In this paper, we consider a new two-component integrable system with cubic nonlinearity, which can be deduced by a curve flow and it is integrable with its Lax pair, bi- Hamiltonian structure, and infinitely many con...In this paper, we consider a new two-component integrable system with cubic nonlinearity, which can be deduced by a curve flow and it is integrable with its Lax pair, bi- Hamiltonian structure, and infinitely many conservation laws. We mainly establish the local well-posedness of this system in a range of the Besov spaces B p,r ^s with s〉max {2+1/p,5/2}.展开更多
To address the issues of short setting time and high bleeding rate of A component,which easily cause pipe plugging and poor grouting performance when a two-component grout is injected synchronously behind the Segmenta...To address the issues of short setting time and high bleeding rate of A component,which easily cause pipe plugging and poor grouting performance when a two-component grout is injected synchronously behind the Segmental Lining,the inorganic retarder sodium pyrophosphate(TSPP)and three organic retarders were added to the A component:sodium citrate(SC),sodium tartrate(ST)and glycerol(GLY).The effect law and microscopic mechanism of viscosity,bleeding rate,setting time,gelling time,compressive strength,and stone rate were investigated.The results revealed that the addition of retarders could enhance the stability and setting time of the A component and increase the gelling time,stone rate,and compressive strength of two-component grout.Among them,the performance of the grout with an SC dosage of 0.1% was superior.The bleeding rate of this grout was reduced to 3.5%,the stone rate of the two-component grout was more than 99%,and the early compressive strength and late compressive strength of this grout were increased by approximately 35% and 7%,respectively.The initial and final setting time of the A component with a TSPP dosage of 0.3% was the longest,which was prolonged to 17 and 26 h,respectively.Microscopic analysis revealed that the four retarders hindered the hydration process of cement through complexation and adsorption,and inhibited the hydration of C_(3)S and the crystallisation of CH.Moreover,they reduced the defects caused by the rapid reaction of water glass and CH on the solid phase structure,enabled the microstructure of the stone body to be denser,and subsequently,enhanced the compressive strength.展开更多
It is shown that the two-component Camassa-Holm and Hunter-Saxton systems are geometrically integrable, namely they describe pseudo-spherical surfaces. As a consequence, their infinite number of conservation laws are ...It is shown that the two-component Camassa-Holm and Hunter-Saxton systems are geometrically integrable, namely they describe pseudo-spherical surfaces. As a consequence, their infinite number of conservation laws are directly constructed. In addition, a class of nonlocal symmetries depending on the pseudo-potentials are obtained.展开更多
In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrabilit...In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrability.By focusing on single-component decompositions within the potential BKP hierarchy,it has been observed that specific linear superpositions of decomposition solutions remain consistent with the underlying equations.Moreover,through the implementation of multi-component decompositions within the potential BKP hierarchy,successful endeavors have been undertaken to formulate linear superposition solutions and novel coupled Kd V-type systems that resist decoupling via alterations in dependent variables.展开更多
We investigate the integrability of the Rabi model,which is traditionally viewed as not Yang–Baxter-integrable despite its solvability.Building on efforts by Bogoliubov and Kulish(2013 J.Math.Sci.19214–30),Amico et ...We investigate the integrability of the Rabi model,which is traditionally viewed as not Yang–Baxter-integrable despite its solvability.Building on efforts by Bogoliubov and Kulish(2013 J.Math.Sci.19214–30),Amico et al(2007 Nucl.Phys.B 787283–300),and Batchelor and Zhou(2015 Phys.Rev.A 91053808),who explored special limiting cases of the model,we develop a spin–boson interaction Hamiltonian under more general boundary conditions,particularly focusing on open boundary conditions with off-diagonal terms.Our approach maintains the direction of the spin in the z direction and also preserves the boson particle number operator a^(†)a,marking a progression beyond previous efforts that have primarily explored reduced forms of the Rabi model from Yang–Baxter algebra.We also address the presence of‘unwanted’quadratic boson terms a^(2) and a^(†2),which share coefficients with the boson particle number operator.Interestingly,these terms vanish when spectral parameter u=±θ_(s),simplifying the model to a limiting case of operator-valued twists,a scenario previously discussed by Batchelor and Zhou(2015 Phys.Rev.A 91053808).展开更多
This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential g...This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential growth of mobile devices and data traffic has substantially increased network congestion,particularly in urban areas and regions with limited terrestrial infrastructure.Our approach jointly optimizes unmanned aerial vehicle(UAV)trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput,minimize energy consumption,and maintain equitable resource distribution.The proposed RMAPPO framework incorporates recurrent neural networks(RNNs)to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent reinforcement learning architecture to reduce communication overhead while improving system robustness.The proposed RMAPPO algorithm was evaluated through simulation experiments,with the results indicating that it significantly enhances the cumulative traffic offloading rate of nodes and reduces the energy consumption of UAVs.展开更多
Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technol...Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.展开更多
China is carving out a distinctive development path which features urban-rural integration.This approach has not only yielded tangible results domestically but also drawn the attention of other countries.
Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sen...Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sensing mechanism of the human skin,we have developed a flexible monolithic 3D-integrated tactile sensing system based on a holey MXene paste,where each vertical one-body unit simultaneously functions as a microsupercapacitor and pressure sensor.The in-plane mesopores of MXene significantly improve ion accessibility,mitigate the self-stacking of nanosheets,and allow the holey MXene to multifunctionally act as a sensing material,an active electrode,and a conductive interconnect,thus drastically reducing the interface mismatch and enhancing the mechanical robustness.Furthermore,we fabricate a large-scale device using a blade-coating and stamping method,which demonstrates excellent mechanical flexibility,low-power consumption,rapid response,and stable long-term operation.As a proof-of-concept application,we integrate our sensing array into a smart access control system,leveraging deep learning to accurately identify users based on their unique pressing behaviors.This study provides a promising approach for designing highly integrated,intelligent,and flexible electronic systems for advanced human-computer interactions and personalized electronics.展开更多
Does traditional Chinese economic thought possess genuine analytical rigor?This question lies at the heart of any serious evaluation of its theoretical value and historical significance.It also matters for understandi...Does traditional Chinese economic thought possess genuine analytical rigor?This question lies at the heart of any serious evaluation of its theoretical value and historical significance.It also matters for understanding how best to preserve,build on its remarkable achievements,and develop its intellectual legacy.Critics such as Schumpeter and Taylor have long argued that the economic reasoning found in ancient China cannot compare with that of classical Greece or medieval Europe.Yet this view often reflects the narrow assumptions of mainstream economics,defining analysis almost entirely in terms of market exchange.As a result,it tends to overlook traditions built around statecraft,governance,and the management of economic order.A careful re-examination and Sino-Western comparative analysis of key thinkers-including Mencius,Guanzi,and Sima Qian-tells a different story.Rooted in China’s distinctive cultural and philosophical heritage,traditional Chinese economic thought not only contains the analytical dimensions(as defined by Schumpeter)but also displays a broader and more diverse set of economic reasoning.Notably,its systematic depth and intellectual precision were,in many respects,remarkably advanced.Therefore,advancing the construction of a Chinese school of economics in the new era under the framework of the“Second Integration”,i.e.,integrating the basic tenets of Marxism with China’s fine traditional culture,should,and indeed can draw essential insights from this analytical tradition.展开更多
Carbon-based air cathodes offer low cost,high electrical conductivity,and structural tunability.However,they suffer from limited catalytic activity and inefficient gas transport,and they typically rely on noble metal ...Carbon-based air cathodes offer low cost,high electrical conductivity,and structural tunability.However,they suffer from limited catalytic activity and inefficient gas transport,and they typically rely on noble metal additives or complex multilayer configurations.To tackle these issues,this study devised a self-activated integrated carbon-based air cathode.By integrating in situ catalytic site construction with structural optimization,the strategy not only induces the formation of oxygen functional groups(─C─OH,─C═O,─COOH),hierarchical pores,and uniformly distributed active sites,but also establishes a favorable electronic and mass-transport environment.Furthermore,the roll-pressing-based integrated design streamlines electrode construction,reinforces interfacial bonding,and significantly enhances mechanical stability.Density functional theory(DFT)calculations show that oxygen functional groups initiate hydrogen bonding interaction and promote charge enrichment,which improves the activity of the cathode and facilitates intermediate adsorption/desorption in oxygen reduction and evolution reactions processes.As a result,the integrated air cathode-based rechargeable zinc-air batteries(RZABs)achieve a high specific capacity of 811 mAh g^(-1).It also performs well in quasi-solid-state RZABs and silicon-air batteries systems across a wide temperature range,demonstrating strong adaptability and application potential.This study provides a scalable and cost-effective design strategy for high-performance carbon-based air cathodes,offering new insights into advancing durable and practical metal-air energy systems.展开更多
Multisensory integration allows biological organisms to merge information from various sensory modalities,enhancing perception,decision-making,and adaptability in complex environments.This process,involving specialize...Multisensory integration allows biological organisms to merge information from various sensory modalities,enhancing perception,decision-making,and adaptability in complex environments.This process,involving specialized cortical and subcortical areas,reduces uncertainty,speeds up responses,enriches perception,and supports adaptive behaviors.Recent findings reveal that even primary sensory cortices contribute to multisensory processing,further boosting adaptability and decisionmaking.Inspired by these natural capabilities,researchers aim to develop artificial systems replicating biological sensory integration to address challenges in robotics,artificial intelligence,and big data.Current artificial systems,often reliant on single-modal perception,struggle in dynamic environments due to their limited adaptability.Advances in materials,device architectures,and neuromorphic technologies,such as memristor-and transistor-based neurons,are enabling the development of multimodal systems with enhanced efficiency,flexibility,and functionality.This review explores strategies to overcome single-modal limitations,focusing on synchronization,fusion,and deep interpretation of sensory data.Future directions emphasize improving integration density,novel device designs,and adaptable mechanisms.Multimodal systems hold promise to revolutionize artificial perception,narrowing the gap between biological systems and intelligent technologies.展开更多
As one of the major volatile components in extraterrestrial materials,nitrogen(N_(2))isotopes serve not only as tracers for the formation and evolution of the solar system,but also play a critical role in assessing pl...As one of the major volatile components in extraterrestrial materials,nitrogen(N_(2))isotopes serve not only as tracers for the formation and evolution of the solar system,but also play a critical role in assessing planetary habitability and the search for extraterrestrial life.The integrated measurement of N_(2)and argon(Ar)isotopes by using noble gas mass spectrometry represents a state-of-the-art technique for such investigations.To support the growing demands of planetary science research in China,we have developed a high-efficiency,high-precision method for the integrated analysis of N_(2)and Ar isotopes.This was achieved by enhancing gas extraction and purification systems and integrating them with a static noble gas mass spectrometer.This method enables integrated N_(2)-Ar isotope measurements on submilligram samples,significantly improving sample utilization and reducing the impact of sample heterogeneity on volatile analysis.The system integrates CO_(2)laser heating,a modular two-stage Zr-Al getter pump,and a CuO furnace-based purification process,effectively reducing background levels(N_(2)blank as low as 0.35×10^(−6)cubic centimeters at standard temperature and pressure[ccSTP]).Analytical precision is ensured through calibration with atmospheric air and CO corrections.To validate the reliability of the method,we performed N_(2)-Ar isotope analyses on the Allende carbonaceous chondrite,one of the most extensively studied meteorites internationally.The measured N_(2)concentrations range from 19.2 to 29.8 ppm,withδ15N values between−44.8‰and−33.0‰.Concentrations of 40Ar,36Ar,and 38Ar are(12.5-21.1)×10^(−6)ccSTP/g,(90.9-150.3)×10^(−9)ccSTP/g,and(19.2-30.7)×10^(−9)ccSTP/g,respectively.These values correspond to cosmic-ray exposure ages of 4.5-5.7 Ma,consistent with previous reports.Step-heating experiments further reveal distinct release patterns of N and Ar isotopes,as well as their associations with specific mineral phases in the meteorite.In summary,the combined N_(2)-Ar isotopic system offers significant advantages for tracing volatile sources in extraterrestrial materials and will provide essential analytical support for upcoming Chinese planetary missions,such as Tianwen-2.展开更多
Photonic neural networks(PNNs)of sufficiently large physical dimensions and high operation accuracies are envisaged as ideal candidates for breaking the major bottlenecks in the current artificial intelligence archite...Photonic neural networks(PNNs)of sufficiently large physical dimensions and high operation accuracies are envisaged as ideal candidates for breaking the major bottlenecks in the current artificial intelligence architectures in terms of latency,energy efficiency,and computational power.To achieve this vision,it is of vital importance to scale up the PNNs while simultaneously reducing the high demand on the dimensions required by them.The underlying cause of this strategy is the enormous gap between the scales of photonic and electronic integrated circuits.Here,we demonstrate monolithically integrated optical convolutional processors on thin film lithium niobate(TFLN)that harness inherent parallelism in photonics to enable large-scale programmable convolution kernels and,in turn,greatly reduce the dimensions required by subsequent fully connected layers.Experimental validation achieves high classification accuracies of 96%(86%)on the MNIST(Fashion-MNIST)dataset and 84.6%on the AG News dataset while dramatically reducing the required subsequent fully connected layer dimensions to 196×10(from 784×10)and 175×4(from 800×4),respectively.Furthermore,our devices can be driven by commercial field-programmable gate array systems;a unique advantage in addition to their scalable channel number and kernel size.Our architecture provides a solution to build practical machine learning photonic devices.展开更多
Urinary tract infections(UTIs)are among the most prevalent pediatric bacterial infections,and undertreated episodes may lead to renal scarring,hypertension,or chronic kidney disease.Multidrug-resistant(MDR)Enterobacte...Urinary tract infections(UTIs)are among the most prevalent pediatric bacterial infections,and undertreated episodes may lead to renal scarring,hypertension,or chronic kidney disease.Multidrug-resistant(MDR)Enterobacterales have been increasingly reported in children,with higher rates in Asian and Middle Eastern settings than in high-income countries[1,2].展开更多
A two-component waterborne polyurethane(2K-WPU) was prepared by mixing water-soluble acrylic resin and hexamethylene diisocyanate biuret, and then diluted for phase inversion with water. Compared with water-soluble ac...A two-component waterborne polyurethane(2K-WPU) was prepared by mixing water-soluble acrylic resin and hexamethylene diisocyanate biuret, and then diluted for phase inversion with water. Compared with water-soluble acrylic resin, the phase inversion of 2K-WPU occurs at lower water content. It is indicated by TEM that 2K-WPU parti-cles show a core-shell structure, in which HDI biuret is encapsulated by hydrophilic acrylic resin. 2K-WPU emulsion with HDI biuret has larger particle size and narrower distribution index, while for 2K-WPU emulsion with HDI iso-cyanurate, the latex not only has large particle size, but also has two-peak distribution. FTIR shows that the reaction be-tween HDI biuret and acrylic resin can complete in 12h. In addition, studies on effect of composition of acrylic resin on performance of 2K-WPU show that narrowing the polar difference between water-soluble acrylic resin and HDI biuret and improving the miscibility of two components are the key to prepare the transparent and high gloss films with high crosslinking density.展开更多
Bacillus subtilis strain NCD-2 is an excellent biocontrol agent for plant soil-borne diseases, and the lipopeptide fengycin is one of the active antifungal compounds in strain NCD-2. The regulator PhoP and its sensor ...Bacillus subtilis strain NCD-2 is an excellent biocontrol agent for plant soil-borne diseases, and the lipopeptide fengycin is one of the active antifungal compounds in strain NCD-2. The regulator PhoP and its sensor kinase PhoR compose a two-component system in B. subtilis. In this study, the phoR- and phoP-knockout mutants were constructed by in-frame deletion and the role of PhoR/PhoP on the production of fengycin was determined. Inactivation of phoR or phoP in B. subtilis decreased its inhibition ability against Botrytis cinerea growth in vitro compared to the strain NCD-2 wild type. The lipopeptides were extracted from strain NCD-2 wild type and its mutant strains by hydrochloric acid precipitate, and the lipopeptides from phoR-null mutant orphoP-null mutant almost lost the inhibition ability against B. cinerea growth compared to the lipopeptides from strain NCD-2 wild type. Fast protein liquid chromatography (FPLC) analysis of the lipopeptides showed that inactivation of phoR or phoP genes reduced the production of fengycin by strain NCD-2. The fengycin production abilities were compared for bacteria under low-phosphate medium (LPM) and high-phosphate medium (HPM), respectively. Results indicated that the regulation of fengycin production by the PhoR/PhoP two-component system occurred in LPM but not in HPM. Reverse transcriptionaI-PCR confirmed that the fengycin synthetase gene fenC was positively regulated by phoP when cultured in LPM. All of these characteristics could be partially restored by complementation of intact phoR or phoP gene in the mutant. These data indicated that the PhoR/PhoP two-component system greatly regulated fengycin production and antifungal ability in B. subtilis NCD-2 mainly under low-phosphate conditions.展开更多
The modulational instability of two-component Bose-Einstein condensates(BECs)under an external parabolic potential is discussed.Based on the trapped two-component Gross-Pitaevskill equations,a time-dependent dispersio...The modulational instability of two-component Bose-Einstein condensates(BECs)under an external parabolic potential is discussed.Based on the trapped two-component Gross-Pitaevskill equations,a time-dependent dispersion relation is obtained analytically by means of the modified lens-type transformation and linear stability analysis.It is shown that a modulational unstable time scale exists for trapped two-component BECs.The modulational properties-which are determined by the wave number,external trapping parameter,intraand inter-species atomic interactions-are modified significantly.The analytical results are confirmed by direct numerical simulation.Our results provide a criterion for judging the occurrence of instability of the trapped two-component BECs in experiment.展开更多
A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and...A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.展开更多
A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6...A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6613). Based on this method, we construct two integrable couplings of the soliton hierarchy with self-consistent sources by using the loop algebra sl(4). In this paper, we also point out that there are some errors in these references and we have corrected these errors and set up new formula. The method can be generalized to other soliton hierarchy with self-consistent sources.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.11371384)
文摘In this paper, we consider a new two-component integrable system with cubic nonlinearity, which can be deduced by a curve flow and it is integrable with its Lax pair, bi- Hamiltonian structure, and infinitely many conservation laws. We mainly establish the local well-posedness of this system in a range of the Besov spaces B p,r ^s with s〉max {2+1/p,5/2}.
基金Funded by the National Natural Science Foundation of China(No.52378394)the Fundamental Research Funds for the Central Universities(No.B230201037)。
文摘To address the issues of short setting time and high bleeding rate of A component,which easily cause pipe plugging and poor grouting performance when a two-component grout is injected synchronously behind the Segmental Lining,the inorganic retarder sodium pyrophosphate(TSPP)and three organic retarders were added to the A component:sodium citrate(SC),sodium tartrate(ST)and glycerol(GLY).The effect law and microscopic mechanism of viscosity,bleeding rate,setting time,gelling time,compressive strength,and stone rate were investigated.The results revealed that the addition of retarders could enhance the stability and setting time of the A component and increase the gelling time,stone rate,and compressive strength of two-component grout.Among them,the performance of the grout with an SC dosage of 0.1% was superior.The bleeding rate of this grout was reduced to 3.5%,the stone rate of the two-component grout was more than 99%,and the early compressive strength and late compressive strength of this grout were increased by approximately 35% and 7%,respectively.The initial and final setting time of the A component with a TSPP dosage of 0.3% was the longest,which was prolonged to 17 and 26 h,respectively.Microscopic analysis revealed that the four retarders hindered the hydration process of cement through complexation and adsorption,and inhibited the hydration of C_(3)S and the crystallisation of CH.Moreover,they reduced the defects caused by the rapid reaction of water glass and CH on the solid phase structure,enabled the microstructure of the stone body to be denser,and subsequently,enhanced the compressive strength.
基金Supported by the China NSF for Distinguished Young Scholars under Grant No.10925104
文摘It is shown that the two-component Camassa-Holm and Hunter-Saxton systems are geometrically integrable, namely they describe pseudo-spherical surfaces. As a consequence, their infinite number of conservation laws are directly constructed. In addition, a class of nonlocal symmetries depending on the pseudo-potentials are obtained.
基金sponsored by the National Natural Science Foundations of China under Grant Nos.12301315,12235007,11975131the Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ20A010009。
文摘In the realm of nonlinear integrable systems,the presence of decompositions facilitates the establishment of linear superposition solutions and the derivation of novel coupled systems exhibiting nonlinear integrability.By focusing on single-component decompositions within the potential BKP hierarchy,it has been observed that specific linear superpositions of decomposition solutions remain consistent with the underlying equations.Moreover,through the implementation of multi-component decompositions within the potential BKP hierarchy,successful endeavors have been undertaken to formulate linear superposition solutions and novel coupled Kd V-type systems that resist decoupling via alterations in dependent variables.
基金supported by the National Natural Science Foundation of China(Grant Nos.12275214,12247103,12047502)the Natural Science Basic Research Program of Shaanxi Province Grant Nos.2021JCW-19 and 2019JQ-107Shaanxi Key Laboratory for Theoretical Physics Frontiers in China.
文摘We investigate the integrability of the Rabi model,which is traditionally viewed as not Yang–Baxter-integrable despite its solvability.Building on efforts by Bogoliubov and Kulish(2013 J.Math.Sci.19214–30),Amico et al(2007 Nucl.Phys.B 787283–300),and Batchelor and Zhou(2015 Phys.Rev.A 91053808),who explored special limiting cases of the model,we develop a spin–boson interaction Hamiltonian under more general boundary conditions,particularly focusing on open boundary conditions with off-diagonal terms.Our approach maintains the direction of the spin in the z direction and also preserves the boson particle number operator a^(†)a,marking a progression beyond previous efforts that have primarily explored reduced forms of the Rabi model from Yang–Baxter algebra.We also address the presence of‘unwanted’quadratic boson terms a^(2) and a^(†2),which share coefficients with the boson particle number operator.Interestingly,these terms vanish when spectral parameter u=±θ_(s),simplifying the model to a limiting case of operator-valued twists,a scenario previously discussed by Batchelor and Zhou(2015 Phys.Rev.A 91053808).
文摘This paper investigates the traffic offloading optimization challenge in Space-Air-Ground Integrated Networks(SAGIN)through a novel Recursive Multi-Agent Proximal Policy Optimization(RMAPPO)algorithm.The exponential growth of mobile devices and data traffic has substantially increased network congestion,particularly in urban areas and regions with limited terrestrial infrastructure.Our approach jointly optimizes unmanned aerial vehicle(UAV)trajectories and satellite-assisted offloading strategies to simultaneously maximize data throughput,minimize energy consumption,and maintain equitable resource distribution.The proposed RMAPPO framework incorporates recurrent neural networks(RNNs)to model temporal dependencies in UAV mobility patterns and utilizes a decentralized multi-agent reinforcement learning architecture to reduce communication overhead while improving system robustness.The proposed RMAPPO algorithm was evaluated through simulation experiments,with the results indicating that it significantly enhances the cumulative traffic offloading rate of nodes and reduces the energy consumption of UAVs.
基金supported by the Shenzhen Medical Research Fund(Grant No.A2303049)Guangdong Basic and Applied Basic Research(Grant No.2023A1515010647)+1 种基金National Natural Science Foundation of China(Grant No.22004135)Shenzhen Science and Technology Program(Grant No.RCBS20210706092409020,GXWD20201231165807008,20200824162253002).
文摘Multi-organ-on-a-chip(MOOC)technology represents a pivotal direction in the organ-on-a-chip field,seeking to emulate the complex interactions of multiple human organs in vitro through microfluidic systems.This technology overcomes the limitations of traditional single-organ models,providing a novel platform for investigating complex disease mechanisms and evaluating drug efficacy and toxicity.Although it demonstrates broad application prospects,its development still faces critical bottlenecks,including inadequate physiological coupling between organs,short functional maintenance durations,and limited real-time monitoring capabilities.Contemporary research is advancing along three key directions,including functional coupling,sensor integration,and full-process automation systems,to propel the technology toward enhanced levels of physiological relevance and predictive accuracy.
文摘China is carving out a distinctive development path which features urban-rural integration.This approach has not only yielded tangible results domestically but also drawn the attention of other countries.
基金supported by the National Natural Science Foundation of China(52272177,12204010)the Foundation for the Introduction of High-Level Talents of Anhui University(S020118002/097)+1 种基金the University Synergy Innovation Program of Anhui Province(GXXT-2023-066)the Scientific Research Project of Anhui Provincial Higher Education Institution(2023AH040008)。
文摘Flexible electronics face critical challenges in achieving monolithic three-dimensional(3D)integration,including material compatibility,structural stability,and scalable fabrication methods.Inspired by the tactile sensing mechanism of the human skin,we have developed a flexible monolithic 3D-integrated tactile sensing system based on a holey MXene paste,where each vertical one-body unit simultaneously functions as a microsupercapacitor and pressure sensor.The in-plane mesopores of MXene significantly improve ion accessibility,mitigate the self-stacking of nanosheets,and allow the holey MXene to multifunctionally act as a sensing material,an active electrode,and a conductive interconnect,thus drastically reducing the interface mismatch and enhancing the mechanical robustness.Furthermore,we fabricate a large-scale device using a blade-coating and stamping method,which demonstrates excellent mechanical flexibility,low-power consumption,rapid response,and stable long-term operation.As a proof-of-concept application,we integrate our sensing array into a smart access control system,leveraging deep learning to accurately identify users based on their unique pressing behaviors.This study provides a promising approach for designing highly integrated,intelligent,and flexible electronic systems for advanced human-computer interactions and personalized electronics.
基金supported by the National Social Science Fund of China(NSSFC):NSSFC Major Project“Exploration and Practice in the Development of Chinese Economics Since the Modern Era”(Grant No.17ZDA034)NSSFC Key Project“The Status and Value of Traditional Chinese Economic Thought”(Grant No.17AJL006)NSSFC General Project“The Transformation and Evolution of Chinese Economic Thought During the Republican Era”(Grant No.22BJL130).
文摘Does traditional Chinese economic thought possess genuine analytical rigor?This question lies at the heart of any serious evaluation of its theoretical value and historical significance.It also matters for understanding how best to preserve,build on its remarkable achievements,and develop its intellectual legacy.Critics such as Schumpeter and Taylor have long argued that the economic reasoning found in ancient China cannot compare with that of classical Greece or medieval Europe.Yet this view often reflects the narrow assumptions of mainstream economics,defining analysis almost entirely in terms of market exchange.As a result,it tends to overlook traditions built around statecraft,governance,and the management of economic order.A careful re-examination and Sino-Western comparative analysis of key thinkers-including Mencius,Guanzi,and Sima Qian-tells a different story.Rooted in China’s distinctive cultural and philosophical heritage,traditional Chinese economic thought not only contains the analytical dimensions(as defined by Schumpeter)but also displays a broader and more diverse set of economic reasoning.Notably,its systematic depth and intellectual precision were,in many respects,remarkably advanced.Therefore,advancing the construction of a Chinese school of economics in the new era under the framework of the“Second Integration”,i.e.,integrating the basic tenets of Marxism with China’s fine traditional culture,should,and indeed can draw essential insights from this analytical tradition.
基金funded by the National Nature Science Foundation of China(62264006,62574102)“Thousand Talents Program”of Yunnan Province for Young Talents,Innovative Research Teams(in Science and Technology)in the University of Yunnan Province(IRTSTYN),XingDian Talent Support Program for Young Talents,and Frontier Research Team of Kunming University 2023,The Basic Research Project of Yunnan Province(Nos.202201AU070022)+2 种基金Kunming University Talent Introduction Fund(Nos.YJL20024)Yunnan Province Education Department Scientific Research Fund Project(Nos.2024Y759)Undergraduate Innovation and Entrepreneurship Training Program Project of Yunnan Provincial(202411393005)。
文摘Carbon-based air cathodes offer low cost,high electrical conductivity,and structural tunability.However,they suffer from limited catalytic activity and inefficient gas transport,and they typically rely on noble metal additives or complex multilayer configurations.To tackle these issues,this study devised a self-activated integrated carbon-based air cathode.By integrating in situ catalytic site construction with structural optimization,the strategy not only induces the formation of oxygen functional groups(─C─OH,─C═O,─COOH),hierarchical pores,and uniformly distributed active sites,but also establishes a favorable electronic and mass-transport environment.Furthermore,the roll-pressing-based integrated design streamlines electrode construction,reinforces interfacial bonding,and significantly enhances mechanical stability.Density functional theory(DFT)calculations show that oxygen functional groups initiate hydrogen bonding interaction and promote charge enrichment,which improves the activity of the cathode and facilitates intermediate adsorption/desorption in oxygen reduction and evolution reactions processes.As a result,the integrated air cathode-based rechargeable zinc-air batteries(RZABs)achieve a high specific capacity of 811 mAh g^(-1).It also performs well in quasi-solid-state RZABs and silicon-air batteries systems across a wide temperature range,demonstrating strong adaptability and application potential.This study provides a scalable and cost-effective design strategy for high-performance carbon-based air cathodes,offering new insights into advancing durable and practical metal-air energy systems.
基金the Hong Kong Research Grants Council,Young Collaborative Research Grant(No.C5001-24)Research Institute for Smart Energy(No.UCDC9)+10 种基金Guangdong Provincial Department of Science and Technology(No.2024B1515040002)RSC Sustainable Laboratories Grant(No.L24-8215098370)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515012479)the Science and Technology Innovation Commission of Shenzhen(No.JCYJ20220818100206013)RSC Researcher Collaborations Grant(No.C23-2422436283)State Key Laboratory of Radio Frequency Heterogeneous Integration(Independent Scientific Research Program No.2024010)NTUT-SZU Joint Research Programsupported by the National Natural Science Foundation of China(No.52373248)Guangdong Provincial Department of Science and Technology(Nos.2024A1515010006 and 2024A1515011718)Guangdong Basic and Applied Basic Research Foundation(Nos.2023A1515012479 and 2025A1515011274)the Science and Technology Innovation Commission of Shenzhen(Nos.JCYJ20230808105900001,JCYJ20220531102214032,20231123155543001,and JCYJ20240813141813018).
文摘Multisensory integration allows biological organisms to merge information from various sensory modalities,enhancing perception,decision-making,and adaptability in complex environments.This process,involving specialized cortical and subcortical areas,reduces uncertainty,speeds up responses,enriches perception,and supports adaptive behaviors.Recent findings reveal that even primary sensory cortices contribute to multisensory processing,further boosting adaptability and decisionmaking.Inspired by these natural capabilities,researchers aim to develop artificial systems replicating biological sensory integration to address challenges in robotics,artificial intelligence,and big data.Current artificial systems,often reliant on single-modal perception,struggle in dynamic environments due to their limited adaptability.Advances in materials,device architectures,and neuromorphic technologies,such as memristor-and transistor-based neurons,are enabling the development of multimodal systems with enhanced efficiency,flexibility,and functionality.This review explores strategies to overcome single-modal limitations,focusing on synchronization,fusion,and deep interpretation of sensory data.Future directions emphasize improving integration density,novel device designs,and adaptable mechanisms.Multimodal systems hold promise to revolutionize artificial perception,narrowing the gap between biological systems and intelligent technologies.
基金supported by the Bureau of Frontier Sciences and Basic Research,Chinese Academy of Sciences(Grant No.QYJ-2025-0103)the National Natural Science Foundation of China(Grant Nos.42441834,42241105,42441825,and 42203048)the Key Research Program of the Institute of Geology and Geophysics,Chinese Academy of Sciences(Grant No.IGGCAS-202401).
文摘As one of the major volatile components in extraterrestrial materials,nitrogen(N_(2))isotopes serve not only as tracers for the formation and evolution of the solar system,but also play a critical role in assessing planetary habitability and the search for extraterrestrial life.The integrated measurement of N_(2)and argon(Ar)isotopes by using noble gas mass spectrometry represents a state-of-the-art technique for such investigations.To support the growing demands of planetary science research in China,we have developed a high-efficiency,high-precision method for the integrated analysis of N_(2)and Ar isotopes.This was achieved by enhancing gas extraction and purification systems and integrating them with a static noble gas mass spectrometer.This method enables integrated N_(2)-Ar isotope measurements on submilligram samples,significantly improving sample utilization and reducing the impact of sample heterogeneity on volatile analysis.The system integrates CO_(2)laser heating,a modular two-stage Zr-Al getter pump,and a CuO furnace-based purification process,effectively reducing background levels(N_(2)blank as low as 0.35×10^(−6)cubic centimeters at standard temperature and pressure[ccSTP]).Analytical precision is ensured through calibration with atmospheric air and CO corrections.To validate the reliability of the method,we performed N_(2)-Ar isotope analyses on the Allende carbonaceous chondrite,one of the most extensively studied meteorites internationally.The measured N_(2)concentrations range from 19.2 to 29.8 ppm,withδ15N values between−44.8‰and−33.0‰.Concentrations of 40Ar,36Ar,and 38Ar are(12.5-21.1)×10^(−6)ccSTP/g,(90.9-150.3)×10^(−9)ccSTP/g,and(19.2-30.7)×10^(−9)ccSTP/g,respectively.These values correspond to cosmic-ray exposure ages of 4.5-5.7 Ma,consistent with previous reports.Step-heating experiments further reveal distinct release patterns of N and Ar isotopes,as well as their associations with specific mineral phases in the meteorite.In summary,the combined N_(2)-Ar isotopic system offers significant advantages for tracing volatile sources in extraterrestrial materials and will provide essential analytical support for upcoming Chinese planetary missions,such as Tianwen-2.
基金supported by the National Natural Science Foundation of China (Grant Nos.12192251,12334014,62335019,12134001,1230441812474378)+1 种基金the Quantum Science and Technology National Science and Technology Major Project(Grant No.2021ZD0301403)the Shanghai Municipal Science and Technology Major Project (Grant No.2019SHZDZX01)。
文摘Photonic neural networks(PNNs)of sufficiently large physical dimensions and high operation accuracies are envisaged as ideal candidates for breaking the major bottlenecks in the current artificial intelligence architectures in terms of latency,energy efficiency,and computational power.To achieve this vision,it is of vital importance to scale up the PNNs while simultaneously reducing the high demand on the dimensions required by them.The underlying cause of this strategy is the enormous gap between the scales of photonic and electronic integrated circuits.Here,we demonstrate monolithically integrated optical convolutional processors on thin film lithium niobate(TFLN)that harness inherent parallelism in photonics to enable large-scale programmable convolution kernels and,in turn,greatly reduce the dimensions required by subsequent fully connected layers.Experimental validation achieves high classification accuracies of 96%(86%)on the MNIST(Fashion-MNIST)dataset and 84.6%on the AG News dataset while dramatically reducing the required subsequent fully connected layer dimensions to 196×10(from 784×10)and 175×4(from 800×4),respectively.Furthermore,our devices can be driven by commercial field-programmable gate array systems;a unique advantage in addition to their scalable channel number and kernel size.Our architecture provides a solution to build practical machine learning photonic devices.
文摘Urinary tract infections(UTIs)are among the most prevalent pediatric bacterial infections,and undertreated episodes may lead to renal scarring,hypertension,or chronic kidney disease.Multidrug-resistant(MDR)Enterobacterales have been increasingly reported in children,with higher rates in Asian and Middle Eastern settings than in high-income countries[1,2].
文摘A two-component waterborne polyurethane(2K-WPU) was prepared by mixing water-soluble acrylic resin and hexamethylene diisocyanate biuret, and then diluted for phase inversion with water. Compared with water-soluble acrylic resin, the phase inversion of 2K-WPU occurs at lower water content. It is indicated by TEM that 2K-WPU parti-cles show a core-shell structure, in which HDI biuret is encapsulated by hydrophilic acrylic resin. 2K-WPU emulsion with HDI biuret has larger particle size and narrower distribution index, while for 2K-WPU emulsion with HDI iso-cyanurate, the latex not only has large particle size, but also has two-peak distribution. FTIR shows that the reaction be-tween HDI biuret and acrylic resin can complete in 12h. In addition, studies on effect of composition of acrylic resin on performance of 2K-WPU show that narrowing the polar difference between water-soluble acrylic resin and HDI biuret and improving the miscibility of two components are the key to prepare the transparent and high gloss films with high crosslinking density.
基金funded by the earmarked fund for the China Agriculture Research System (CARS-18-15)the National Natural Science Foundation of China (31272085,31572051)the Special Fund for Agro-scientific Research in the Public Interest,China (201503109)
文摘Bacillus subtilis strain NCD-2 is an excellent biocontrol agent for plant soil-borne diseases, and the lipopeptide fengycin is one of the active antifungal compounds in strain NCD-2. The regulator PhoP and its sensor kinase PhoR compose a two-component system in B. subtilis. In this study, the phoR- and phoP-knockout mutants were constructed by in-frame deletion and the role of PhoR/PhoP on the production of fengycin was determined. Inactivation of phoR or phoP in B. subtilis decreased its inhibition ability against Botrytis cinerea growth in vitro compared to the strain NCD-2 wild type. The lipopeptides were extracted from strain NCD-2 wild type and its mutant strains by hydrochloric acid precipitate, and the lipopeptides from phoR-null mutant orphoP-null mutant almost lost the inhibition ability against B. cinerea growth compared to the lipopeptides from strain NCD-2 wild type. Fast protein liquid chromatography (FPLC) analysis of the lipopeptides showed that inactivation of phoR or phoP genes reduced the production of fengycin by strain NCD-2. The fengycin production abilities were compared for bacteria under low-phosphate medium (LPM) and high-phosphate medium (HPM), respectively. Results indicated that the regulation of fengycin production by the PhoR/PhoP two-component system occurred in LPM but not in HPM. Reverse transcriptionaI-PCR confirmed that the fengycin synthetase gene fenC was positively regulated by phoP when cultured in LPM. All of these characteristics could be partially restored by complementation of intact phoR or phoP gene in the mutant. These data indicated that the PhoR/PhoP two-component system greatly regulated fengycin production and antifungal ability in B. subtilis NCD-2 mainly under low-phosphate conditions.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11764039,11847304,11865014,11475027,11274255 and 11305132the Natural Science Foundation of Gansu Province under Grant No 17JR5RA076the Scientific Research Project of Gansu Higher Education under Grant No 2016A-005
文摘The modulational instability of two-component Bose-Einstein condensates(BECs)under an external parabolic potential is discussed.Based on the trapped two-component Gross-Pitaevskill equations,a time-dependent dispersion relation is obtained analytically by means of the modified lens-type transformation and linear stability analysis.It is shown that a modulational unstable time scale exists for trapped two-component BECs.The modulational properties-which are determined by the wave number,external trapping parameter,intraand inter-species atomic interactions-are modified significantly.The analytical results are confirmed by direct numerical simulation.Our results provide a criterion for judging the occurrence of instability of the trapped two-component BECs in experiment.
文摘A general scheme for generating a multi-component integrable equation hierarchy is proposed. A simple 3M- dimensional loop algebra ~X is produced. By taking advantage of ~X a new isospectral problem is established and then by making use of the Tu scheme the multi-component Dirac equation hierarchy is obtained. Finally, an expanding loop algebra ~FM of the loop algebra ~X is presented. Based on the ~FM, the multi-component integrable coupling system of the multi-component Dirac equation hierarchy is investigated. The method in this paper can be applied to other nonlinear evolution equation hierarchies.
基金Project supported by the Natural Science Foundation of Shanghai (Grant No. 09ZR1410800)the Science Foundation of Key Laboratory of Mathematics Mechanization (Grant No. KLMM0806)+2 种基金the Shanghai Leading Academic Discipline Project (Grant No. J50101)the Key Disciplines of Shanghai Municipality (Grant No. S30104)the National Natural Science Foundation of China (Grant Nos. 61072147 and 11071159)
文摘A kind of integrable coupling of soliton equations hierarchy with self-consistent sources associated with s/(4) has been presented (Yu F J and Li L 2009 Appl. Math. Comput. 207 171; Yu F J 2008 Phys. Lett. A 372 6613). Based on this method, we construct two integrable couplings of the soliton hierarchy with self-consistent sources by using the loop algebra sl(4). In this paper, we also point out that there are some errors in these references and we have corrected these errors and set up new formula. The method can be generalized to other soliton hierarchy with self-consistent sources.