Molecular identification on diploid and tetraploid watermelon breeding lines which were resistant to Fusarium wilt was carried out with the published dCAPS marker "4451_fon" which was closely linked with resistance ...Molecular identification on diploid and tetraploid watermelon breeding lines which were resistant to Fusarium wilt was carried out with the published dCAPS marker "4451_fon" which was closely linked with resistance gene of Fusarium wilt race 1. The results showed that all the diploid and tetraploid lines expressed as re- sistant genotype, which were defined as Fusarium wilt-resistant materials. The re- sults were consistent with that of artificial inoculation identification. Molecular identifi- cation results also indicated that the resistant lines were homozygote, and the Fusarium wilt-resistant gene would not separate or lose during the future self- crossed purification. Therefore, resistance selection would not be necessary in their progeny populations. The study results thought that dCAPS marker "4451_fon" could be applied on molecular marker assisted selection for Fusarium wilt resistance breeding in watermelon to increase breeding selection efficiency and accelerate breeding progress.展开更多
Two cycles of biparental mass selection (MS) and one cycle of half-sib-S3 family combining selection (HS-S3) for yield were carried out in 2 synthetic maize populations P4C0 and P5C0 synchronously. The genetic div...Two cycles of biparental mass selection (MS) and one cycle of half-sib-S3 family combining selection (HS-S3) for yield were carried out in 2 synthetic maize populations P4C0 and P5C0 synchronously. The genetic diversity of 8 maize populations, including both the basic populations and their developed populations, were evaluated by 30 SSR primers. On the 30 SSR loci, a total of 184 alleles had been detected in these populations. At each locus, the number of alleles varied from 2 to 14, with an average of 6.13. The number and ratio of polymorphic loci in both the basic populations were higher than those of their developed populations, respectively. There was nearly no difference after MS but decreased after HS-S3 in both the basic populations in the mean gene heterozygosity. The mean genetic distance changed slightly after MS but decreased in a bigger degree after HS-S3 in both the basic populations. Analyses on the distribution of genetic distances showed that the ranges of the genetic distance were wider after MS and most of the genetic distances in populations developed by HS-S3 were smaller than those in both the basic populations. The number of genotypes increased after MS but decreased after HS-S3 in both the basic populations. The genetic diversity of intra-population was much more than genetic diversity of inter-population in both the basic populations. All these indexes demonstrated that the genetic diversity of populations after MS was similar to their basic populations, and the genetic diversity was maintained during MS, whereas the genetic diversity of populations decreased after HS-S3. This result indicated that heterogeneity between some of the individuals in the developed populations increased after MS, whereas the populations become more homozygotic after HS-S3.展开更多
1000-Grain weight and spikelet number per panicle are two important components for rice grain yield. In our previous study, eight quantitative trait loci (QTLs) conferring spikelet number per panicle and 1000-grain ...1000-Grain weight and spikelet number per panicle are two important components for rice grain yield. In our previous study, eight quantitative trait loci (QTLs) conferring spikelet number per panicle and 1000-grain weight were mapped through sequencing-based genotyping of 150 rice recombinant inbred lines (RILs). In this study, we validated the effects of four QTLs from Nipponbare using chromosome segment substitution lines (CSSLs), and pyramided eight grain yield related QTLs. The new lines containing the eight QTLs with positive effects showed increased panicle and spikelet size as compared with the parent variety 93-11. We further proposed a novel pyramid breeding scheme based on marker-assistant and phenotype selection (MAPS). This scheme allowed pyramiding of as many as 24 QTLs at a single hybridization without massive cross work. This study provided insights into the molecular basis of rice grain yield for direct wealth for high-yielding rice breeding.展开更多
Two yield-enhancing genes (yld1.1 and yld2.1) are located on chromosomes 1 and 2 respectivelyin a weedy relative of cultivated rice, Oryza rufipogon. SSR markers RM9 and RM166 are closelylinked with the two loci respe...Two yield-enhancing genes (yld1.1 and yld2.1) are located on chromosomes 1 and 2 respectivelyin a weedy relative of cultivated rice, Oryza rufipogon. SSR markers RM9 and RM166 are closelylinked with the two loci respectively. Minghui63 (MH63) has been a widely used restorationline in hybrid rice production in China during the past two decades. The F1 of cross 'MH63O.rufipogon' was backcrossed with MH63 generation by generation. RM9 and RM166 were used toselect the plants from the progeny of the backcross populations. The results were as follows:(1) In BC2F1 population, the percentage of the individuals which have RM9 and RM166 amplifiedbands simultaneously was 12.2%, while in the BC3F1 population, that was 16.3%. (2) Among 400individuals of BC3F1, four yield-promising plants were obtained, with yield being 30% more thanthat of MH63. (3) The products amplified by primer RM166 in O. rufipogon and MH63 weresequenced. It was found that the DNA fragment sequence amplified by RM166 from MH63 was 101 bpshorter than that from O. rufipogon. The 101bp sequence is a part of an intron of the PCNA(proliferating cell nuclear antigen) gene.展开更多
Pruning is time-consuming and laborious in watermelon cultivation,which can not meet the needs for simplified cultivation in the future.The development of branchless lines will provide important germplasms for breedin...Pruning is time-consuming and laborious in watermelon cultivation,which can not meet the needs for simplified cultivation in the future.The development of branchless lines will provide important germplasms for breeding watermelon varieties and is an important method for genetic improvement.In this study,the watermelon accession,Wu Cha Zao(WCZ)is a branchless inbred line that carries the branchless gene Clbl,which was used as the donor parent to develop branchless near isogenic lines(NILs).To construct the NILs of Clbl,WCZ crossed with the normal branching watermelon inbred line WT20 which was used as the recurrent parent.The co-segregating markers dCAPS10 and Indel1 with Clbl were used for foreground selection,and a total of 108 SSR markers was selected with good polymorphism between two parental lines for background selection which had relatively uniform distribution across 11 chromosomes.Using these markers to select individuals from the BC_(1)F_(1),BC_(2)F_(1),and BC_(2)F_(2) generations,three NILs with a proportion of recurrent parent genome(PRPG)>99%were finally obtained.The lateral branch and plant height phenotypes did not significantly differ between the NILs and WCZ,indicating that the NILs of Clbl under the genetic background of WT20 has been successfully developed.These results provide ideal materials for further in-depth analysis of the genetic mechanisms of lateral branch development and ideal plant architecture breeding in watermelon.展开更多
Cytoplasmic male sterility exists widely in most natural populations of welsh onion (Alliumfistulosum L.), which makes it possible to breed out many male sterile lines for heterosis utilization. Unfortunately, the b...Cytoplasmic male sterility exists widely in most natural populations of welsh onion (Alliumfistulosum L.), which makes it possible to breed out many male sterile lines for heterosis utilization. Unfortunately, the breeding of cytoplasmic male sterility in welsh onion has a little progress due to the limitation of its biological characteristic and traditional selection approach. To study the feasibility and the efficiency of utilizing marker assisted selection for male sterile lines in welsh onion, one SCAR marker, SCS13, and one RAPD marker, S2002400, which could distinguish between N and S cytoplasm in several welsh onion cultivars, were identified. The two markers were then confirmed by Southern blotting, and used to screen the N or S cytoplasm of individual plants in seven welsh onion cultivars in this study. Male sterile and fertile plants were evaluated by aceto-carmine dying. The frequency of N-cytoplasmic plants and maintainer genotype was calculated in the seven open populations of welsh onion. The minimum number of plants needed to identify a maintainer was evaluated to be 95% reliable. Results showed that 20 to 80% decrease of crosses and self-crosses for identifying a maintainer genotype could be achieved by the marker-assisted selection compared with traditional selection method. It was proved that the molecular markers could precisely identify cytoplasmic types individually, performed by one generation of cross and two generations of testcrosses and self-crosses. Finally, several maintainer genotype plants were selected with the help of the two markers in the seven cultivars. The screened markers could assist and accelerate sterile and maintainer lines selection with less labor and cost.展开更多
Grh2, a green rice leafhopper resistant gene from an indica cultivar DV85, was located on chromosome 11, and two RFLP markers C189 and G1465 were found to be linked to this gene. In order to transfer Grh2 into Taichun...Grh2, a green rice leafhopper resistant gene from an indica cultivar DV85, was located on chromosome 11, and two RFLP markers C189 and G1465 were found to be linked to this gene. In order to transfer Grh2 into Taichung65, a japonica cultivar with elite characters, backcross method with Taichung65 as the recurrent parent was used and the two RFLP markers were converted into CAPS markers for marker assisted selection (MAS). In the BC6F3 population, both phenotypic evaluation and MAS were conducted to screen the resistant plants with Taichung65 background. The linkage distance between CAPS markers and Grh2 was calculated and the efficiency of MAS was analyzed.展开更多
In progenies resulting from crosses involving rice cultivar Norin 8m susceptible to bentazon as the donor of ben gene, SCARs tightly linked to ben were utilized for selection of ben. The homozygous and heterozygous ge...In progenies resulting from crosses involving rice cultivar Norin 8m susceptible to bentazon as the donor of ben gene, SCARs tightly linked to ben were utilized for selection of ben. The homozygous and heterozygous genotypes with ben could be identified with the SCARs. The molecular markers offer a powerful tool for indirect selection of ben and can accelerate the introgression of ben into current rice cultivars.展开更多
The research results of marker aided selection(MAS)for resistant varieties and lines against rice gall midge Orseolia oryzae Wood-Mason successfully in 1999 - 2002 were reported in the present paper. The molecular mar...The research results of marker aided selection(MAS)for resistant varieties and lines against rice gall midge Orseolia oryzae Wood-Mason successfully in 1999 - 2002 were reported in the present paper. The molecular markers linked to the gene Gm6 against rice gall midge were used to select and breed the resistant varieties and lines. The RAPD marker OPM06 was used to verify the existence actually of gene Gm6 in ten developed varieties resistant to gall midge such as Duokang1, Duokang2, Kangwen2, Kangwen3, Kang-wen5, Duokangzaozhan, Kangwenqinzhan, which were derived from Daqiuqi. For resistance breeding through PCRbased marker aided selection(MAS), the polymorphisms in the resistant and susceptible parents were i-dentified by RG476/Alu I and RG476/Sca I respectively. The RAPD marker OPM06(1.4 kb)was used to i-dentify 15 new resistance lines from F3 lines of Fengyinzhan1/Daqiuqi in 1999. 21 and 7 resistance lines were selected from F4 and F6 lines of KWQZ/Gui99(restored line of hybrid rice)using RG476/Alu I in 2000-2001 respectively. The Gm6 gene was transferred into the restored line of hybrid rice. In 2001 - 2002, RG214/ Hha I and G214/Sca I were used for selecting 11 and 5 resistance lines from F3 lines of KWQZ/IR56 and AXZ/KWQZ successfully. The application of the resistance gene through PCR-based marker aided selection is a new and effective approach in resistance breeding.展开更多
Selection is practically ubiquitous during marker-QTL linkage analysig with an experimental population.Thus,it is necessary to investigate the impacts of selection upon linkage analyses in order to obtain unbiased est...Selection is practically ubiquitous during marker-QTL linkage analysig with an experimental population.Thus,it is necessary to investigate the impacts of selection upon linkage analyses in order to obtain unbiased estimates of QTL position and effect.In this article,by exploiting flanking markers through the widely applied half-sib design,we have developed the structures of three variance components,i.e.,variance component between marker genotypes,polygenic variance component and recombinant variance component within marker genotypes.Changes in these variance components under varying selection intensities were investigated in this study to formulate the effects of selection on various variance components.Results showed clearly that all variance components presented were quite sensitive to changes in selection intensity.As selection intensity increased,all variance compo-nents declined by differing extents in a quadratic fashion.Comparatively speaking,the variance between marker genotypes decreased most drastically,followed by the polygenic variance within marker genotypes and then the recombinant variance within marker genotypes,which suggested a decrease of power for QTL linkage analysis.Therefore,steps should be taken to avoid as much as possible the presence of selection in real populations,so as to further eliminate the negative effects of selection on QTL linkage analysis.展开更多
Verticillium wilt is a global important disease ofcotton,which threatens the development ofcotton production seriously.Recent years,because of the change in climate and croppingpattern,Verticillium wilt was broke out ...Verticillium wilt is a global important disease ofcotton,which threatens the development ofcotton production seriously.Recent years,because of the change in climate and croppingpattern,Verticillium wilt was broke out incotton production areas in China,which展开更多
Background: With the rapid development of genomics, many functional genes have been targeted. Molecular marker assisted selection can accelerate the breeding process by linking selection to functional genes. Methods...Background: With the rapid development of genomics, many functional genes have been targeted. Molecular marker assisted selection can accelerate the breeding process by linking selection to functional genes. Methods: In a study of upland cotton (Gossypium hirsutum L.), the F2 segregated population was constructed by crossing X1570 (short branches) with Ekangmian 13 (long branches) to identify the short fruiting branch gene and marker assisted selection with SNP(Single Nucleotide Polymorphisms, SNP) linked to its trait. Result: The result demonstrated that linked SSR marker BNL3232 was screened by BSA(Bulked segregant analysis, BSA) method; one SNP locus was found, which was totally separated from the fruiting branches trait in upland cotton. Conclusion: It was verified that this SNP marker could be used for molecular assisted selection of cotton architecture展开更多
This review updates the present status of the field of molecular markers and marker-assisted selection(MAS),using the example of drought tolerance in barley.The accuracy of selected quantitative trait loci(QTLs),candi...This review updates the present status of the field of molecular markers and marker-assisted selection(MAS),using the example of drought tolerance in barley.The accuracy of selected quantitative trait loci(QTLs),candidate genes and suggested markers was assessed in the barley genome cv.Morex.Six common strategies are described for molecular marker development,candidate gene identification and verification,and their possible applications in MAS to improve the grain yield and yield components in barley under drought stress.These strategies are based on the following five principles:(1)Molecular markers are designated as genomic‘tags’,and their‘prediction’is strongly dependent on their distance from a candidate gene on genetic or physical maps;(2)plants react differently under favourable and stressful conditions or depending on their stage of development;(3)each candidate gene must be verified by confirming its expression in the relevant conditions,e.g.,drought;(4)the molecular marker identified must be validated for MAS for tolerance to drought stress and improved grain yield;and(5)the small number of molecular markers realized for MAS in breeding,from among the many studies targeting candidate genes,can be explained by the complex nature of drought stress,and multiple stress-responsive genes in each barley genotype that are expressed differentially depending on many other factors.展开更多
Bacterial leaf blight of rice (BLB), caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive diseases in Asian rice fields. A high-quality rice variety, LT2, was used as the recipient parent.IRBB21, wh...Bacterial leaf blight of rice (BLB), caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive diseases in Asian rice fields. A high-quality rice variety, LT2, was used as the recipient parent.IRBB21, which carries the Xa21 gene, was used as the donor parent. The resistance gene Xa21 was introduced into LT2 by marker-assisted backcrossing. Three Xoo races were used to inoculate the improved lines following the clipping method. Eleven BC_3F_3 lines carrying Xa21 were obtained based on molecular markers and agronomic performance. The 11 lines were then inoculated with the three Xoo races. All the 11 improved lines showed better resistance to BLB than the recipient parent LT2. Based on the level of resistance to BLB and their agronomic performance, five lines (BC_3F_3 5.1.5.1, BC_3F_3 5.1.5.12, BC_3F_3 8.5.6.44, BC_3F_3 9.5.4.1 and BC_3F_3 9.5.4.23) were selected as the most promising for commercial release. These improved lines could contribute to rice production in terms of food security.展开更多
The resistance in tomato plants to bacterial speck caused by Pseudomonas syringae pv. tomato is triggered by the interactions between the plant resistance protein Pto and the pathogen avirulence proteins AvrPto or Avr...The resistance in tomato plants to bacterial speck caused by Pseudomonas syringae pv. tomato is triggered by the interactions between the plant resistance protein Pto and the pathogen avirulence proteins AvrPto or AvrPtoB. Fen is a gene encoding closely related functional protein kinases as the Pto gene. To investigate the status of resistance to the pathogen and natural variation of Pto and Fen genes in tomato, 67 lines including 29 growing in China were subject to disease resistance evaluation and fenthion-sensitivity test. Alleles of Pto and Fen were amplified from genomic DNA of 25 tomato lines using polymerase chain reaction (PCR) and sequences were determined by sequencing the PCR products. The results indicated that none of the 29 cultivars/hybrids growing in China were resistant to bacterial speck race 0 strain DC3000. Seven of eight tomato lines resistant to DC3000 were also fenthion-sensitive. Analysis of deduced amino acid sequences identified three novel residue substitutions between Pto and pto, and one new substitution identified between Fen and fen. A PCR-based marker was developed and successfully used to select plants with resistance to DC3000.展开更多
Through recurrent backcrossing in combination with molecular marker-assisted selection (MAS), restorer lines R8006 and Rl176 carrying Xa-21, a gene having broad-spectrum resistance to rice bacterial leaf blight, were ...Through recurrent backcrossing in combination with molecular marker-assisted selection (MAS), restorer lines R8006 and Rl176 carrying Xa-21, a gene having broad-spectrum resistance to rice bacterial leaf blight, were selected. By crossing the two lines to CMS line Zhong 9A, two new hybrid rice combinations, Zhongyou 6 and Zhongyou 1176 were developed. The hybrids showed high resistance to diseases, good grain quality and high yielding potential in national and provincial adaptability and yield trials.展开更多
A high-yielding japonica rice variety, Wuyunjing 7, bred in Jiangsu Province, China as a female parent was crossed with a Japanese rice variety Kantou 194, which carries a rice stripe disease resistance gene Stv-b' a...A high-yielding japonica rice variety, Wuyunjing 7, bred in Jiangsu Province, China as a female parent was crossed with a Japanese rice variety Kantou 194, which carries a rice stripe disease resistance gene Stv-b' and a translucent endosperm mutant gene Wx-mq. From F2 generations, a sequence characterized amplified region (SCAR) marker tightly linked with Stv-b' and a cleaved amplified polymorphic sequence (CAPS) marker for Wx-mq were used for marker-assisted selection. Finally, a new japonica rice line, Ning 9108, with excellent agronomic traits was obtained by multi-generational selection on stripe disease resistance and endosperm appearance. The utilization of the markers from genes related to rice quality and disease resistance was helpful not only for establishing a marker-assisted selection system of high-quality and disease resistance for rice but also for providing important intermediate materials and rapid selection method for good quality, disease resistance and high yield in rice breeding.展开更多
Powdery mildew, caused by Blumeria graminis f. sp. tritici(Bgt), is one of the most devastating diseases of common wheat(Triticum aestivum L.). The wheat line 92145 E8-9 is immune to Bgt isolate E09. Genetic analysis ...Powdery mildew, caused by Blumeria graminis f. sp. tritici(Bgt), is one of the most devastating diseases of common wheat(Triticum aestivum L.). The wheat line 92145 E8-9 is immune to Bgt isolate E09. Genetic analysis reveals that the powdery mildew resistance in 92145 E8-9 is controlled by a single dominant gene, temporarily designated Ml92145 E8-9. Bulkedsegregant analysis(BSA) with simple sequence repeat(SSR) markers indicates that Ml92145 E8-9 is located on chromosome 2 AL. According to the reactions of 92145 E8-9,VPM1(Pm4 b carrier), and Lankao 906(PmLK906 carrier) to 14 Bgt isolates, the resistance spectrum of 92145 E8-9 differs from those of Pm4 b and PmLK906, both of which were previously localized to 2 AL. To test the allelism among Ml92145 E8-9, Pm4 b and PmLK906, two F2 populations of 92145 E8-9 × VPM1(Pm4 b) and 92145 E8-9 × Lankao 906(PmLK906) were developed in this study. Screening of 784 F2 progeny of 92145 E8-9 × VPM1 and 973 F2 progeny of 92145 E8-9 × Lankao 906 for Bgt isolate E09 identified 37 and 19 susceptible plants, respectively. These findings indicated that Ml92145 E8-9 is non-allelic to either Pm4 b or PmLK906. Thus, Ml92145 E8-9 is likely to be a new powdery mildew resistance gene on2 AL. New polymorphic markers were developed based on the collinearity of genomic regions of Ml92145 E8-9 with the reference sequences of the International Wheat Genome Sequencing Consortium(IWGSC). Ml92145 E8-9 was mapped to a 3.6 c M interval flanked by molecular markers Xsdauk13 and Xsdauk682. This study also developed five powdery mildew-resistant wheat lines(SDAU3561, SDAU3562, SDAU4173, SDAU4174, and SDAU4175)using flanking marker-aided selection. The markers closely linked to Ml92145 E8-9 would be useful in marker-assisted selection for wheat powdery mildew resistance breeding.展开更多
The coincidence rates were more than 96% among the instar-weighted average of bioassaysin the lab, the percentage of resistance to Km in the field and the percentage of plantscontaining Bt gene. So, the performance of...The coincidence rates were more than 96% among the instar-weighted average of bioassaysin the lab, the percentage of resistance to Km in the field and the percentage of plantscontaining Bt gene. So, the performance of resistance to Km in the field can be used torepresent the transgenic Bt gene for selecting the resistance to bollworm. The instar-weighted averages were 30.585, 24.182, 16.615, 10.601, 10.123, 7.440 and 7.215 for theC0, P1, M1, M2, MP1, P2 and MP2 populations, respectively. The variance analysisindicated that the instar-weighted average in C0 was greatly significantly higher thanthat in all other populations, i.e., the performance of resistance to bollworm in C0 washighly significantly lower than all other populations. And the resistance in P1 wasgreatly lower than that of M1, M2, MP1, P2 and MP2, and M1 greatly lower than that of M2,MP1, P2 and MP2. There were no significant differences among M2, MP1, P2 and MP2. Withinthe populations of the first cycle selection, MP1 and M1 were greatly significantlyhigher than P1, and MP1 significantly higher than M1. The populations of the second cycleselection were significantly higher than their initial population M1, but no significantdifference among them. The boll size, seed index, the percent of the first harvest yield,fiber length, strength and elongation of the resistant plants to bollworm were significantlylower than that of sensitive plants to bollworm. And the yield of seed and lint cottonof the resistant plant to bollworm were lower than that of the sensitive to bollworm, butno significant difference between them. The boll numbers per plant, lint percent andmicronaire of the resistant plants to bollworm were significantly higher than that of thesensitive plant to bollworm.展开更多
Due to technical difficulties,the genetic transformation of mitochondria in mammalian cells is still a challenge.In this report,we described our attempts to transform mammalian mitochondria with an engineered mitochon...Due to technical difficulties,the genetic transformation of mitochondria in mammalian cells is still a challenge.In this report,we described our attempts to transform mammalian mitochondria with an engineered mitochondrial genome based on selection using a drug resistance gene.Because the standard drug-resistant neomycin phosphotransferase confers resistance to high concentrations of G418 when targeted to the mitochondria,we generated a recoded neomycin resistance gene that uses the mammalian mitochondrial genetic code to direct the synthesis of this protein in the mitochondria,but not in the nucleus(mitochondrial version).We also generated a universal version of the recoded neomycin resistance gene that allows synthesis of the drug-resistant proteins both in the mitochondria and nucleus.When we transfected these recoded neomycin resistance genes that were incorporated into the mouse mitochondrial genome clones into mouse tissue culture cells by electroporation,no DNA constructs were delivered into the mitochondria.We found that the universal version of the recoded neomycin resistance gene was expressed in the nucleus and thus conferred drug resistance to G418 selection,while the synthetic mitochondrial version of the gene produced no background drug-resistant cells from nuclear transformation.These recoded synthetic drug-resistant genes could be a useful tool for selecting mitochondrial genetic transformants as a precise technology for mitochondrial transformation is developed.展开更多
基金Supported by"12th Five-Year Plan"of National Science and Technology Plan Project in Rural Areas Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2015-ZFRI-06)~~
文摘Molecular identification on diploid and tetraploid watermelon breeding lines which were resistant to Fusarium wilt was carried out with the published dCAPS marker "4451_fon" which was closely linked with resistance gene of Fusarium wilt race 1. The results showed that all the diploid and tetraploid lines expressed as re- sistant genotype, which were defined as Fusarium wilt-resistant materials. The re- sults were consistent with that of artificial inoculation identification. Molecular identifi- cation results also indicated that the resistant lines were homozygote, and the Fusarium wilt-resistant gene would not separate or lose during the future self- crossed purification. Therefore, resistance selection would not be necessary in their progeny populations. The study results thought that dCAPS marker "4451_fon" could be applied on molecular marker assisted selection for Fusarium wilt resistance breeding in watermelon to increase breeding selection efficiency and accelerate breeding progress.
基金the National High Technology Research and Development Program of China (863 Program,2004BA525B04)the Program for Changjiang Scholar and Innovation Research Team in University of China (IRT0453)
文摘Two cycles of biparental mass selection (MS) and one cycle of half-sib-S3 family combining selection (HS-S3) for yield were carried out in 2 synthetic maize populations P4C0 and P5C0 synchronously. The genetic diversity of 8 maize populations, including both the basic populations and their developed populations, were evaluated by 30 SSR primers. On the 30 SSR loci, a total of 184 alleles had been detected in these populations. At each locus, the number of alleles varied from 2 to 14, with an average of 6.13. The number and ratio of polymorphic loci in both the basic populations were higher than those of their developed populations, respectively. There was nearly no difference after MS but decreased after HS-S3 in both the basic populations in the mean gene heterozygosity. The mean genetic distance changed slightly after MS but decreased in a bigger degree after HS-S3 in both the basic populations. Analyses on the distribution of genetic distances showed that the ranges of the genetic distance were wider after MS and most of the genetic distances in populations developed by HS-S3 were smaller than those in both the basic populations. The number of genotypes increased after MS but decreased after HS-S3 in both the basic populations. The genetic diversity of intra-population was much more than genetic diversity of inter-population in both the basic populations. All these indexes demonstrated that the genetic diversity of populations after MS was similar to their basic populations, and the genetic diversity was maintained during MS, whereas the genetic diversity of populations decreased after HS-S3. This result indicated that heterogeneity between some of the individuals in the developed populations increased after MS, whereas the populations become more homozygotic after HS-S3.
基金supported by the Ministry of Science and Technology(Grant No. 2011 CB 100205)the Ministry of Agriculture of China (Grant Nos.2011ZX08001-004 and 2011ZX08009-002)the National Natural Science Foundation of China(Grant No. 31121063)
文摘1000-Grain weight and spikelet number per panicle are two important components for rice grain yield. In our previous study, eight quantitative trait loci (QTLs) conferring spikelet number per panicle and 1000-grain weight were mapped through sequencing-based genotyping of 150 rice recombinant inbred lines (RILs). In this study, we validated the effects of four QTLs from Nipponbare using chromosome segment substitution lines (CSSLs), and pyramided eight grain yield related QTLs. The new lines containing the eight QTLs with positive effects showed increased panicle and spikelet size as compared with the parent variety 93-11. We further proposed a novel pyramid breeding scheme based on marker-assistant and phenotype selection (MAPS). This scheme allowed pyramiding of as many as 24 QTLs at a single hybridization without massive cross work. This study provided insights into the molecular basis of rice grain yield for direct wealth for high-yielding rice breeding.
文摘Two yield-enhancing genes (yld1.1 and yld2.1) are located on chromosomes 1 and 2 respectivelyin a weedy relative of cultivated rice, Oryza rufipogon. SSR markers RM9 and RM166 are closelylinked with the two loci respectively. Minghui63 (MH63) has been a widely used restorationline in hybrid rice production in China during the past two decades. The F1 of cross 'MH63O.rufipogon' was backcrossed with MH63 generation by generation. RM9 and RM166 were used toselect the plants from the progeny of the backcross populations. The results were as follows:(1) In BC2F1 population, the percentage of the individuals which have RM9 and RM166 amplifiedbands simultaneously was 12.2%, while in the BC3F1 population, that was 16.3%. (2) Among 400individuals of BC3F1, four yield-promising plants were obtained, with yield being 30% more thanthat of MH63. (3) The products amplified by primer RM166 in O. rufipogon and MH63 weresequenced. It was found that the DNA fragment sequence amplified by RM166 from MH63 was 101 bpshorter than that from O. rufipogon. The 101bp sequence is a part of an intron of the PCNA(proliferating cell nuclear antigen) gene.
基金supported by the National Natural Science Foundation of China(Grant Nos.32102389,32172602,32172574)the Funding of Joint Research on Agricultural Varietie Improvement of Henan Province(Grant No.2022010503)+4 种基金the Zhongyuan Youth Talent Support Program(Grant No.ZYQR201912161)the Program for Science&Technology Innovation Talents in Universities of Henan Province(Grant No.21HASTIT038)the Key Scientific and Technological Project of Henan Province(Grant No.202102110045)the Major Science and Technology Project of Henan Province(Grant No.221100110400)the Science and Technology Innovation Fund of Henan Agricultural University(Grant No.KJCX2021A14).
文摘Pruning is time-consuming and laborious in watermelon cultivation,which can not meet the needs for simplified cultivation in the future.The development of branchless lines will provide important germplasms for breeding watermelon varieties and is an important method for genetic improvement.In this study,the watermelon accession,Wu Cha Zao(WCZ)is a branchless inbred line that carries the branchless gene Clbl,which was used as the donor parent to develop branchless near isogenic lines(NILs).To construct the NILs of Clbl,WCZ crossed with the normal branching watermelon inbred line WT20 which was used as the recurrent parent.The co-segregating markers dCAPS10 and Indel1 with Clbl were used for foreground selection,and a total of 108 SSR markers was selected with good polymorphism between two parental lines for background selection which had relatively uniform distribution across 11 chromosomes.Using these markers to select individuals from the BC_(1)F_(1),BC_(2)F_(1),and BC_(2)F_(2) generations,three NILs with a proportion of recurrent parent genome(PRPG)>99%were finally obtained.The lateral branch and plant height phenotypes did not significantly differ between the NILs and WCZ,indicating that the NILs of Clbl under the genetic background of WT20 has been successfully developed.These results provide ideal materials for further in-depth analysis of the genetic mechanisms of lateral branch development and ideal plant architecture breeding in watermelon.
基金supported by the National Natural Science Foundation of China (39770520)
文摘Cytoplasmic male sterility exists widely in most natural populations of welsh onion (Alliumfistulosum L.), which makes it possible to breed out many male sterile lines for heterosis utilization. Unfortunately, the breeding of cytoplasmic male sterility in welsh onion has a little progress due to the limitation of its biological characteristic and traditional selection approach. To study the feasibility and the efficiency of utilizing marker assisted selection for male sterile lines in welsh onion, one SCAR marker, SCS13, and one RAPD marker, S2002400, which could distinguish between N and S cytoplasm in several welsh onion cultivars, were identified. The two markers were then confirmed by Southern blotting, and used to screen the N or S cytoplasm of individual plants in seven welsh onion cultivars in this study. Male sterile and fertile plants were evaluated by aceto-carmine dying. The frequency of N-cytoplasmic plants and maintainer genotype was calculated in the seven open populations of welsh onion. The minimum number of plants needed to identify a maintainer was evaluated to be 95% reliable. Results showed that 20 to 80% decrease of crosses and self-crosses for identifying a maintainer genotype could be achieved by the marker-assisted selection compared with traditional selection method. It was proved that the molecular markers could precisely identify cytoplasmic types individually, performed by one generation of cross and two generations of testcrosses and self-crosses. Finally, several maintainer genotype plants were selected with the help of the two markers in the seven cultivars. The screened markers could assist and accelerate sterile and maintainer lines selection with less labor and cost.
基金This work was conducted in Kyushu University,Japan by the first author during his visiting research supported by China Scholarship Counsel(CSC),the“948”Project of the Ministry of Agriculture of Chinathe Program for Outstanding Teachers by the Ministry of Education of China.
文摘Grh2, a green rice leafhopper resistant gene from an indica cultivar DV85, was located on chromosome 11, and two RFLP markers C189 and G1465 were found to be linked to this gene. In order to transfer Grh2 into Taichung65, a japonica cultivar with elite characters, backcross method with Taichung65 as the recurrent parent was used and the two RFLP markers were converted into CAPS markers for marker assisted selection (MAS). In the BC6F3 population, both phenotypic evaluation and MAS were conducted to screen the resistant plants with Taichung65 background. The linkage distance between CAPS markers and Grh2 was calculated and the efficiency of MAS was analyzed.
基金This work was supported by grants from Anhui Province Natura1 Science Foundation(0004111O).
文摘In progenies resulting from crosses involving rice cultivar Norin 8m susceptible to bentazon as the donor of ben gene, SCARs tightly linked to ben were utilized for selection of ben. The homozygous and heterozygous genotypes with ben could be identified with the SCARs. The molecular markers offer a powerful tool for indirect selection of ben and can accelerate the introgression of ben into current rice cultivars.
文摘The research results of marker aided selection(MAS)for resistant varieties and lines against rice gall midge Orseolia oryzae Wood-Mason successfully in 1999 - 2002 were reported in the present paper. The molecular markers linked to the gene Gm6 against rice gall midge were used to select and breed the resistant varieties and lines. The RAPD marker OPM06 was used to verify the existence actually of gene Gm6 in ten developed varieties resistant to gall midge such as Duokang1, Duokang2, Kangwen2, Kangwen3, Kang-wen5, Duokangzaozhan, Kangwenqinzhan, which were derived from Daqiuqi. For resistance breeding through PCRbased marker aided selection(MAS), the polymorphisms in the resistant and susceptible parents were i-dentified by RG476/Alu I and RG476/Sca I respectively. The RAPD marker OPM06(1.4 kb)was used to i-dentify 15 new resistance lines from F3 lines of Fengyinzhan1/Daqiuqi in 1999. 21 and 7 resistance lines were selected from F4 and F6 lines of KWQZ/Gui99(restored line of hybrid rice)using RG476/Alu I in 2000-2001 respectively. The Gm6 gene was transferred into the restored line of hybrid rice. In 2001 - 2002, RG214/ Hha I and G214/Sca I were used for selecting 11 and 5 resistance lines from F3 lines of KWQZ/IR56 and AXZ/KWQZ successfully. The application of the resistance gene through PCR-based marker aided selection is a new and effective approach in resistance breeding.
基金This work was supported by the Key Project of Natural Science Foundation of Guangdong Province(No.036843)the National Natural Science Foundation of China(No.39770542).
文摘Selection is practically ubiquitous during marker-QTL linkage analysig with an experimental population.Thus,it is necessary to investigate the impacts of selection upon linkage analyses in order to obtain unbiased estimates of QTL position and effect.In this article,by exploiting flanking markers through the widely applied half-sib design,we have developed the structures of three variance components,i.e.,variance component between marker genotypes,polygenic variance component and recombinant variance component within marker genotypes.Changes in these variance components under varying selection intensities were investigated in this study to formulate the effects of selection on various variance components.Results showed clearly that all variance components presented were quite sensitive to changes in selection intensity.As selection intensity increased,all variance compo-nents declined by differing extents in a quadratic fashion.Comparatively speaking,the variance between marker genotypes decreased most drastically,followed by the polygenic variance within marker genotypes and then the recombinant variance within marker genotypes,which suggested a decrease of power for QTL linkage analysis.Therefore,steps should be taken to avoid as much as possible the presence of selection in real populations,so as to further eliminate the negative effects of selection on QTL linkage analysis.
文摘Verticillium wilt is a global important disease ofcotton,which threatens the development ofcotton production seriously.Recent years,because of the change in climate and croppingpattern,Verticillium wilt was broke out incotton production areas in China,which
基金Sponsored by State Key Laboratory of Cotton Biology Open Fund(CB2016A07)Hubei Provincial Agricultural Science and Technology Innovation Center Support Project(2016–620–000-001-010)The National Key Technology R&D Program(2014BAD11B0203)
文摘Background: With the rapid development of genomics, many functional genes have been targeted. Molecular marker assisted selection can accelerate the breeding process by linking selection to functional genes. Methods: In a study of upland cotton (Gossypium hirsutum L.), the F2 segregated population was constructed by crossing X1570 (short branches) with Ekangmian 13 (long branches) to identify the short fruiting branch gene and marker assisted selection with SNP(Single Nucleotide Polymorphisms, SNP) linked to its trait. Result: The result demonstrated that linked SSR marker BNL3232 was screened by BSA(Bulked segregant analysis, BSA) method; one SNP locus was found, which was totally separated from the fruiting branches trait in upland cotton. Conclusion: It was verified that this SNP marker could be used for molecular assisted selection of cotton architecture
基金supported by Bolashak International Fellowships,Center for International Programs,Ministry of Education and Science,KazakhstanAP14869777 supported by the Ministry of Education and Science,KazakhstanResearch Projects BR10764991 and BR10765000 supported by the Ministry of Agriculture,Kazakhstan。
文摘This review updates the present status of the field of molecular markers and marker-assisted selection(MAS),using the example of drought tolerance in barley.The accuracy of selected quantitative trait loci(QTLs),candidate genes and suggested markers was assessed in the barley genome cv.Morex.Six common strategies are described for molecular marker development,candidate gene identification and verification,and their possible applications in MAS to improve the grain yield and yield components in barley under drought stress.These strategies are based on the following five principles:(1)Molecular markers are designated as genomic‘tags’,and their‘prediction’is strongly dependent on their distance from a candidate gene on genetic or physical maps;(2)plants react differently under favourable and stressful conditions or depending on their stage of development;(3)each candidate gene must be verified by confirming its expression in the relevant conditions,e.g.,drought;(4)the molecular marker identified must be validated for MAS for tolerance to drought stress and improved grain yield;and(5)the small number of molecular markers realized for MAS in breeding,from among the many studies targeting candidate genes,can be explained by the complex nature of drought stress,and multiple stress-responsive genes in each barley genotype that are expressed differentially depending on many other factors.
文摘Bacterial leaf blight of rice (BLB), caused by Xanthomonas oryzae pv. oryzae, is one of the most destructive diseases in Asian rice fields. A high-quality rice variety, LT2, was used as the recipient parent.IRBB21, which carries the Xa21 gene, was used as the donor parent. The resistance gene Xa21 was introduced into LT2 by marker-assisted backcrossing. Three Xoo races were used to inoculate the improved lines following the clipping method. Eleven BC_3F_3 lines carrying Xa21 were obtained based on molecular markers and agronomic performance. The 11 lines were then inoculated with the three Xoo races. All the 11 improved lines showed better resistance to BLB than the recipient parent LT2. Based on the level of resistance to BLB and their agronomic performance, five lines (BC_3F_3 5.1.5.1, BC_3F_3 5.1.5.12, BC_3F_3 8.5.6.44, BC_3F_3 9.5.4.1 and BC_3F_3 9.5.4.23) were selected as the most promising for commercial release. These improved lines could contribute to rice production in terms of food security.
基金supported by the National High Technology Research and Development Program of China (2006AA10Z1A6)the Program for New Century Excellent Talents in University, China (NCET-08-0531)
文摘The resistance in tomato plants to bacterial speck caused by Pseudomonas syringae pv. tomato is triggered by the interactions between the plant resistance protein Pto and the pathogen avirulence proteins AvrPto or AvrPtoB. Fen is a gene encoding closely related functional protein kinases as the Pto gene. To investigate the status of resistance to the pathogen and natural variation of Pto and Fen genes in tomato, 67 lines including 29 growing in China were subject to disease resistance evaluation and fenthion-sensitivity test. Alleles of Pto and Fen were amplified from genomic DNA of 25 tomato lines using polymerase chain reaction (PCR) and sequences were determined by sequencing the PCR products. The results indicated that none of the 29 cultivars/hybrids growing in China were resistant to bacterial speck race 0 strain DC3000. Seven of eight tomato lines resistant to DC3000 were also fenthion-sensitive. Analysis of deduced amino acid sequences identified three novel residue substitutions between Pto and pto, and one new substitution identified between Fen and fen. A PCR-based marker was developed and successfully used to select plants with resistance to DC3000.
文摘Through recurrent backcrossing in combination with molecular marker-assisted selection (MAS), restorer lines R8006 and Rl176 carrying Xa-21, a gene having broad-spectrum resistance to rice bacterial leaf blight, were selected. By crossing the two lines to CMS line Zhong 9A, two new hybrid rice combinations, Zhongyou 6 and Zhongyou 1176 were developed. The hybrids showed high resistance to diseases, good grain quality and high yielding potential in national and provincial adaptability and yield trials.
基金supported by the Key Program of the Development of Variety of Genetically Modified Organisms(Grant Nos.2009ZX08001-019B and 2008ZX08001-006)the Special Program for Rice Scientific Research of Ministry of Agriculture(Grant No.nyhyzx 07-001-006)+1 种基金the Key Support Program of Science and Technology of Jiangsu Province(Grant No.BE2008354)the Self-directed Innovation Fund of Agricultural Science and Technology in Jiangsu Province,China(Grant No.CX[09]634)
文摘A high-yielding japonica rice variety, Wuyunjing 7, bred in Jiangsu Province, China as a female parent was crossed with a Japanese rice variety Kantou 194, which carries a rice stripe disease resistance gene Stv-b' and a translucent endosperm mutant gene Wx-mq. From F2 generations, a sequence characterized amplified region (SCAR) marker tightly linked with Stv-b' and a cleaved amplified polymorphic sequence (CAPS) marker for Wx-mq were used for marker-assisted selection. Finally, a new japonica rice line, Ning 9108, with excellent agronomic traits was obtained by multi-generational selection on stripe disease resistance and endosperm appearance. The utilization of the markers from genes related to rice quality and disease resistance was helpful not only for establishing a marker-assisted selection system of high-quality and disease resistance for rice but also for providing important intermediate materials and rapid selection method for good quality, disease resistance and high yield in rice breeding.
基金financially supported by Geneti-cally Modified Organisms Breeding Major Projects(2016ZX08009003-001-006)the National Natural Science Foundation of China(31471488 and 31520203911)the National Basic Research Program of China(2014CB138100)
文摘Powdery mildew, caused by Blumeria graminis f. sp. tritici(Bgt), is one of the most devastating diseases of common wheat(Triticum aestivum L.). The wheat line 92145 E8-9 is immune to Bgt isolate E09. Genetic analysis reveals that the powdery mildew resistance in 92145 E8-9 is controlled by a single dominant gene, temporarily designated Ml92145 E8-9. Bulkedsegregant analysis(BSA) with simple sequence repeat(SSR) markers indicates that Ml92145 E8-9 is located on chromosome 2 AL. According to the reactions of 92145 E8-9,VPM1(Pm4 b carrier), and Lankao 906(PmLK906 carrier) to 14 Bgt isolates, the resistance spectrum of 92145 E8-9 differs from those of Pm4 b and PmLK906, both of which were previously localized to 2 AL. To test the allelism among Ml92145 E8-9, Pm4 b and PmLK906, two F2 populations of 92145 E8-9 × VPM1(Pm4 b) and 92145 E8-9 × Lankao 906(PmLK906) were developed in this study. Screening of 784 F2 progeny of 92145 E8-9 × VPM1 and 973 F2 progeny of 92145 E8-9 × Lankao 906 for Bgt isolate E09 identified 37 and 19 susceptible plants, respectively. These findings indicated that Ml92145 E8-9 is non-allelic to either Pm4 b or PmLK906. Thus, Ml92145 E8-9 is likely to be a new powdery mildew resistance gene on2 AL. New polymorphic markers were developed based on the collinearity of genomic regions of Ml92145 E8-9 with the reference sequences of the International Wheat Genome Sequencing Consortium(IWGSC). Ml92145 E8-9 was mapped to a 3.6 c M interval flanked by molecular markers Xsdauk13 and Xsdauk682. This study also developed five powdery mildew-resistant wheat lines(SDAU3561, SDAU3562, SDAU4173, SDAU4174, and SDAU4175)using flanking marker-aided selection. The markers closely linked to Ml92145 E8-9 would be useful in marker-assisted selection for wheat powdery mildew resistance breeding.
基金supported in part by the National High Tech Program(2001AA211101)Trans-century Training Program Foundation for the Talents by the Ministry of Education and the Ministry of Science and Technology Program(J99-A-023).
文摘The coincidence rates were more than 96% among the instar-weighted average of bioassaysin the lab, the percentage of resistance to Km in the field and the percentage of plantscontaining Bt gene. So, the performance of resistance to Km in the field can be used torepresent the transgenic Bt gene for selecting the resistance to bollworm. The instar-weighted averages were 30.585, 24.182, 16.615, 10.601, 10.123, 7.440 and 7.215 for theC0, P1, M1, M2, MP1, P2 and MP2 populations, respectively. The variance analysisindicated that the instar-weighted average in C0 was greatly significantly higher thanthat in all other populations, i.e., the performance of resistance to bollworm in C0 washighly significantly lower than all other populations. And the resistance in P1 wasgreatly lower than that of M1, M2, MP1, P2 and MP2, and M1 greatly lower than that of M2,MP1, P2 and MP2. There were no significant differences among M2, MP1, P2 and MP2. Withinthe populations of the first cycle selection, MP1 and M1 were greatly significantlyhigher than P1, and MP1 significantly higher than M1. The populations of the second cycleselection were significantly higher than their initial population M1, but no significantdifference among them. The boll size, seed index, the percent of the first harvest yield,fiber length, strength and elongation of the resistant plants to bollworm were significantlylower than that of sensitive plants to bollworm. And the yield of seed and lint cottonof the resistant plant to bollworm were lower than that of the sensitive to bollworm, butno significant difference between them. The boll numbers per plant, lint percent andmicronaire of the resistant plants to bollworm were significantly higher than that of thesensitive plant to bollworm.
基金Minnesota Medical Foundation, the Academic Health Center, the Institute of Human Genetics of the University of Minnesota and the National Institute of Health for their generous financial support (NS052612).
文摘Due to technical difficulties,the genetic transformation of mitochondria in mammalian cells is still a challenge.In this report,we described our attempts to transform mammalian mitochondria with an engineered mitochondrial genome based on selection using a drug resistance gene.Because the standard drug-resistant neomycin phosphotransferase confers resistance to high concentrations of G418 when targeted to the mitochondria,we generated a recoded neomycin resistance gene that uses the mammalian mitochondrial genetic code to direct the synthesis of this protein in the mitochondria,but not in the nucleus(mitochondrial version).We also generated a universal version of the recoded neomycin resistance gene that allows synthesis of the drug-resistant proteins both in the mitochondria and nucleus.When we transfected these recoded neomycin resistance genes that were incorporated into the mouse mitochondrial genome clones into mouse tissue culture cells by electroporation,no DNA constructs were delivered into the mitochondria.We found that the universal version of the recoded neomycin resistance gene was expressed in the nucleus and thus conferred drug resistance to G418 selection,while the synthetic mitochondrial version of the gene produced no background drug-resistant cells from nuclear transformation.These recoded synthetic drug-resistant genes could be a useful tool for selecting mitochondrial genetic transformants as a precise technology for mitochondrial transformation is developed.