Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high ef...Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high efficiency and reliability.However,the ambiguity surrounding the output flow characteristics of individual two-dimensional pumps poses a significant challenge in achieving precise closed-loop control of the EHA positions.To address this issue,this study established a comprehensive numerical model that included gap leakage to analyze the impact of leakage on the output flow characteristics of a two-dimensional piston pump.The validity of the numerical analysis was indirectly confirmed through meticulous measurements of the leakage and volumetric efficiency,ensuring robust results.The research findings indicated that,at lower pump speeds,leakage significantly affected the output flow rate,leading to potential inefficiencies in the system.Conversely,at higher rotational speeds,the impact of leakage was less pronounced,implying that the influence of leakage on the pump outlet flow must be carefully considered and managed for EHAs to perform position servo control.Additionally,the research demonstrates that two-dimensional motion does not have a unique or additional effect on pump leakage,thus simplifying the design considerations.Finally,the study concluded that maintaining an oil-filled leakage environment is beneficial because it helps reduce the impact of leakage and enhances the overall volumetric efficiency of the pump system.展开更多
The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an over...The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.展开更多
With the ongoing depletion of fossil fuels,energy and environmental issues have become increasingly critical,necessitating the search for effective solutions.Catalysis,being one of the hallmarks of modern industry,off...With the ongoing depletion of fossil fuels,energy and environmental issues have become increasingly critical,necessitating the search for effective solutions.Catalysis,being one of the hallmarks of modern industry,offers a promising avenue for researchers.However,the question of how to significantly enhance the performance of catalysts has gradually drawn the attention of scholars.Defect engineering,a commonly employed and effective approach to improve catalyst activity,has become a significant research focus in the catalysis field in recent years.Nonmetal vacancies have received extensive attention due to their simple form.Consequently,exploration of metal vacancies has remained stagnant for a considerable period,resulting in a scarcity of comprehensive reviews on this topic.Therefore,based on the latest research findings,this paper summarizes and consolidates the construction strategies for metal vacancies,characterization techniques,and their roles in typical energy and environmental catalytic reactions.Additionally,it outlines potential challenges in the future,aiming to provide valuable references for researchers interested in investigating metal vacancies.展开更多
Objective This study reports the first imported case of Lassa fever(LF)in China.Laboratory detection and molecular epidemiological analysis of the Lassa virus(LASV)from this case offer valuable insights for the preven...Objective This study reports the first imported case of Lassa fever(LF)in China.Laboratory detection and molecular epidemiological analysis of the Lassa virus(LASV)from this case offer valuable insights for the prevention and control of LF.Methods Samples of cerebrospinal fluid(CSF),blood,urine,saliva,and environmental materials were collected from the patient and their close contacts for LASV nucleotide detection.Whole-genome sequencing was performed on positive samples to analyze the genetic characteristics of the virus.Results LASV was detected in the patient’s CSF,blood,and urine,while all samples from close contacts and the environment tested negative.The virus belongs to the lineage IV strain and shares the highest homology with strains from Sierra Leone.The variability in the glycoprotein complex(GPC)among different strains ranged from 3.9%to 15.1%,higher than previously reported for the seven known lineages.Amino acid mutation analysis revealed multiple mutations within the GPC immunogenic epitopes,increasing strain diversity and potentially impacting immune response.Conclusion The case was confirmed through nucleotide detection,with no evidence of secondary transmission or viral spread.The LASV strain identified belongs to lineage IV,with broader GPC variability than previously reported.Mutations in the immune-related sites of GPC may affect immune responses,necessitating heightened vigilance regarding the virus.展开更多
2-substituted-1-amino-o-carboranes 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10)(R=CH_(3),1a;R=Ph,1b)were synthesized and the reactions of these compounds with the yttrium dialkyl complex[Y(L)(CH_(2)SiMe3)_(2)](L=[2-(2,5-Me_(2)C_(...2-substituted-1-amino-o-carboranes 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10)(R=CH_(3),1a;R=Ph,1b)were synthesized and the reactions of these compounds with the yttrium dialkyl complex[Y(L)(CH_(2)SiMe3)_(2)](L=[2-(2,5-Me_(2)C_(4)H_(2)N)C_(6)H4NC(Ph)=NDipp]-,Dipp=2,6-iPr_(2)C_(6)H_(3))were investigated.The 1H NMR spectroscopy indicate that the reaction of ytrrium dialkyl complex with one equivalent of 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10) produce the mixture of ytrrium alkyl-amido complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))(CH_(2)SiMe3)](R=CH_(3),2a;R=Ph,2b)and bis(amido)complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))_(2)](R=CH_(3),3a;R=Ph,3b).The yttrium bridging imido complex[Y(L)(2-CH_(3)-1-N-o-C_(2)B_(10)H_(10))]_(2)(4a)was obtained by heating the mixture at 55℃for 12 h.Complex 3a was isolated and characterized by treating the yttrium dialkyl complex with two equivalents of 1a.The structures of complexes 3a and 4a were verified by single-crystal Xray diffraction.CCDC:2424136,3a;2424137,4a.展开更多
A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface...A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.展开更多
This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This m...This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This model introduces a dependence between the two surplus levels,present in both the associated perturbations and the claims resulting from common shocks.Critical levels of capital injection and dividends are established for each of the two risks.The surplus levels are observed discretely at fixed intervals,guiding decisions on capital injection,dividends,and ruin at these junctures.This study employs a two-dimensional Fourier cosine series expansion method to approximate the finite time expected discounted operating cost until ruin.The ensuing approximation error is also quantified.The validity and accuracy of the method are corroborated through numerical examples.Furthermore,the research delves into the optimal capital allocation problem.展开更多
Excessive nitrogen emission caused by human activities has significantly disrupted the global nitrogen cycle,adversely affecting ecosystems and human health.Electrocatalytic nitrate reduction to valuable ammonia(eNRA)...Excessive nitrogen emission caused by human activities has significantly disrupted the global nitrogen cycle,adversely affecting ecosystems and human health.Electrocatalytic nitrate reduction to valuable ammonia(eNRA)presents an encouraging alternative marked by mild reaction conditions,rapid reaction rates,and minimal byproduct pollution,successfully overcoming the challenges of the energy-intensive Haber-Bosch process.Recent innovations in two-dimensional(2D)electrocatalysts have emerged as a promising approach to enhance the efficiency and selectivity of this transformation.This review systematically examines the latest advancements in2D materials,including metals,metal compounds,nonmetallic elements,and organic frameworks,highlighting their unique electronic properties and high surface area that facilitate the electrocatalytic reactions.We explore strategies to optimize these catalysts,such as doping,heterostructure,and surface functionalization,which have shown significant improvements in catalytic performance.Furthermore,the role of in situ/operando characterization techniques in understanding the reaction mechanisms is highlighted,aiming to provide both theoretical and practical insights for the research and development of 2D nanoelectrocatalysts during eNRA.Additionally,future perspectives and ongoing challenges are discussed to offer insights for transitioning from experimental investigations to real-world applications.展开更多
Clays are a constituent of the earth. As a result, the discovery and traditional use of clays in construction and pottery worldwide dates back to antiquity. Guinea has several deposits of clay minerals whose chemical ...Clays are a constituent of the earth. As a result, the discovery and traditional use of clays in construction and pottery worldwide dates back to antiquity. Guinea has several deposits of clay minerals whose chemical and mineralogical compositions have been little studied. Despite lacking of scientific data on these clay minerals, they are used today in pottery and habitat construction. As a step towards promoting the use of clay materials in Guinea, we conducted a study of the physicochemical and mineralogical properties of three natural clays from Kakan in the Republic of Guinea (AKKB, AKKE, AKKO) used in habitat construction. The aims of this work were to better understand their properties, but above all to be able to act on them to improve and broaden their applications, which until now have been limited to construction. These clays were studied by X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), moisture content (%W), laser granulometry, Atterberg limits, specific surface area, infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis and differential thermal analysis (TGA/DTA). These analyses revealed that the main clay minerals present in our samples are kaolinite, illite and, montmorillonite, with the addition of impurities, the most abundant of which is quartz.展开更多
The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monit...The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monitoring xylitol concentration.In this study,the gene encoding the thermophilic fungus Talaromyces emersonii XDH(TeXDH)was heterologously expressed in Escherichia coli BL21(DE3)at 16℃in the soluble form.Recombinant TeXDH with high purity was purified by using a Ni⁃NTA affinity column.Size⁃exclusion chromatography and SDS⁃PAGE analysis demonstrated that the puri⁃fied recombinant TeXDH exists as a native trimer with a molecular mass of approximately 116 kD,and is composed of three identical subunits,each with a molecular weight of around 39 kD.The TeXDH strictly preferred NAD^(+)as a coenzyme to NADP^(+).The optimal temperature and pH of the TeXDH were 40℃and 10.0,respectively.After EDTA treatment,the enzyme activity of TeXDH decreased to 43.26%of the initial enzyme activity,while the divalent metal ions Mg^(2+)or Ca^(2+)could recover the enzyme activity of TeXDH,reaching 103.32%and 110.69%of the initial enzyme activity,respectively,making them the optimal divalent metal ion cofactors for TeXDH enzyme.However,the divalent metal ions of Mn^(2+),Ni^(2+),Cu^(2+),Zn^(2+),Co^(2+),and Cd^(2+)significantly inhibited the activity of TeXDH.ICP⁃MS and molecular doc⁃king studies revealed that 1 mol/L of TeXDH bound 2 mol/L Zn^(2+)ions and 1 mol/L Mg^(2+)ion.Further⁃more,TeXDH exhibited a high specificity for xylitol,laying the foundation for the development of future xylitol biosensors.展开更多
A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]py...A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]pyrazine scaffold was serendipitously prepared from the reaction of the pro-ligand of H_(2)L1(N,N'-bis(pyrazin-2-ylmethyl)pyrazine-2,3-dicarboxamide) with CuSO_(4)·5H_(2O) in aqueous solution at room temperature.Complex 1 was characterized by IR,single-crystal X-ray analysis,and magnetic susceptibility measurements.Single-crystal X-ray analysis reveals that the complex consists of three Cu(Ⅱ) ions,two in situ transformed L2~-ligands,two coordinated sulfates,seven coordinated water molecules,and eight uncoordinated water molecules.Magnetic susceptibility measurement indicates that there are obvious ferromagnetic coupling interactions between the adjacent Cu(Ⅱ) ions in 1.CCDC:1852713.展开更多
Introduction: Diabetes remains a real public health problem today, due to its associated morbidity and mortality. It induces numerous metabolic, biochemical, hematological, and immunological changes, responsible for m...Introduction: Diabetes remains a real public health problem today, due to its associated morbidity and mortality. It induces numerous metabolic, biochemical, hematological, and immunological changes, responsible for multiple complications. The objective of this study was to characterize clinically and biologically type 2 diabetic patients followed at the National Center for Diabetology and Arterial Hypertension of the Central Hospital of Yaoundé. Method: This prospective, cross-sectional, and analytical study took place from April 5 to July 31, 2023 (4 months) on 100 diabetic patients of both sexes (61 women and 39 men), aged from 31 to 88 years. Body Mass Index, systolic and diastolic blood pressure, and cardiac frequency were measured on each of the patients. Subsequently, blood was collected from the patients for the determination of the complete blood count, HBA1c, lipid profile, serum albumin, TNF-α, and IL-6 levels. The data were analyzed using SPSS 17.0 software. Results: The age average of our population was 56.99 ± 11.51 years, the population was primarily female (61%) and primarily between the ages of 55 and 88. 67% of respondents were married. 59% went to secondary school. 73% of them lived in urban areas. 30% were obese and 40% were overweight, with an average BMI of 28.75 kg/m2. 76% of patients took oral antidiabetic medications. HbA1c level average was 8.65%, with 60% having readings above 6.5%. Low hemoglobin and hypochromia were among the abnormalities of red blood cells observed. Lipid profiles revealed low HDL-cholesterol and high triglycerides and cholesterol. Elevated levels of TNF-α and IL-6 indicated inflammation and cardiovascular risk. Conclusion: These results indicate the necessity of focused diabetic care and management on diabetic patients attending the central hospital of Yaoundé, Cameroon.展开更多
Cashew processing in Côte d’Ivoire focuses only on the cashew nut, to the detriment of the apple. Only a very small proportion of the apple is processed into juice. The aim of this work is to enhance the value o...Cashew processing in Côte d’Ivoire focuses only on the cashew nut, to the detriment of the apple. Only a very small proportion of the apple is processed into juice. The aim of this work is to enhance the value of cashew apples by transforming them into jam. Specifically, the aim was first to characterize the sensory properties of cashew apple jam formulations using baobab powder as a source of pectin and then to optimise the formulations. A Box-Behken design with pH, Sugar, and Baobab as factors was used to model and characterize the jam sensory descriptors, and a multivariate analysis with SensomineR was used to characterize the jam formulations. The desirability function was used to optimise the formulations. The results show globally significant regressions at the 0.05 threshold for the sensory descriptors Gelling, Brilliance, Smell, Sweetness, and (-)Astringency, with the exception of (-)Salinity. The R2 coefficients are greater than 80%. The factors studied could have effects on the sensory descriptors of cashew jam formulations. The Baobab had the main effect on the gelling, smell, and astringency of the jams. Brilliance depended on the added sugar. A product effect (p < 0.001) was observed for the descriptors Smell, Gelling, Brilliance, and Sweetness, as these allowed the panelists to find differences between the formulations. Optimum jam formulation can be achieved with 51.56% sugar and 2.12% Baobab at a pH of 3.15. Cashew apple jam using Baobab offers opportunities to add value to apples that have long been abandoned in the field. It would be important to find conditions for prolonged storage of this jam.展开更多
Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major ch...Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major challenge for their practical application.The design of battery separators has become a key aspect in addressing the challenge.MXenes,a promising two-dimensional(2D)material,offer exceptional conductivity,large surface area,high mechanical strength,and active sites for surface reactions.When assembled into layered films,MXenes form highly tunable two-dimensional channels ranging from a few angstroms to over 1 nm.These nanoconfined channels are instrumental in facilitating lithium-ion transport while effectively impeding the shuttle effect of LiPSs,which are essential for improving the specific capacity and cyclic stability of Li-S batteries.Substantial progress has been made in developing MXenes-based separators for Li-S batteries,yet there remains a research gap in summarizing advancements from the perspective of interlayer engineering.This entails maintaining the 2D nanochannels of layered MXenes-based separators while modulating the physicochemical environment within the MXenes interlayers through targeted modifications.This review highlights advancements in in situ modification of MXenes and their integration with 0D,1D,and 2D materials to construct laminated nanocomposite separators for Li-S batteries.The future development directions of MXenes-based materials in Li-S energy storage devices are also outlined,to drive further advancements in MXenes for Li-S battery separators.展开更多
The advancement of electron microscopy technology has driven the development of electron microscopes that can apply mechanical loading while observing samples,providing a valuable tool for In-Situ mechanical character...The advancement of electron microscopy technology has driven the development of electron microscopes that can apply mechanical loading while observing samples,providing a valuable tool for In-Situ mechanical characterization of materials.In response to the need to characterize the evolution of the mechanical behavior of structural materials,such as aerospace materials,in real cryogenic service environments,and to provide an experimental basis for improving their macroscopic cryogenic mechanical properties,the advancement of In-Situ characterization techniques capable of offering both cryogenic environments and mechanical loading has become imperative.There have been scholars using this technique to carry out cryogenic mechanical In-Situ studies of related materials,with experimental studies dominating in general,and a few reviews of mechanical characterization techniques mentioning cryogenic temperatures.In order to make it easier to conduct research using such characterization techniques and to further promote the development of related characterization techniques,this review compiles the previous work and summarizes the electron microscope-based In-Situ characterization techniques for cryogenic micro-and nanomechanics.These techniques primarily include transmission electron microscopy-based cryogenic tensile and indentation methods,as well as scanning electron microscopy-based cryogenic tensile,indentation,compression,and bending methods.Furthermore,the review outlines the prospective future development of In-Situ characterization techniques for cryogenic micro-and nanomechanics.展开更多
The SiO_(2)'-CaO/(CaO+K_(2)O)(S'CK)diagram is an empirically derived major element-based equivalent to the modal IUGS alkali feldspar-quartz-plagioclase classification scheme for granitoids.It employs the cont...The SiO_(2)'-CaO/(CaO+K_(2)O)(S'CK)diagram is an empirically derived major element-based equivalent to the modal IUGS alkali feldspar-quartz-plagioclase classification scheme for granitoids.It employs the content of SiO_(2)and CaO/(CaO+K_(2)O)ratio to approximate the IUGS classification diagram and a normative-based Q'-ANOR plot.Four trends have been superimposed onto the SiO_(2)'-CaO/(CaO+K_(2)O)diagram based on published datasets from the Peninsular Ranges(calcic:C),Tuolumne(calc-alkalic:CA),Sherman(alkali-calcic:AC),and Bjerkreim-Sokndal(alkalic:A)batholiths,which were employed to constrain the positions of the C-CA,CA-AC and AC-A suite boundaries on the SiO_(2)versus(Na_(2)O+K_(2)O-CaO)(or modified alkali-lime index,MALI)granitic classification diagram.A merit of the SiO_(2)'-CaO/(CaO+K_(2)O)plot is identifying rock types comprising a suite and their relative abundances.The distinguished projections of five typical granitoid assemblages,which are summarized by Bonin et al.(2020),demonstrate the ability of SiO_(2)'-CaO/(CaO+K_(2)O)diagram to decipher their petrogenesis.The SiO_(2)'-CaO/(CaO+K_(2)O)plots for the plutonic suites of'known'tectonic settings can reveal their evolution paths and the lithological statistics.Accordingly,it is suggested that the SiO_(2)'-CaO/(CaO+K_(2)O)plot can distinguish the tectonic environments of plutonic suits by comparing the plutonic suites or batholiths of'unknown'tectonic context to the published datasets from granitoid suites formed within'known'tectonic settings.The modified SiO_(2)'-CaO/(CaO+K_(2)O)diagram links the bulk chemical composition of granitoid suites to the likely source,magmatic evolution,and tectonic setting;thus,it may be a useful tectono-magmatic classification scheme for granitoid suites.展开更多
This study focuses on the thermophysical characterizations of composite materials made from polypropylene reinforced with residues and fibers from Borassus wood from Chad. These properties are experimentally determine...This study focuses on the thermophysical characterizations of composite materials made from polypropylene reinforced with residues and fibers from Borassus wood from Chad. These properties are experimentally determined at different temperatures using the hot wire method of the “FP2C” machine, where the hot wire probe is inserted between two specimens. The values of the thermal conductivity in powdered Borassus wood range from 0.170 W/mK to 0.182 W/mK for female wood (FNTF) and from 0.169 W/mK to 0.173 W/mK for male wood. For the female and male fibers, the thermal conductivity values range from 0.137 W/mK to 0.157 W/mK for the female and from 0.138 W/mK to 0.168 W/mK for the male. The thermal effusivity of the residues and fibers of Borassus wood varies from: 509.6 Ws1/2/m2K to 543 Ws1/2/m2K for the powder of female wood and from 524.6 Ws1/2/m2K to 547 Ws1/2/m2K for the powder of male wood. For the fibers of Borassus wood, the values range from 410.6 Ws1/2/m2K to 523.6 Ws1/2/m2K for the female wood fibers and from 420.3 Ws1/2/m2K to 480.3 Ws1/2/m2K for the male wood fibers. These results are important for the applications of Borassus wood residues and fibers in construction works regarding the thermal insulation of habitats.展开更多
The title of the online version of the original article was revised.The title of the original article has been revised to:Hydrochemical characterization of surface waters in Northern Tehran:Integrating cluster-based t...The title of the online version of the original article was revised.The title of the original article has been revised to:Hydrochemical characterization of surface waters in Northern Tehran:Integrating cluster-based techniques with Self-Organizing Maps.展开更多
Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades ...Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades and continue to face persistent challenges related to light transmission,biosafety,and visual appearance.Here,we report the discovery of two-dimensional(2D)TiO_(2),characterized by a micro-sized lateral dimension(~1.6μm)and atomic-scale thickness,which fundamentally resolves these long-standing issues.The 2D structure enables exceptional light management,achieving 80%visible light transparency—rendering it nearly invisible on the skin—while maintaining UV-blocking performance comparable to unmodified rutile TiO_(2)nanoparticles.Its larger lateral size results in a two-orders-of-magnitude reduction in skin penetration(0.96 w/w%),significantly enhancing biosafety.Moreover,the unique layered architecture inherently suppresses the generation of reactive oxygen species(ROS)under sunlight exposure,reducing the ROS generation rate by 50-fold compared to traditional TiO_(2)nanoparticles.Through precise metal element modulation,we further developed the first customizable sunscreen material capable of tuning UV protection ranges and automatically matching diverse skin tones.The 2D TiO_(2)offers a potentially transformative approach to modern sunscreen formulation,combining superior UV protection,enhanced safety and a natural appearance.展开更多
This review article provides a comprehensive examination of the most recent advances in research on nanoglasses,including the methods used to create these materials,their characteristics,and their diverse range of use...This review article provides a comprehensive examination of the most recent advances in research on nanoglasses,including the methods used to create these materials,their characteristics,and their diverse range of uses.An overview of the current trends in nanoglass research connects them to the Sustainable Development Goals,highlighting the current relevance of this topic.The process of manufacturing nanoglasses is explained in depth,highlighting advanced approaches such as inert gas condensation and severe plastic deformation,among other techniques.The prime focus of this review is on analyzing the various dimensions of nanoglass materials,including their structural dynamics and electrical configurations,and how these features contribute to their exceptional thermal stability and mechanical strength.The magnetic characteristics of nanoglasses are examined,highlighting their potential for driving innovation across multiple industries.The primary emphasis is on the biological usefulness of nanoglasses,specifically examining their bioactivity and interaction with biological components,and emphasizing their growing use in nanoscale biomedical applications.With regard to the practical applications of nanoglasses,there are specific discussions of their contributions to biological evaluation,wound healing,catalysis,and environmental sustainability.There is an emphasis on the durability and resistance of nanoglasses in these contexts.The comprehensive overview of nanoglasses provided in this article highlights their significance as revolutionary materials in fields of science and technology.The potential of nanoglasses to contribute to a future that is more sustainable and health oriented is indicated.The article ends by discussing the future directions for nanoglass research and looks forward to the promising possibilities for further investigation and innovation.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52205072).
文摘Owing to their rolling friction,two-dimensional piston pumps are highly suitable as power components for electro-hydrostatic actuators(EHAs).These pumps are particularly advantageous for applications requiring high efficiency and reliability.However,the ambiguity surrounding the output flow characteristics of individual two-dimensional pumps poses a significant challenge in achieving precise closed-loop control of the EHA positions.To address this issue,this study established a comprehensive numerical model that included gap leakage to analyze the impact of leakage on the output flow characteristics of a two-dimensional piston pump.The validity of the numerical analysis was indirectly confirmed through meticulous measurements of the leakage and volumetric efficiency,ensuring robust results.The research findings indicated that,at lower pump speeds,leakage significantly affected the output flow rate,leading to potential inefficiencies in the system.Conversely,at higher rotational speeds,the impact of leakage was less pronounced,implying that the influence of leakage on the pump outlet flow must be carefully considered and managed for EHAs to perform position servo control.Additionally,the research demonstrates that two-dimensional motion does not have a unique or additional effect on pump leakage,thus simplifying the design considerations.Finally,the study concluded that maintaining an oil-filled leakage environment is beneficial because it helps reduce the impact of leakage and enhances the overall volumetric efficiency of the pump system.
基金the support from the National Natural Science Foundation of China(22272004,62272041)the Fundamental Research Funds for the Central Universities(YWF-22-L-1256)+1 种基金the National Key R&D Program of China(2023YFC3402600)the Beijing Institute of Technology Research Fund Program for Young Scholars(No.1870011182126)。
文摘The proliferation of wearable biodevices has boosted the development of soft,innovative,and multifunctional materials for human health monitoring.The integration of wearable sensors with intelligent systems is an overwhelming tendency,providing powerful tools for remote health monitoring and personal health management.Among many candidates,two-dimensional(2D)materials stand out due to several exotic mechanical,electrical,optical,and chemical properties that can be efficiently integrated into atomic-thin films.While previous reviews on 2D materials for biodevices primarily focus on conventional configurations and materials like graphene,the rapid development of new 2D materials with exotic properties has opened up novel applications,particularly in smart interaction and integrated functionalities.This review aims to consolidate recent progress,highlight the unique advantages of 2D materials,and guide future research by discussing existing challenges and opportunities in applying 2D materials for smart wearable biodevices.We begin with an in-depth analysis of the advantages,sensing mechanisms,and potential applications of 2D materials in wearable biodevice fabrication.Following this,we systematically discuss state-of-the-art biodevices based on 2D materials for monitoring various physiological signals within the human body.Special attention is given to showcasing the integration of multi-functionality in 2D smart devices,mainly including self-power supply,integrated diagnosis/treatment,and human–machine interaction.Finally,the review concludes with a concise summary of existing challenges and prospective solutions concerning the utilization of2D materials for advanced biodevices.
基金financially supported by National Key R&D Program of China(2021YFB3500702)National Natural Science Foundation of China(Nos.21677010 and 51808037)Special fund of Beijing Key Laboratory of Indoor Air Quality Evaluation and Control(No.BZ0344KF21-04).
文摘With the ongoing depletion of fossil fuels,energy and environmental issues have become increasingly critical,necessitating the search for effective solutions.Catalysis,being one of the hallmarks of modern industry,offers a promising avenue for researchers.However,the question of how to significantly enhance the performance of catalysts has gradually drawn the attention of scholars.Defect engineering,a commonly employed and effective approach to improve catalyst activity,has become a significant research focus in the catalysis field in recent years.Nonmetal vacancies have received extensive attention due to their simple form.Consequently,exploration of metal vacancies has remained stagnant for a considerable period,resulting in a scarcity of comprehensive reviews on this topic.Therefore,based on the latest research findings,this paper summarizes and consolidates the construction strategies for metal vacancies,characterization techniques,and their roles in typical energy and environmental catalytic reactions.Additionally,it outlines potential challenges in the future,aiming to provide valuable references for researchers interested in investigating metal vacancies.
基金supported by Public Health Talent Training and Surport Plan(National Administration of Disease Prevention and Control)Research and application of new technology for rapid monitoring and tracing of emergent infectious diseases among entry-exit population(2024YFFK0056)Monitoring,Early warning and Response of Major Infectious Diseases(2022ZDZX0017).
文摘Objective This study reports the first imported case of Lassa fever(LF)in China.Laboratory detection and molecular epidemiological analysis of the Lassa virus(LASV)from this case offer valuable insights for the prevention and control of LF.Methods Samples of cerebrospinal fluid(CSF),blood,urine,saliva,and environmental materials were collected from the patient and their close contacts for LASV nucleotide detection.Whole-genome sequencing was performed on positive samples to analyze the genetic characteristics of the virus.Results LASV was detected in the patient’s CSF,blood,and urine,while all samples from close contacts and the environment tested negative.The virus belongs to the lineage IV strain and shares the highest homology with strains from Sierra Leone.The variability in the glycoprotein complex(GPC)among different strains ranged from 3.9%to 15.1%,higher than previously reported for the seven known lineages.Amino acid mutation analysis revealed multiple mutations within the GPC immunogenic epitopes,increasing strain diversity and potentially impacting immune response.Conclusion The case was confirmed through nucleotide detection,with no evidence of secondary transmission or viral spread.The LASV strain identified belongs to lineage IV,with broader GPC variability than previously reported.Mutations in the immune-related sites of GPC may affect immune responses,necessitating heightened vigilance regarding the virus.
文摘2-substituted-1-amino-o-carboranes 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10)(R=CH_(3),1a;R=Ph,1b)were synthesized and the reactions of these compounds with the yttrium dialkyl complex[Y(L)(CH_(2)SiMe3)_(2)](L=[2-(2,5-Me_(2)C_(4)H_(2)N)C_(6)H4NC(Ph)=NDipp]-,Dipp=2,6-iPr_(2)C_(6)H_(3))were investigated.The 1H NMR spectroscopy indicate that the reaction of ytrrium dialkyl complex with one equivalent of 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10) produce the mixture of ytrrium alkyl-amido complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))(CH_(2)SiMe3)](R=CH_(3),2a;R=Ph,2b)and bis(amido)complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))_(2)](R=CH_(3),3a;R=Ph,3b).The yttrium bridging imido complex[Y(L)(2-CH_(3)-1-N-o-C_(2)B_(10)H_(10))]_(2)(4a)was obtained by heating the mixture at 55℃for 12 h.Complex 3a was isolated and characterized by treating the yttrium dialkyl complex with two equivalents of 1a.The structures of complexes 3a and 4a were verified by single-crystal Xray diffraction.CCDC:2424136,3a;2424137,4a.
文摘A functional interlayer based on two-dimensional(2D)porous modified vermiculite nanosheets(PVS)was obtained by acid-etching vermiculite nanosheets.The as-obtained 2D porous nanosheets exhibited a high specific surface area of 427 m^(2)·g^(-1)and rich surface active sites,which help restrain polysulfides(LiPSs)through good physi-cal and chemical adsorption,while simultaneously accelerating the nucleation and dissolution kinetics of Li_(2)S,effec-tively suppressing the shuttle effect.The assembled lithium-sulfur batteries(LSBs)employing the PVS-based inter-layer delivered a high initial discharge capacity of 1386 mAh·g^(-1)at 0.1C(167.5 mAh·g^(-1)),long-term cycling stabil-ity,and good rate property.
基金supported by the Shihezi University High-Level Talents Research Startup Project(Project No.RCZK202521)the National Natural Science Foundation of China(Grant Nos.12271066,11871121,12171405)+1 种基金the Chongqing Natural Science Foundation Joint Fund for Innovation and Development Project(Project No.CSTB2024NSCQLZX0085)the Chongqing Normal University Foundation(Grant No.23XLB018).
文摘This paper investigates ruin,capital injection,and dividends for a two-dimensional risk model.The model posits that surplus levels of insurance companies are governed by a perturbed composite Poisson risk model.This model introduces a dependence between the two surplus levels,present in both the associated perturbations and the claims resulting from common shocks.Critical levels of capital injection and dividends are established for each of the two risks.The surplus levels are observed discretely at fixed intervals,guiding decisions on capital injection,dividends,and ruin at these junctures.This study employs a two-dimensional Fourier cosine series expansion method to approximate the finite time expected discounted operating cost until ruin.The ensuing approximation error is also quantified.The validity and accuracy of the method are corroborated through numerical examples.Furthermore,the research delves into the optimal capital allocation problem.
基金supported by the National Natural Science Foundation of China(Nos.52172291,52122312,and 52473294)'Shuguang Program'supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.22SG31)the State Key Laboratory for Advanced Fiber Materials,Donghua University
文摘Excessive nitrogen emission caused by human activities has significantly disrupted the global nitrogen cycle,adversely affecting ecosystems and human health.Electrocatalytic nitrate reduction to valuable ammonia(eNRA)presents an encouraging alternative marked by mild reaction conditions,rapid reaction rates,and minimal byproduct pollution,successfully overcoming the challenges of the energy-intensive Haber-Bosch process.Recent innovations in two-dimensional(2D)electrocatalysts have emerged as a promising approach to enhance the efficiency and selectivity of this transformation.This review systematically examines the latest advancements in2D materials,including metals,metal compounds,nonmetallic elements,and organic frameworks,highlighting their unique electronic properties and high surface area that facilitate the electrocatalytic reactions.We explore strategies to optimize these catalysts,such as doping,heterostructure,and surface functionalization,which have shown significant improvements in catalytic performance.Furthermore,the role of in situ/operando characterization techniques in understanding the reaction mechanisms is highlighted,aiming to provide both theoretical and practical insights for the research and development of 2D nanoelectrocatalysts during eNRA.Additionally,future perspectives and ongoing challenges are discussed to offer insights for transitioning from experimental investigations to real-world applications.
文摘Clays are a constituent of the earth. As a result, the discovery and traditional use of clays in construction and pottery worldwide dates back to antiquity. Guinea has several deposits of clay minerals whose chemical and mineralogical compositions have been little studied. Despite lacking of scientific data on these clay minerals, they are used today in pottery and habitat construction. As a step towards promoting the use of clay materials in Guinea, we conducted a study of the physicochemical and mineralogical properties of three natural clays from Kakan in the Republic of Guinea (AKKB, AKKE, AKKO) used in habitat construction. The aims of this work were to better understand their properties, but above all to be able to act on them to improve and broaden their applications, which until now have been limited to construction. These clays were studied by X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), moisture content (%W), laser granulometry, Atterberg limits, specific surface area, infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis and differential thermal analysis (TGA/DTA). These analyses revealed that the main clay minerals present in our samples are kaolinite, illite and, montmorillonite, with the addition of impurities, the most abundant of which is quartz.
基金湖南省教育厅基金优秀青年项目(No.22B0482)湖南科技大学博士启动基金(No.E51992 and E51993)资助。
文摘The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monitoring xylitol concentration.In this study,the gene encoding the thermophilic fungus Talaromyces emersonii XDH(TeXDH)was heterologously expressed in Escherichia coli BL21(DE3)at 16℃in the soluble form.Recombinant TeXDH with high purity was purified by using a Ni⁃NTA affinity column.Size⁃exclusion chromatography and SDS⁃PAGE analysis demonstrated that the puri⁃fied recombinant TeXDH exists as a native trimer with a molecular mass of approximately 116 kD,and is composed of three identical subunits,each with a molecular weight of around 39 kD.The TeXDH strictly preferred NAD^(+)as a coenzyme to NADP^(+).The optimal temperature and pH of the TeXDH were 40℃and 10.0,respectively.After EDTA treatment,the enzyme activity of TeXDH decreased to 43.26%of the initial enzyme activity,while the divalent metal ions Mg^(2+)or Ca^(2+)could recover the enzyme activity of TeXDH,reaching 103.32%and 110.69%of the initial enzyme activity,respectively,making them the optimal divalent metal ion cofactors for TeXDH enzyme.However,the divalent metal ions of Mn^(2+),Ni^(2+),Cu^(2+),Zn^(2+),Co^(2+),and Cd^(2+)significantly inhibited the activity of TeXDH.ICP⁃MS and molecular doc⁃king studies revealed that 1 mol/L of TeXDH bound 2 mol/L Zn^(2+)ions and 1 mol/L Mg^(2+)ion.Further⁃more,TeXDH exhibited a high specificity for xylitol,laying the foundation for the development of future xylitol biosensors.
文摘A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]pyrazine scaffold was serendipitously prepared from the reaction of the pro-ligand of H_(2)L1(N,N'-bis(pyrazin-2-ylmethyl)pyrazine-2,3-dicarboxamide) with CuSO_(4)·5H_(2O) in aqueous solution at room temperature.Complex 1 was characterized by IR,single-crystal X-ray analysis,and magnetic susceptibility measurements.Single-crystal X-ray analysis reveals that the complex consists of three Cu(Ⅱ) ions,two in situ transformed L2~-ligands,two coordinated sulfates,seven coordinated water molecules,and eight uncoordinated water molecules.Magnetic susceptibility measurement indicates that there are obvious ferromagnetic coupling interactions between the adjacent Cu(Ⅱ) ions in 1.CCDC:1852713.
文摘Introduction: Diabetes remains a real public health problem today, due to its associated morbidity and mortality. It induces numerous metabolic, biochemical, hematological, and immunological changes, responsible for multiple complications. The objective of this study was to characterize clinically and biologically type 2 diabetic patients followed at the National Center for Diabetology and Arterial Hypertension of the Central Hospital of Yaoundé. Method: This prospective, cross-sectional, and analytical study took place from April 5 to July 31, 2023 (4 months) on 100 diabetic patients of both sexes (61 women and 39 men), aged from 31 to 88 years. Body Mass Index, systolic and diastolic blood pressure, and cardiac frequency were measured on each of the patients. Subsequently, blood was collected from the patients for the determination of the complete blood count, HBA1c, lipid profile, serum albumin, TNF-α, and IL-6 levels. The data were analyzed using SPSS 17.0 software. Results: The age average of our population was 56.99 ± 11.51 years, the population was primarily female (61%) and primarily between the ages of 55 and 88. 67% of respondents were married. 59% went to secondary school. 73% of them lived in urban areas. 30% were obese and 40% were overweight, with an average BMI of 28.75 kg/m2. 76% of patients took oral antidiabetic medications. HbA1c level average was 8.65%, with 60% having readings above 6.5%. Low hemoglobin and hypochromia were among the abnormalities of red blood cells observed. Lipid profiles revealed low HDL-cholesterol and high triglycerides and cholesterol. Elevated levels of TNF-α and IL-6 indicated inflammation and cardiovascular risk. Conclusion: These results indicate the necessity of focused diabetic care and management on diabetic patients attending the central hospital of Yaoundé, Cameroon.
文摘Cashew processing in Côte d’Ivoire focuses only on the cashew nut, to the detriment of the apple. Only a very small proportion of the apple is processed into juice. The aim of this work is to enhance the value of cashew apples by transforming them into jam. Specifically, the aim was first to characterize the sensory properties of cashew apple jam formulations using baobab powder as a source of pectin and then to optimise the formulations. A Box-Behken design with pH, Sugar, and Baobab as factors was used to model and characterize the jam sensory descriptors, and a multivariate analysis with SensomineR was used to characterize the jam formulations. The desirability function was used to optimise the formulations. The results show globally significant regressions at the 0.05 threshold for the sensory descriptors Gelling, Brilliance, Smell, Sweetness, and (-)Astringency, with the exception of (-)Salinity. The R2 coefficients are greater than 80%. The factors studied could have effects on the sensory descriptors of cashew jam formulations. The Baobab had the main effect on the gelling, smell, and astringency of the jams. Brilliance depended on the added sugar. A product effect (p < 0.001) was observed for the descriptors Smell, Gelling, Brilliance, and Sweetness, as these allowed the panelists to find differences between the formulations. Optimum jam formulation can be achieved with 51.56% sugar and 2.12% Baobab at a pH of 3.15. Cashew apple jam using Baobab offers opportunities to add value to apples that have long been abandoned in the field. It would be important to find conditions for prolonged storage of this jam.
基金supported by Beijing Natural Science Foundation(Nos.2232037 and 2242035)the National Natural Science Foundation of China(Nos.22005012,22105012 and 51803183)+1 种基金Chunhui Plan Cooperative Project of Ministry of Education(No.202201298)the China Postdoctoral Science Foundation Funded Project(No.2023M733520).
文摘Lithium-sulfur(Li-S)batteries with high energy density and capacity have garnered significant research attention among various energy storage devices.However,the shuttle effect of polysulfides(LiPSs)remains a major challenge for their practical application.The design of battery separators has become a key aspect in addressing the challenge.MXenes,a promising two-dimensional(2D)material,offer exceptional conductivity,large surface area,high mechanical strength,and active sites for surface reactions.When assembled into layered films,MXenes form highly tunable two-dimensional channels ranging from a few angstroms to over 1 nm.These nanoconfined channels are instrumental in facilitating lithium-ion transport while effectively impeding the shuttle effect of LiPSs,which are essential for improving the specific capacity and cyclic stability of Li-S batteries.Substantial progress has been made in developing MXenes-based separators for Li-S batteries,yet there remains a research gap in summarizing advancements from the perspective of interlayer engineering.This entails maintaining the 2D nanochannels of layered MXenes-based separators while modulating the physicochemical environment within the MXenes interlayers through targeted modifications.This review highlights advancements in in situ modification of MXenes and their integration with 0D,1D,and 2D materials to construct laminated nanocomposite separators for Li-S batteries.The future development directions of MXenes-based materials in Li-S energy storage devices are also outlined,to drive further advancements in MXenes for Li-S battery separators.
基金supported by the National Natural Science Foundation of China(52301177)。
文摘The advancement of electron microscopy technology has driven the development of electron microscopes that can apply mechanical loading while observing samples,providing a valuable tool for In-Situ mechanical characterization of materials.In response to the need to characterize the evolution of the mechanical behavior of structural materials,such as aerospace materials,in real cryogenic service environments,and to provide an experimental basis for improving their macroscopic cryogenic mechanical properties,the advancement of In-Situ characterization techniques capable of offering both cryogenic environments and mechanical loading has become imperative.There have been scholars using this technique to carry out cryogenic mechanical In-Situ studies of related materials,with experimental studies dominating in general,and a few reviews of mechanical characterization techniques mentioning cryogenic temperatures.In order to make it easier to conduct research using such characterization techniques and to further promote the development of related characterization techniques,this review compiles the previous work and summarizes the electron microscope-based In-Situ characterization techniques for cryogenic micro-and nanomechanics.These techniques primarily include transmission electron microscopy-based cryogenic tensile and indentation methods,as well as scanning electron microscopy-based cryogenic tensile,indentation,compression,and bending methods.Furthermore,the review outlines the prospective future development of In-Situ characterization techniques for cryogenic micro-and nanomechanics.
文摘The SiO_(2)'-CaO/(CaO+K_(2)O)(S'CK)diagram is an empirically derived major element-based equivalent to the modal IUGS alkali feldspar-quartz-plagioclase classification scheme for granitoids.It employs the content of SiO_(2)and CaO/(CaO+K_(2)O)ratio to approximate the IUGS classification diagram and a normative-based Q'-ANOR plot.Four trends have been superimposed onto the SiO_(2)'-CaO/(CaO+K_(2)O)diagram based on published datasets from the Peninsular Ranges(calcic:C),Tuolumne(calc-alkalic:CA),Sherman(alkali-calcic:AC),and Bjerkreim-Sokndal(alkalic:A)batholiths,which were employed to constrain the positions of the C-CA,CA-AC and AC-A suite boundaries on the SiO_(2)versus(Na_(2)O+K_(2)O-CaO)(or modified alkali-lime index,MALI)granitic classification diagram.A merit of the SiO_(2)'-CaO/(CaO+K_(2)O)plot is identifying rock types comprising a suite and their relative abundances.The distinguished projections of five typical granitoid assemblages,which are summarized by Bonin et al.(2020),demonstrate the ability of SiO_(2)'-CaO/(CaO+K_(2)O)diagram to decipher their petrogenesis.The SiO_(2)'-CaO/(CaO+K_(2)O)plots for the plutonic suites of'known'tectonic settings can reveal their evolution paths and the lithological statistics.Accordingly,it is suggested that the SiO_(2)'-CaO/(CaO+K_(2)O)plot can distinguish the tectonic environments of plutonic suits by comparing the plutonic suites or batholiths of'unknown'tectonic context to the published datasets from granitoid suites formed within'known'tectonic settings.The modified SiO_(2)'-CaO/(CaO+K_(2)O)diagram links the bulk chemical composition of granitoid suites to the likely source,magmatic evolution,and tectonic setting;thus,it may be a useful tectono-magmatic classification scheme for granitoid suites.
文摘This study focuses on the thermophysical characterizations of composite materials made from polypropylene reinforced with residues and fibers from Borassus wood from Chad. These properties are experimentally determined at different temperatures using the hot wire method of the “FP2C” machine, where the hot wire probe is inserted between two specimens. The values of the thermal conductivity in powdered Borassus wood range from 0.170 W/mK to 0.182 W/mK for female wood (FNTF) and from 0.169 W/mK to 0.173 W/mK for male wood. For the female and male fibers, the thermal conductivity values range from 0.137 W/mK to 0.157 W/mK for the female and from 0.138 W/mK to 0.168 W/mK for the male. The thermal effusivity of the residues and fibers of Borassus wood varies from: 509.6 Ws1/2/m2K to 543 Ws1/2/m2K for the powder of female wood and from 524.6 Ws1/2/m2K to 547 Ws1/2/m2K for the powder of male wood. For the fibers of Borassus wood, the values range from 410.6 Ws1/2/m2K to 523.6 Ws1/2/m2K for the female wood fibers and from 420.3 Ws1/2/m2K to 480.3 Ws1/2/m2K for the male wood fibers. These results are important for the applications of Borassus wood residues and fibers in construction works regarding the thermal insulation of habitats.
文摘The title of the online version of the original article was revised.The title of the original article has been revised to:Hydrochemical characterization of surface waters in Northern Tehran:Integrating cluster-based techniques with Self-Organizing Maps.
基金supported by the National Key Research and Development Project(No.2019YFA0705403)the National Natural Science Foundation of China(No.T2293693,52273311)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2020B0301030002)and the Shenzhen Basic Research Project(Nos.WDZC20200824091903001,JSGG20220831105402004,JCYJ20220818100806014)Shenzhen Major Science and Technology Projects(Nos.KCXFZ20240903094013018,KCXFZ20240903094203005)。
文摘Titanium dioxide(TiO_(2))has been an important protective ingredient in mineral-based sunscreens since the 1990s.However,traditional TiO_(2)nanoparticle formulations have seen little improvement over the past decades and continue to face persistent challenges related to light transmission,biosafety,and visual appearance.Here,we report the discovery of two-dimensional(2D)TiO_(2),characterized by a micro-sized lateral dimension(~1.6μm)and atomic-scale thickness,which fundamentally resolves these long-standing issues.The 2D structure enables exceptional light management,achieving 80%visible light transparency—rendering it nearly invisible on the skin—while maintaining UV-blocking performance comparable to unmodified rutile TiO_(2)nanoparticles.Its larger lateral size results in a two-orders-of-magnitude reduction in skin penetration(0.96 w/w%),significantly enhancing biosafety.Moreover,the unique layered architecture inherently suppresses the generation of reactive oxygen species(ROS)under sunlight exposure,reducing the ROS generation rate by 50-fold compared to traditional TiO_(2)nanoparticles.Through precise metal element modulation,we further developed the first customizable sunscreen material capable of tuning UV protection ranges and automatically matching diverse skin tones.The 2D TiO_(2)offers a potentially transformative approach to modern sunscreen formulation,combining superior UV protection,enhanced safety and a natural appearance.
基金M.A.F.acknowledges the financing support by Universidad Nacional del Sur(Grant No.PGI 24/Q112 and Grant No.PICT 2021-I-A-00288)Agencia Nacional de Promoción Científica y Tecnológica(ANPCyT)(Grant No.PIP 2021-2023 GI 11220200100317CO).
文摘This review article provides a comprehensive examination of the most recent advances in research on nanoglasses,including the methods used to create these materials,their characteristics,and their diverse range of uses.An overview of the current trends in nanoglass research connects them to the Sustainable Development Goals,highlighting the current relevance of this topic.The process of manufacturing nanoglasses is explained in depth,highlighting advanced approaches such as inert gas condensation and severe plastic deformation,among other techniques.The prime focus of this review is on analyzing the various dimensions of nanoglass materials,including their structural dynamics and electrical configurations,and how these features contribute to their exceptional thermal stability and mechanical strength.The magnetic characteristics of nanoglasses are examined,highlighting their potential for driving innovation across multiple industries.The primary emphasis is on the biological usefulness of nanoglasses,specifically examining their bioactivity and interaction with biological components,and emphasizing their growing use in nanoscale biomedical applications.With regard to the practical applications of nanoglasses,there are specific discussions of their contributions to biological evaluation,wound healing,catalysis,and environmental sustainability.There is an emphasis on the durability and resistance of nanoglasses in these contexts.The comprehensive overview of nanoglasses provided in this article highlights their significance as revolutionary materials in fields of science and technology.The potential of nanoglasses to contribute to a future that is more sustainable and health oriented is indicated.The article ends by discussing the future directions for nanoglass research and looks forward to the promising possibilities for further investigation and innovation.