulation CLEARANCE
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部