Knowledge about crop growth processes in relation to N limitation is necessary to optimize N management in farming system. Plant-based diagnostic method, for instance nitrogen nutrition index (NNI) were used to dete...Knowledge about crop growth processes in relation to N limitation is necessary to optimize N management in farming system. Plant-based diagnostic method, for instance nitrogen nutrition index (NNI) were used to determine the crop nitrogen status. This study determines the relationship of NNI with agronomic nitrogen use efficiency (AEN), tuber yield, radiation use efficiency (RUE) and leaf parameters including leaf area index (LAI), areal leaf N content (NJ and leaf N concentration (N0. Potatoes were grown in field at three N levels: no N (N 1), 150 kg N ha^-1 (N2), 300 kg N ha^-1 (N3). N deficiency was quantified by NNI and RUE was generally calculated by estimating of the light absorbance on leaf area. NNI was used to evaluate the N effect on tuber yield, RUE, LAI, NAL, and NL. The results showed that NNI was negatively correlated with AEN, N deficiencies (NNI〈 1) which occurred for N 1 and N2 significantly reduced LAI, NL and tuber yield; whereas the N deficiencies had a relative small effect on NAL and RUE. To remove any effect other than N on these parameters, the actual ratio to maximum values were calculated for each developmental linear relationships were obtained between NNI and tuber RUE to NNI. stage of potatoes. When the NNI ranged from 0.4 to 1, positive yield, LAI, NL, while a nonlinear regression fitted the response of展开更多
The stimulatory effects and associated mechanism of lanthanum nitrate on the root tuber yield of the traditional Chinese medicinal plant Pseudostellaria heterophylla, by means of improved photosynthetic characteristic...The stimulatory effects and associated mechanism of lanthanum nitrate on the root tuber yield of the traditional Chinese medicinal plant Pseudostellaria heterophylla, by means of improved photosynthetic characteristics, were investigated. Field experiments were conducted and the foliage was sprayed with varying concentrations of lanthanum nitrate. The results indicated that growth indexes, chlorophyll and carotenoid contents initially increased, and then decreased in a dose-dependent manner with increasing concentrations of lanthanum nitrate. The fresh and dry weights of root tuber yield per unit area significantly increased by 58.34% and 56.87% with a lanthanum nitrate concentration of 100 mg/L, respectively, compared with the control. Appropriate concentrations of lanthanum nitrate were found to alleviate photosynthetic depression at midday, as well as improve the mean values of photosynthetic rate(Pn), stomatal conductance(Gs) and transpiration rate(Tr) associated with the diurnal variation in photosynthetic parameters, while reducing intercellular CO2 concentration(Ci). During the experiment, the chlorophyll fluorescence parameters Fv/Fm, Fv'/Fm', ΦPSII and qP increased initially and then decreased along with the increasing concentration of lanthanum nitrate, while NPQ followed the opposite trend. Correlation analysis revealed that Pn had a significantly positive relationship with seedling height, ground diameter, chlorophyll and carotenoid contents, Gs and ΦPSII, while a negative relationship was observed with Ci and NPQ. Grey relational analysis(GRA) indicated that photosynthetic pigments, ΦPSII and qP were the primary factors impacting photosynthesis. These results suggested that the application of an appropriate concentration of lanthanum nitrate(100 mg/L) was effective in improving growth, root tuber yield and photosynthetic characteristics of Psendoste llaria(P) heterophylla. The regulatory effect of lanthanum nitrate on photosynthesis was related to the promotion of light energy absorption and conversion, improvement in photochemical efficiency and the alleviation of photoinhibition. The improvement of the non-stomatal limitation factor was the primary basis for the mitigation of midday photosynthetic depression.展开更多
[Objeclive]This study was conducted to select suitable organic fertilizer for Chinese chives,so as to improve yield and benefit of Chinese chives.[Method]Pot experiments were carried out to investigate effects of 3 or...[Objeclive]This study was conducted to select suitable organic fertilizer for Chinese chives,so as to improve yield and benefit of Chinese chives.[Method]Pot experiments were carried out to investigate effects of 3 organic fertilizers peanut cake fertilizer,chicken manure and mushroom residue on growth and yield of Chi-nese Chives.[Result]The 3 organic fertilizer treatments had better effects on plant height,stem diameter and leaf width than the CK.Treatment 1 showed the best effect on growth and development of Chinese chives,treatment 2 exhibited the sec-ond best effect,and treatment 3 showed the poorest effect.Treatment 1 showed the highest yield and economic benefit,of 65.514 t/hm^(2) and 175.556×10^(4) Yuardhm^(2),respectively,treatment 2 showed the second highest effects,and treatment 3 showed the lowest yield and economic benefit.[Conclusion]Selecting peanut cake fertilizer for production of Chinese chives could significantly improve yield and eco-nomic benefit of Chinese chives.展开更多
Field trials to determine the yield response of potatoes to Umostart Super Zn (USZ) fertilizer (11.46.0 + 2 Zn + Humates) were carried out in 2004 using the cultivar Tigoni. During the long rains season, the tre...Field trials to determine the yield response of potatoes to Umostart Super Zn (USZ) fertilizer (11.46.0 + 2 Zn + Humates) were carried out in 2004 using the cultivar Tigoni. During the long rains season, the treatments included USZ at 15 kg ha^-1 at planting; 30 kg ha^-1 split into 15 kg ha^-1 at planting and 15 kg ha^-1 during final earthing-up; 30 kg ha^-1 at planting; and 45 kg ha^-1 at planting. Treatments during the short rains included USZ at 30 kg ha^-1 split into 15 kg ha^-1 at planting and 15 kg ha^-1 during final earthing-up; 30 kg ha^-1 at planting; 40 kg ha^-1 at planting; 50 kg ha^-1 at planting; 50 kg ha^-1 split into 25 kg ha^-1 at planting and 25 kg ha^-1 during final earthing-up; and 60 kg ha^-1 at planting. USZ was contrasted with Diammonium phosphate (DAP) fertilizer (18:46:0) at 300 kg ha^-1 and 500 kg ha^-1 applied at planting and a control in which no fertilizer was applied. The DAP 300 kg ha^-1 treatment was however, not included during the long rains season. The highest tuber yields among the USZ treatments were obtained in plots treated with 45 kg ha^-1 (27.11 t ha^-1) during the long rains and 60 kg ha^-1 (55.17 t ha^-1) during the short rains season. Application of USZ resulted in a yield increase of at least 3.90 and 19.06 t ha^-1 during the long and short rains seasons respectively.展开更多
Inadequate yield potential of available varieties and their long growth periods are two of the factors limiting yam (Dioscorea spp.) production. Identifying yield- and maturity-related traits and breeding for them w...Inadequate yield potential of available varieties and their long growth periods are two of the factors limiting yam (Dioscorea spp.) production. Identifying yield- and maturity-related traits and breeding for them will enhance production. Ten morphological/physiological traits: time of shoot emergence, time of tuber initiation, plant height, shoot dry weight, time of shoot senescence, tuber fresh weight (tuber yield), tuber number/plant, tuber parenchyma colour, tuber dry matter content and tuber dormancy period were assessed in eight accessions of D. alata L. (water yam) on the field in 2008 and 2009. Tuber yield-related traits were identified as shoot dry weight and time of shoot emergence. Shoot dry weight had the strongest positive effect; time of shoot emergence had a negative effect. High yielding accessions had a high shoot dry weight, but were low in tuber dry matter content. Uniform tuber parenchyma colour was the sole trait related to tuber maturity, but early and late senescing accessions did not consistently differ in the trait. TDa 00/00103 is high yielding and early maturing and may be used as a parent for breeding for high yield and early maturity in D. alata.展开更多
The effects of nano-carbon water-retaining fertilizer on yield,quality of tuber mustard,and fertilizer utilization efficiency were studied with the field experiments compared to the local tuber mustard fertilizer with...The effects of nano-carbon water-retaining fertilizer on yield,quality of tuber mustard,and fertilizer utilization efficiency were studied with the field experiments compared to the local tuber mustard fertilizer with equal amount of effective composition. The results showed that the yield of tuber mustard was 50 670-56 496 kg/ha in treatments of nano-carbon water-retaining fertilizer decreasing by 10%-40%,and compared with local tuber mustard fertilizer,the average yield was increased by 94. 8%. The yield increasing rate of tuber mustard was 93. 0%in treatment of nano-carbon water-retaining fertilizer decreasing by 30%. The average fertilizer utilization efficiency of nitrogen and phosphorus was 54% and 39. 7%,respectively,the average increment of fertilizer utilization efficiency was 36% and 37%,respectively compared with local tuber mustard fertilizer. Especially in treatment of reducing nano-carbon water-retaining fertilizer by 30%,the nitrogen and phosphorus fertilizer utilization efficiency was increased by 64% and 56%,respectively. By comprehensive comparison,it was found that nano-carbon waterretaining fertilizer and the treatment of 30% reduction could significantly improve the yield of tuber mustard and fertilizer utilization efficiency,and have popularization and application value in the Three Gorges Reservoir area.展开更多
The study was conducted with the main objective to evaluate the genetic variability, heritability, and clustering pattern exploration of morphological and yield related traits in potato (Solanum tuberosum L.) collecti...The study was conducted with the main objective to evaluate the genetic variability, heritability, and clustering pattern exploration of morphological and yield related traits in potato (Solanum tuberosum L.) collections in the bimodal rainfall agroecological zone of Cameroon using a Randomized Complete Block Design (RCBD) with three replications. The data obtained on morphological and yield traits were subjected to analysis of variance (ANOVA). The results showed that the viability rate of the collections varied from 77.78% to 96.55% respectively for the Maffo and Desiree collections, while the greatest number of tubers per plant varied from 4 to 18 respectively for Synergie and Desiree. The emergence rate varies from 60% to 1.66% respectively for Maffo et Doza collections. However, Desiree presents the highest TL (96.55) while Maffo shows the lowest value (77.78%). The yield per hectare varied from 1.14 to 9.3 t/h for Maffo and Doza respectively. For all the characteristics observed, Phenotypic Coefficients of Variation (PCV) were higher than Genotypic Coefficients of Variation (GCV) suggesting the role of environment in the expression of traits under observation. The highest GCV and PCV 47.55 and 58.94 respectively were observed for Diameter at the collar (DC). Most of the traits showed high GAM (>20%)) except Average Tuber Length (ATL) with a moderate value (19.8). In terms of vegetative development, the Desiree variety showed the highest performance. Based on the growth and yield results, Doza seems to be the most recommendable crop in the study area.展开更多
In order to reduce the quantity of water applied by irrigation, increase the water use efficiency and determine the appropriate period for irrigation potato crop, a field experiment was implemented at vegetables field...In order to reduce the quantity of water applied by irrigation, increase the water use efficiency and determine the appropriate period for irrigation potato crop, a field experiment was implemented at vegetables field, Department of Plant Production, Agriculture Technical College, Mosul, Iraq, during spring season of 2014. This study involved four irrigation intervals (3, 4, 5 and 6 d) under drip irrigation system, with spraying by five antitranspirant substances (control, kaolin 5 g/L, MgCO3 3 g/L, liquid paraffin 2% and Nu-film 17 1%), which subjected in a factorial experiment within split plot system in a randomized complete block design with three replications. The results showed that increasing irrigation intervals from 3 d to 6 d decreased the total water content of the leaves from 83.59% to 81.81%, the rate of relative transpiration from 0.174% to 0.162%, stomata area from 1.620 lam2/stomata to 0.921 ~m2/stomata, plant yield from 542.22 g to 425.80 g, total yield of tubers from 25.808 tons/ha to 20.253 tons/ha and marketable yield of tubers from 24.471 tons/ha to 18.822 tons/ha, whereas caused an increase in the leaf water deficit from 19.19% to 23.86% and water use efficiency from 8.63 kg/m3 to 13.32 kg/m3. Spraying potato plants with liquid paraffin 2% led to the highest total water content 83.37%, stomata area 1.466 ~tm2/stomata, the lowest relative transpiration 0.152%, the lowest leaf water deficit 20.33%, the highest plant yield 509.22 g, total yield 24.236 tons/ha, marketable yield 22.770 tons/ha and water use efficiency I 1.83 kg/m3. On the other hand, the interaction treatments between irrigation intervals and antitranspirants resulted in a significant effect in many studied parameters.展开更多
The potato (</span><i><span style="font-family:Verdana;">Solanum tuberosum</span></i><span style="font-family:Verdana;"> L.) is a vegetable that ranks fifth in t...The potato (</span><i><span style="font-family:Verdana;">Solanum tuberosum</span></i><span style="font-family:Verdana;"> L.) is a vegetable that ranks fifth in the world for human consumption. Its importance is growing more and more in the Senegalese diet. However, the potato production in Senegal does not meet the needs of the market, which maintains dependence on the outside for the supply of quality seeds. In addition, these imported seeds do not often have phytosanitary qualities required for local production in the Sahelian zone. The </span><i><span style="font-family:Verdana;">in vitro </span></i><span style="font-family:Verdana;">production of microtubers, used as seed, has been shown to be one of the mos</span><span style="font-family:Verdana;">t efficient means for propagation of basic material. To overcome the constraints linked to the supply and availability of potato seeds, with high germination capacity, the impact of the microtuber size on the yield of the plants under semi-controlled conditions was examined. The pre-germinated</span><span style="font-family:Verdana;"> microtubers were produced </span><i><span style="font-family:Verdana;">in vitro </span></i><span style="font-family:Verdana;">from vitroplants of 3 different varieties (</span><i><span style="font-family:Verdana;">Aida</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;"> Atlas</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;"> Odessa</span></i><span style="font-family:Verdana;">) adapted to the edaphic-climatic conditions of Senegal. The effects of the seed sizes of microtubers, greater than 4 mm, sown under semi-controlled conditions, on the yield of the plants</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> result in an increase in the ratio, in the vegetative development of the plants, but also in the number and size of the minitubers harvested. The yield of the plants also depends on the variety. It can therefore be envisaged to produce local potato seeds from microtubers and minitubers.展开更多
Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop mor...Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop morphological development and increase yield.Here,a three-year study was performed to verify the feasibility of adjusting row spacing to further enhance yield in densely planted soybeans.Of three row-spacing configurations(40-40,20-40,and 20-60 cm)and two planting densities(normal 180,000 plants ha 1 and high 270,000 plants ha 1).The differences in canopy structure,plant morphological development,photosynthetic capacity and their impact on yield were analyzed.Row spacing configurations have a significant effect on canopy transmittance(CT).The 20-60 cm row spacing configuration increased CT and creates a favorable canopy light environment,in which plant height is reduced,while branching is promoted.This approach reduces plant competition,optimizes the developments of leaf area per plant,specific leaf area,leaf area development rate,leaf area duration and photosynthetic physiological indices(F_(v)/F_(m),ETR,P_(n)).The significant increase of 11.9%-34.2%in canopy apparent photosynthesis(CAP)is attributed to the significant optimization of plant growth and photosynthetic physiology through CT,an important contributing factor to yield increases.The yield in the 20-60 cm treatment is 4.0%higher than in equidistant planting under normal planting density,but 5.9%under high density,primarily driven by CAP and pod number.These findings suggest that suitable row spacing configurations optimize the light environment for plants,promote source-sink transformation in soybeans,and further improve yield.In practice,a 20-60 cm row spacing configuration could be employed for high-density soybean planting to achieve a more substantial yield gain.展开更多
Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in t...Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility.展开更多
This editorial discusses a case report recently published in the World Journal of Clinical Cases.The report describes the clinical presentation,imaging,diagnosis,and treatment of a patient with tuberous sclerosis comp...This editorial discusses a case report recently published in the World Journal of Clinical Cases.The report describes the clinical presentation,imaging,diagnosis,and treatment of a patient with tuberous sclerosis complex(TSC)combined with primary lymphedema(PLE).Additionally,it retrospectively analyzes the data of 16 previously reported cases of children with TSC combined with PLE to summarize the epidemiology,genetic diagnosis,and current main treatments of these patients.The report also speculates on the pathological and physiological mechanisms underlying TSC combined with PLE.TSC combined with PLE is rare;therefore,the report provides a theoretical basis for understanding the pathophysiological mechanisms and treatment options for patients with TSC and PLE.Comprehensive clinical management of TSC is essential due to the diverse and multiorgan nature of its manifestations,often requiring a multidisciplinary approach for newly diagnosed cases.展开更多
Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulc...Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulching is commonly used in the Loess Plateau region.Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity.Combining these techniques represents a novel agricultural approach in semi-arid areas.However,the impact of this integration on soil carbon storage(SOCS),carbon footprint(CF),and economic benefits has received limited research attention.Therefore,we conducted an eight-year study(2015-2022)in the semi-arid northwestern region to quantify the effects of four treatments[urea supplied without plastic film mulching(CK-U),slow-release fertilizer supplied without plastic film mulching(CK-S),urea supplied with plastic film mulching(PM-U),and slow-release fertilizer supplied with plastic film mulching(PM-S)]on soil fertility,economic and environmental benefits.The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions(≥71.97%).Compared to other treatments,PM-S increased average grain yield by 12.01%-37.89%,water use efficiency by 9.19%-23.33%,nitrogen accumulation by 27.07%-66.19%,and net return by 6.21%-29.57%.Furthermore,PM-S decreased CF by 12.87%-44.31%and CF per net return by 14.25%-41.16%.After eight years,PM-S increased SOCS(0-40 cm)by 2.46%,while PM-U decreased it by 7.09%.These findings highlight the positive effects of PM-S on surface soil fertility,economic gains,and environmental benefits in spring maize production on the Loess Plateau,underscoring its potential for widespread adoption and application.展开更多
The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate dur...The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate during seedling production while reducing the number of seedling trays.This study conducted field experiments from 2021 to 2022,using transplanting seedling ages of 10 and 15 days to explore the effects of 250,300,and 350 g/tray on the seedling quality,mechanical transplantation quality,yields,and economic benefits of rice.The commonly used combination of 150 g/tray with a 20-day seedling age in rice production was used as CK.The cultivation of seedlings under a high seeding rate and short seedling age significantly affected seedling characteristics,but there was no significant difference in seedling vitality compared to CK.The minimum number of rice trays used in the experiment was observed in the treatment of 350-10(300 g/tray and 10-day seedling age),only 152-155 trays ha^(-1),resulting in a 62%reduction in the number of trays needed.By increasing the seeding rate of rice,missed holes during mechanical transplantation decreased by 2.8 to 4%.The treatment of 300-15(300 g/tray and 15-day seedling age)achieved the highest yields and economic gains.These results indicated that using crop straw boards can reduce the application of seedling trays.On that basis,rice yields can be increased by raising the seeding rate and shortening the seedling age of rice without compromising seedling quality.展开更多
Increasing the grain yield(GY) and water use efficiency(WUE) of winter wheat in the Huaibei Plain(HP), China are essential. However, the effects of micro-sprinkler irrigation and topsoil compaction after wheat seed so...Increasing the grain yield(GY) and water use efficiency(WUE) of winter wheat in the Huaibei Plain(HP), China are essential. However, the effects of micro-sprinkler irrigation and topsoil compaction after wheat seed sowing on the GY and WUE are unclear. Therefore, a two-year field experiment was conducted during the 2021–2023 winter wheat growing seasons with a total six treatments: rain-fed(RF), conventional irrigation(CI) and micro-sprinkler irrigation(MI), as well as topsoil compaction after seed sowing under these three irrigation methods(RFC, CIC, and MIC). The results in the two years indicated that MI significantly increased GY compared to CI and RF, by averages of 17.9 and 42.1%, respectively. The increase in GY of MI was due to its significant increases in the number of spikes, kernels per spike, and grain weight. The chlorophyll concentration in flag leaves of MI after the anthesis stage maintained higher levels than with CI and RF, and was the lowest in RF. This was due to the dramatically enhanced catalase and peroxidase activities and lower malondialdehyde content under MI. Compared with RF and CI, MI significantly promoted dry matter remobilization and production after anthesis, as well as its contribution to GY. In addition, MI significantly boosted root growth, and root activity during the grain-filling stage was remarkably enhanced compared to CI and RF. In 2021–2022, there was no significant difference in WUE between MI and RF, but the WUE of RF was significantly lower than that of MI in 2022–2023. However, the WUE in MI was significantly improved compared to CI, and it increased by averages of 15.1 and 17.6% for the two years. Topsoil compaction significantly increased GY and WUE under rain-fed conditions due to improved spike numbers and dry matter production. Overall, topsoil compaction is advisable for enhancing GY and WUE in rain-fed conditions, whereas micro-sprinkler irrigation can be adopted to simultaneously achieve high GY and WUE in the HP.展开更多
Reducing water consumption in rice production in China without affecting grain yield and quality is a significant challenge.This study explored how various dry cultivation methods could improve rice quality while bala...Reducing water consumption in rice production in China without affecting grain yield and quality is a significant challenge.This study explored how various dry cultivation methods could improve rice quality while balancing yield to maintain sustainable rice production.A japonica upland rice cultivar and a japonica paddy rice cultivar were cultivated in the field with three cultivation methods:plastic film mulching dry cultivation(PFMC),bare dry cultivation(BC),and continuous flooding cultivation(CF)as control.There was no significant difference in upland rice yield between PFMC and BC,nor in paddy rice yield between PFMC and CF.Compared with CF,the two varieties'yields decreased significantly with BC.Dry cultivation,especially PFMC,could decrease the active filling period,chalky rice rate,chalkiness,amylose content,gel consistency,breakdown viscosity,the ratio of glutelin to prolamin,and leaf senescence while increasing water use efficiency,protein components content,setback viscosity,grain starch branching enzyme(Q-enzyme)activity,and average filling rate.Compared with paddy rice,upland rice had a lower yield,shorter active filling period,lower chalkiness grain rate and gel consistency,higher amylose content,breakdown viscosity,protein components content,and average filling rate.Grain Q-enzyme activity and grain-filling parameters were closely related to rice quality.Reasonable dry cultivation methods could balance yield and quality,especially by improving rice's nutritional and appearance quality.展开更多
The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use e...The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use efficiency and enhancing crop stress resistance.Nevertheless,the precise interaction between soil warming(SW)and SN remains unclear.In order to ascertain the impact of SW on maize growth and whether SN can improve the tolerance of maize to SW,a two-year field experiment was conducted(2022-2023).The aim was to examine the influence of two SW ranges(MT,warming 1.40℃;HT,warming 2.75℃)and two nitrogen application methods(N1,one-time basal application of nitrogen fertilizer;N2,one third of base nitrogen fertilizer+two thirds of jointing stage supplemental nitrogen fertilizer)on maize root growth,photosynthetic characteristics,nitrogen use efficiency,and yield.The results demonstrated that SW impeded root growth and precipitated the premature aging of maize leaves following anthesis,particularly in the HT,which led to a notable reduction in maize yield.In comparison to N1,SN has been shown to increase root length density by 8.54%,root bleeding rate by 8.57%,and enhance root distribution ratio in the middle soil layers(20-60 cm).The interaction between SW and SN had a notable impact on maize growth and yield.The SN improved the absorption and utilization efficiency of nitrogen by promoting root development and downward canopy growth,thus improving the tolerance of maize to SW at the later stage of growth.In particular,the N2HT resulted in a 14.51%increase in the photosynthetic rate,a 18.58%increase in nitrogen absorption efficiency,and a 18.32%increase in maize yield compared with N1HT.It can be posited that the SN represents a viable nitrogen management measure with the potential to enhance maize tolerance to soil high-temperature stress.展开更多
Brackish water(BW)irrigation may cause soil quality deterioration and thereby a decrease in crop yields.Here we examined the impacts of applying gasification filter cake(GFC),intercropping with Portulaca oleracea(PO),...Brackish water(BW)irrigation may cause soil quality deterioration and thereby a decrease in crop yields.Here we examined the impacts of applying gasification filter cake(GFC),intercropping with Portulaca oleracea(PO),and their combination on soil quality,nutrient uptake by plants and tomato yields under BW irrigation.The treatments evaluated included(i)freshwater irrigation(Control),(ii)BW irrigation,(iii)GFC application under BW irrigation(BW+GFC),(iv)intercropping with PO under BW irrigation(BW+PO),and(v)the combined application of GFC and PO under BW irrigation(BW+PO+GFC).Overall,the use of BW for irrigation resulted in a decline in both soil quality(assessed by a soil quality index(SQI)integrating a wide range of key soil properties including salinity,nutrient availability and microbial activities)and crop yields.Nevertheless,when subjected to BW irrigation,the application of GFC successfully prevented soil salinity.Additionally,the intercropping of PO decreased the soil sodium adsorption ratio and improved the absorption of nutrients by plants.As a result,the BW+GFC+PO treatment generally showed higher tomato yield as compared to other BW-related treatments(i.e.BW,BW+GFC and BW+PO).Compared to BW,the BW+GFC+PO treatment had an average increase of 24.7% in the total fruit yield of four Cropping Seasons.Furthermore,the BW+GFC+PO treatment consistently exhibited the highest fruit quality index(FQI).Taken together,the combined application of GFC and PO is effective in promoting soil quality and crop yields under BW irrigation.展开更多
Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,su...Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,such as textile,medicine,and automobile industries,it has greater commercial importance.The crop’s performance is greatly influenced by prevailing weather dynamics.As climate changes,assessing how weather changes affect crop performance is essential.Among various techniques that are available,crop models are the most effective and widely used tools for predicting yields.Results This study compares statistical and machine learning models to assess their ability to predict cotton yield across major producing districts of Karnataka,India,utilizing a long-term dataset spanning from 1990 to 2023 that includes yield and weather factors.The artificial neural networks(ANNs)performed superiorly with acceptable yield deviations ranging within±10%during both vegetative stage(F1)and mid stage(F2)for cotton.The model evaluation metrics such as root mean square error(RMSE),normalized root mean square error(nRMSE),and modelling efficiency(EF)were also within the acceptance limits in most districts.Furthermore,the tested ANN model was used to assess the importance of the dominant weather factors influencing crop yield in each district.Specifically,the use of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-ture had a major influence on cotton yield in most of the yield predicted districts.These differences highlighted the differential interactions of weather factors in each district for cotton yield formation,highlighting individual response of each weather factor under different soils and management conditions over the major cotton growing districts of Karnataka.Conclusions Compared with statistical models,machine learning models such as ANNs proved higher efficiency in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-tion at different growth stages.This highlights the best suitability of ANNs for yield forecasting in rainfed conditions and for the study on relative impacts of weather factors on yield.Thus,the study aims to provide valuable insights to support stakeholders in planning effective crop management strategies and formulating relevant policies.展开更多
The article contains a list of 14 structured technical sheets on roots, rhizomes or tubers that will serve as guidance in improving the quality of health of people. The used method was through an active search for lit...The article contains a list of 14 structured technical sheets on roots, rhizomes or tubers that will serve as guidance in improving the quality of health of people. The used method was through an active search for literature that brought the observed aspects to the structuring of the technical sheets, i.e., literature that contains data related to composition, active ingredients, interaction (when described in the consulted literature), health condition in which they may be useful in helath care by various health professionals and anyone who may be of interest. The data obtained shows that there is a need for a careful evaluation of the foods (that contain roots, rhizomes, or tubers) used by polymedicated people due to possible interactions and incompatibilities that may exist.展开更多
基金supported by the National Key Technology R&D Program (2011BAD12B03)
文摘Knowledge about crop growth processes in relation to N limitation is necessary to optimize N management in farming system. Plant-based diagnostic method, for instance nitrogen nutrition index (NNI) were used to determine the crop nitrogen status. This study determines the relationship of NNI with agronomic nitrogen use efficiency (AEN), tuber yield, radiation use efficiency (RUE) and leaf parameters including leaf area index (LAI), areal leaf N content (NJ and leaf N concentration (N0. Potatoes were grown in field at three N levels: no N (N 1), 150 kg N ha^-1 (N2), 300 kg N ha^-1 (N3). N deficiency was quantified by NNI and RUE was generally calculated by estimating of the light absorbance on leaf area. NNI was used to evaluate the N effect on tuber yield, RUE, LAI, NAL, and NL. The results showed that NNI was negatively correlated with AEN, N deficiencies (NNI〈 1) which occurred for N 1 and N2 significantly reduced LAI, NL and tuber yield; whereas the N deficiencies had a relative small effect on NAL and RUE. To remove any effect other than N on these parameters, the actual ratio to maximum values were calculated for each developmental linear relationships were obtained between NNI and tuber RUE to NNI. stage of potatoes. When the NNI ranged from 0.4 to 1, positive yield, LAI, NL, while a nonlinear regression fitted the response of
基金Project supported by Postgraduate Research&Practice Innovation Program of Jiangsu Provice,Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Doctorate Fellowship Foundation of Nanjing Forestry University,National Training Programs of Innovation and Entrepreneurship for Undergraduates(201410298001Z)Training Programs of Innovation and Entrepreneurship for Undergraduates of Nanjing Forestry University(2015sjcx190)
文摘The stimulatory effects and associated mechanism of lanthanum nitrate on the root tuber yield of the traditional Chinese medicinal plant Pseudostellaria heterophylla, by means of improved photosynthetic characteristics, were investigated. Field experiments were conducted and the foliage was sprayed with varying concentrations of lanthanum nitrate. The results indicated that growth indexes, chlorophyll and carotenoid contents initially increased, and then decreased in a dose-dependent manner with increasing concentrations of lanthanum nitrate. The fresh and dry weights of root tuber yield per unit area significantly increased by 58.34% and 56.87% with a lanthanum nitrate concentration of 100 mg/L, respectively, compared with the control. Appropriate concentrations of lanthanum nitrate were found to alleviate photosynthetic depression at midday, as well as improve the mean values of photosynthetic rate(Pn), stomatal conductance(Gs) and transpiration rate(Tr) associated with the diurnal variation in photosynthetic parameters, while reducing intercellular CO2 concentration(Ci). During the experiment, the chlorophyll fluorescence parameters Fv/Fm, Fv'/Fm', ΦPSII and qP increased initially and then decreased along with the increasing concentration of lanthanum nitrate, while NPQ followed the opposite trend. Correlation analysis revealed that Pn had a significantly positive relationship with seedling height, ground diameter, chlorophyll and carotenoid contents, Gs and ΦPSII, while a negative relationship was observed with Ci and NPQ. Grey relational analysis(GRA) indicated that photosynthetic pigments, ΦPSII and qP were the primary factors impacting photosynthesis. These results suggested that the application of an appropriate concentration of lanthanum nitrate(100 mg/L) was effective in improving growth, root tuber yield and photosynthetic characteristics of Psendoste llaria(P) heterophylla. The regulatory effect of lanthanum nitrate on photosynthesis was related to the promotion of light energy absorption and conversion, improvement in photochemical efficiency and the alleviation of photoinhibition. The improvement of the non-stomatal limitation factor was the primary basis for the mitigation of midday photosynthetic depression.
文摘[Objeclive]This study was conducted to select suitable organic fertilizer for Chinese chives,so as to improve yield and benefit of Chinese chives.[Method]Pot experiments were carried out to investigate effects of 3 organic fertilizers peanut cake fertilizer,chicken manure and mushroom residue on growth and yield of Chi-nese Chives.[Result]The 3 organic fertilizer treatments had better effects on plant height,stem diameter and leaf width than the CK.Treatment 1 showed the best effect on growth and development of Chinese chives,treatment 2 exhibited the sec-ond best effect,and treatment 3 showed the poorest effect.Treatment 1 showed the highest yield and economic benefit,of 65.514 t/hm^(2) and 175.556×10^(4) Yuardhm^(2),respectively,treatment 2 showed the second highest effects,and treatment 3 showed the lowest yield and economic benefit.[Conclusion]Selecting peanut cake fertilizer for production of Chinese chives could significantly improve yield and eco-nomic benefit of Chinese chives.
文摘Field trials to determine the yield response of potatoes to Umostart Super Zn (USZ) fertilizer (11.46.0 + 2 Zn + Humates) were carried out in 2004 using the cultivar Tigoni. During the long rains season, the treatments included USZ at 15 kg ha^-1 at planting; 30 kg ha^-1 split into 15 kg ha^-1 at planting and 15 kg ha^-1 during final earthing-up; 30 kg ha^-1 at planting; and 45 kg ha^-1 at planting. Treatments during the short rains included USZ at 30 kg ha^-1 split into 15 kg ha^-1 at planting and 15 kg ha^-1 during final earthing-up; 30 kg ha^-1 at planting; 40 kg ha^-1 at planting; 50 kg ha^-1 at planting; 50 kg ha^-1 split into 25 kg ha^-1 at planting and 25 kg ha^-1 during final earthing-up; and 60 kg ha^-1 at planting. USZ was contrasted with Diammonium phosphate (DAP) fertilizer (18:46:0) at 300 kg ha^-1 and 500 kg ha^-1 applied at planting and a control in which no fertilizer was applied. The DAP 300 kg ha^-1 treatment was however, not included during the long rains season. The highest tuber yields among the USZ treatments were obtained in plots treated with 45 kg ha^-1 (27.11 t ha^-1) during the long rains and 60 kg ha^-1 (55.17 t ha^-1) during the short rains season. Application of USZ resulted in a yield increase of at least 3.90 and 19.06 t ha^-1 during the long and short rains seasons respectively.
文摘Inadequate yield potential of available varieties and their long growth periods are two of the factors limiting yam (Dioscorea spp.) production. Identifying yield- and maturity-related traits and breeding for them will enhance production. Ten morphological/physiological traits: time of shoot emergence, time of tuber initiation, plant height, shoot dry weight, time of shoot senescence, tuber fresh weight (tuber yield), tuber number/plant, tuber parenchyma colour, tuber dry matter content and tuber dormancy period were assessed in eight accessions of D. alata L. (water yam) on the field in 2008 and 2009. Tuber yield-related traits were identified as shoot dry weight and time of shoot emergence. Shoot dry weight had the strongest positive effect; time of shoot emergence had a negative effect. High yielding accessions had a high shoot dry weight, but were low in tuber dry matter content. Uniform tuber parenchyma colour was the sole trait related to tuber maturity, but early and late senescing accessions did not consistently differ in the trait. TDa 00/00103 is high yielding and early maturing and may be used as a parent for breeding for high yield and early maturity in D. alata.
基金Supported by National Natural Science Foundation of China(41571303)Scientific Research Project for Follow-up Work of the Three Gorges(2015HXKY2-4-2)
文摘The effects of nano-carbon water-retaining fertilizer on yield,quality of tuber mustard,and fertilizer utilization efficiency were studied with the field experiments compared to the local tuber mustard fertilizer with equal amount of effective composition. The results showed that the yield of tuber mustard was 50 670-56 496 kg/ha in treatments of nano-carbon water-retaining fertilizer decreasing by 10%-40%,and compared with local tuber mustard fertilizer,the average yield was increased by 94. 8%. The yield increasing rate of tuber mustard was 93. 0%in treatment of nano-carbon water-retaining fertilizer decreasing by 30%. The average fertilizer utilization efficiency of nitrogen and phosphorus was 54% and 39. 7%,respectively,the average increment of fertilizer utilization efficiency was 36% and 37%,respectively compared with local tuber mustard fertilizer. Especially in treatment of reducing nano-carbon water-retaining fertilizer by 30%,the nitrogen and phosphorus fertilizer utilization efficiency was increased by 64% and 56%,respectively. By comprehensive comparison,it was found that nano-carbon waterretaining fertilizer and the treatment of 30% reduction could significantly improve the yield of tuber mustard and fertilizer utilization efficiency,and have popularization and application value in the Three Gorges Reservoir area.
文摘The study was conducted with the main objective to evaluate the genetic variability, heritability, and clustering pattern exploration of morphological and yield related traits in potato (Solanum tuberosum L.) collections in the bimodal rainfall agroecological zone of Cameroon using a Randomized Complete Block Design (RCBD) with three replications. The data obtained on morphological and yield traits were subjected to analysis of variance (ANOVA). The results showed that the viability rate of the collections varied from 77.78% to 96.55% respectively for the Maffo and Desiree collections, while the greatest number of tubers per plant varied from 4 to 18 respectively for Synergie and Desiree. The emergence rate varies from 60% to 1.66% respectively for Maffo et Doza collections. However, Desiree presents the highest TL (96.55) while Maffo shows the lowest value (77.78%). The yield per hectare varied from 1.14 to 9.3 t/h for Maffo and Doza respectively. For all the characteristics observed, Phenotypic Coefficients of Variation (PCV) were higher than Genotypic Coefficients of Variation (GCV) suggesting the role of environment in the expression of traits under observation. The highest GCV and PCV 47.55 and 58.94 respectively were observed for Diameter at the collar (DC). Most of the traits showed high GAM (>20%)) except Average Tuber Length (ATL) with a moderate value (19.8). In terms of vegetative development, the Desiree variety showed the highest performance. Based on the growth and yield results, Doza seems to be the most recommendable crop in the study area.
文摘In order to reduce the quantity of water applied by irrigation, increase the water use efficiency and determine the appropriate period for irrigation potato crop, a field experiment was implemented at vegetables field, Department of Plant Production, Agriculture Technical College, Mosul, Iraq, during spring season of 2014. This study involved four irrigation intervals (3, 4, 5 and 6 d) under drip irrigation system, with spraying by five antitranspirant substances (control, kaolin 5 g/L, MgCO3 3 g/L, liquid paraffin 2% and Nu-film 17 1%), which subjected in a factorial experiment within split plot system in a randomized complete block design with three replications. The results showed that increasing irrigation intervals from 3 d to 6 d decreased the total water content of the leaves from 83.59% to 81.81%, the rate of relative transpiration from 0.174% to 0.162%, stomata area from 1.620 lam2/stomata to 0.921 ~m2/stomata, plant yield from 542.22 g to 425.80 g, total yield of tubers from 25.808 tons/ha to 20.253 tons/ha and marketable yield of tubers from 24.471 tons/ha to 18.822 tons/ha, whereas caused an increase in the leaf water deficit from 19.19% to 23.86% and water use efficiency from 8.63 kg/m3 to 13.32 kg/m3. Spraying potato plants with liquid paraffin 2% led to the highest total water content 83.37%, stomata area 1.466 ~tm2/stomata, the lowest relative transpiration 0.152%, the lowest leaf water deficit 20.33%, the highest plant yield 509.22 g, total yield 24.236 tons/ha, marketable yield 22.770 tons/ha and water use efficiency I 1.83 kg/m3. On the other hand, the interaction treatments between irrigation intervals and antitranspirants resulted in a significant effect in many studied parameters.
文摘The potato (</span><i><span style="font-family:Verdana;">Solanum tuberosum</span></i><span style="font-family:Verdana;"> L.) is a vegetable that ranks fifth in the world for human consumption. Its importance is growing more and more in the Senegalese diet. However, the potato production in Senegal does not meet the needs of the market, which maintains dependence on the outside for the supply of quality seeds. In addition, these imported seeds do not often have phytosanitary qualities required for local production in the Sahelian zone. The </span><i><span style="font-family:Verdana;">in vitro </span></i><span style="font-family:Verdana;">production of microtubers, used as seed, has been shown to be one of the mos</span><span style="font-family:Verdana;">t efficient means for propagation of basic material. To overcome the constraints linked to the supply and availability of potato seeds, with high germination capacity, the impact of the microtuber size on the yield of the plants under semi-controlled conditions was examined. The pre-germinated</span><span style="font-family:Verdana;"> microtubers were produced </span><i><span style="font-family:Verdana;">in vitro </span></i><span style="font-family:Verdana;">from vitroplants of 3 different varieties (</span><i><span style="font-family:Verdana;">Aida</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;"> Atlas</span></i><span style="font-family:Verdana;">,</span><i><span style="font-family:Verdana;"> Odessa</span></i><span style="font-family:Verdana;">) adapted to the edaphic-climatic conditions of Senegal. The effects of the seed sizes of microtubers, greater than 4 mm, sown under semi-controlled conditions, on the yield of the plants</span></span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> result in an increase in the ratio, in the vegetative development of the plants, but also in the number and size of the minitubers harvested. The yield of the plants also depends on the variety. It can therefore be envisaged to produce local potato seeds from microtubers and minitubers.
基金supported by the Biological Breeding-National Science and Technology Major Project(2023ZD0403305)National Natural Science Foundation of China(32101845)+1 种基金the National Key Research and Development Program of China(2023YFE0105000)the China Agriculture Research System(CARS-04).
文摘Dense cropping increases crop yield but intensifies resource competition,which reduces single plant yield and limits potential yield growth.Optimizing canopy spacing could enhance resource utilization,support crop morphological development and increase yield.Here,a three-year study was performed to verify the feasibility of adjusting row spacing to further enhance yield in densely planted soybeans.Of three row-spacing configurations(40-40,20-40,and 20-60 cm)and two planting densities(normal 180,000 plants ha 1 and high 270,000 plants ha 1).The differences in canopy structure,plant morphological development,photosynthetic capacity and their impact on yield were analyzed.Row spacing configurations have a significant effect on canopy transmittance(CT).The 20-60 cm row spacing configuration increased CT and creates a favorable canopy light environment,in which plant height is reduced,while branching is promoted.This approach reduces plant competition,optimizes the developments of leaf area per plant,specific leaf area,leaf area development rate,leaf area duration and photosynthetic physiological indices(F_(v)/F_(m),ETR,P_(n)).The significant increase of 11.9%-34.2%in canopy apparent photosynthesis(CAP)is attributed to the significant optimization of plant growth and photosynthetic physiology through CT,an important contributing factor to yield increases.The yield in the 20-60 cm treatment is 4.0%higher than in equidistant planting under normal planting density,but 5.9%under high density,primarily driven by CAP and pod number.These findings suggest that suitable row spacing configurations optimize the light environment for plants,promote source-sink transformation in soybeans,and further improve yield.In practice,a 20-60 cm row spacing configuration could be employed for high-density soybean planting to achieve a more substantial yield gain.
基金supported by the National Natural Science Foundation of China(42177341)the Natural Science Basic Research Program of Shanxi,China(202203021222138).
文摘Organic material combined with inorganic fertilizer has been shown to greatly improve crop yield and maintain soil fertility globally. However, it remains unclear if crop yield and soil fertility can be sustained in the long term under the combined application of organic and inorganic fertilizers. Three long-term field trials were conducted to investigate the effects of organic amendments on the grain sustainable yield index(SYI), soil fertility index(SFI)and nutrient balance in maize–wheat cropping systems of central and southern China during 1991–2019. Five treatments were included in the trials: 1) no fertilization(control);2) balanced mineral fertilization(NPK);3) NPK plus manure(NPKM);4) high dose of NPK plus manure(1.5NPKM);and 5) NPK plus crop straw(NPKS). Over time, the grain yields of wheat and maize showed an increasing trend in all four fertilization treatments at the Yangling(YL) and Zhengzhou(ZZ) locations, while they declined at Qiyang(QY). The grain yield in the NPKM and 1.5NPKM treatments gradually exceeded that of the NPK and NPKS treatments at the QY site. The largest SYI was recorded in the NPKM treatment across the three sites, suggesting that inorganic fertilizer combined with manure can effectively improve crop yield sustainability. Higher SYI values were recorded at the YL and ZZ sites than at the QY site, possibly because the soil was more acid at QY. The key factors affecting grain yield were soil available phosphorus(AP) and available potassium(AK) at the YL and ZZ sites, and pH and AP at the QY site.All fertilization treatments resulted in soil N and P surpluses at the three sites, but soil K surpluses were recorded only at the QY site. The SFI was greater in the 1.5NPKM, NPKM and NPKS treatments than in the NPK treatment by 13.3–40.0 and 16.4–63.6% at the YL and ZZ sites, respectively, and was significantly higher in the NPKM and 1.5NPKM treatments than in the NPK and NPKS treatments at the QY site. A significant, positive linear relationship was found between SFI and crop yield, and SYI and nutrient balance, indicating that grain yield and its sustainability significantly increased with increasing soil fertility. The apparent N, P and K balances positively affected SFI.This study suggests that the appropriate amount of manure mixed with mineral NPK fertilizer is beneficial to the development of sustainable agriculture, which effectively increases the crop yield and yield sustainability by improving soil fertility.
文摘This editorial discusses a case report recently published in the World Journal of Clinical Cases.The report describes the clinical presentation,imaging,diagnosis,and treatment of a patient with tuberous sclerosis complex(TSC)combined with primary lymphedema(PLE).Additionally,it retrospectively analyzes the data of 16 previously reported cases of children with TSC combined with PLE to summarize the epidemiology,genetic diagnosis,and current main treatments of these patients.The report also speculates on the pathological and physiological mechanisms underlying TSC combined with PLE.TSC combined with PLE is rare;therefore,the report provides a theoretical basis for understanding the pathophysiological mechanisms and treatment options for patients with TSC and PLE.Comprehensive clinical management of TSC is essential due to the diverse and multiorgan nature of its manifestations,often requiring a multidisciplinary approach for newly diagnosed cases.
基金supported by the National Natural Science Foundation of China(No.32071980)the Key Projects of Shaanxi Agricultural Collaborative Innovation and Extension Alliance(No.LMZD202201)+1 种基金the Key R&D Project in Shaanxi Province(No.2021LLRH-07)Shaanxi Natural Scientific Basic Research Program project(No.2022JQ-157).
文摘Agricultural practices significantly contribute to greenhouse gas(GHG)emissions,necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production.Plastic film mulching is commonly used in the Loess Plateau region.Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity.Combining these techniques represents a novel agricultural approach in semi-arid areas.However,the impact of this integration on soil carbon storage(SOCS),carbon footprint(CF),and economic benefits has received limited research attention.Therefore,we conducted an eight-year study(2015-2022)in the semi-arid northwestern region to quantify the effects of four treatments[urea supplied without plastic film mulching(CK-U),slow-release fertilizer supplied without plastic film mulching(CK-S),urea supplied with plastic film mulching(PM-U),and slow-release fertilizer supplied with plastic film mulching(PM-S)]on soil fertility,economic and environmental benefits.The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions(≥71.97%).Compared to other treatments,PM-S increased average grain yield by 12.01%-37.89%,water use efficiency by 9.19%-23.33%,nitrogen accumulation by 27.07%-66.19%,and net return by 6.21%-29.57%.Furthermore,PM-S decreased CF by 12.87%-44.31%and CF per net return by 14.25%-41.16%.After eight years,PM-S increased SOCS(0-40 cm)by 2.46%,while PM-U decreased it by 7.09%.These findings highlight the positive effects of PM-S on surface soil fertility,economic gains,and environmental benefits in spring maize production on the Loess Plateau,underscoring its potential for widespread adoption and application.
基金funded by the Jiangsu Key Research Program,China(BE2022338)the Jiangsu Agricultural Science and Technology Innovation Fund,China(CX(23)3107)+3 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions,China(22KJB210004)the Jiangsu Province Agricultural Major Technology Collaborative Promotion Project,China(2022-ZYXT-04-1)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(KYCX23_3569)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘The high labor demand during rice seedling cultivation and transplantation poses a significant challenge in advancing machine-transplanted rice cultivation.This problem may be solved by increasing the seeding rate during seedling production while reducing the number of seedling trays.This study conducted field experiments from 2021 to 2022,using transplanting seedling ages of 10 and 15 days to explore the effects of 250,300,and 350 g/tray on the seedling quality,mechanical transplantation quality,yields,and economic benefits of rice.The commonly used combination of 150 g/tray with a 20-day seedling age in rice production was used as CK.The cultivation of seedlings under a high seeding rate and short seedling age significantly affected seedling characteristics,but there was no significant difference in seedling vitality compared to CK.The minimum number of rice trays used in the experiment was observed in the treatment of 350-10(300 g/tray and 10-day seedling age),only 152-155 trays ha^(-1),resulting in a 62%reduction in the number of trays needed.By increasing the seeding rate of rice,missed holes during mechanical transplantation decreased by 2.8 to 4%.The treatment of 300-15(300 g/tray and 15-day seedling age)achieved the highest yields and economic gains.These results indicated that using crop straw boards can reduce the application of seedling trays.On that basis,rice yields can be increased by raising the seeding rate and shortening the seedling age of rice without compromising seedling quality.
基金funding from the Scientific Research Program of the Higher Educational Institutions in Anhui Province, China (2023AH050986)the Natural Science Foundation of Anhui Province, China (240805MC063)+1 种基金the National Natural Science Foundation of China (32172119)the Talent Introduction Project of Anhui Agricultural University, China (rc312212 and yj2019-01)。
文摘Increasing the grain yield(GY) and water use efficiency(WUE) of winter wheat in the Huaibei Plain(HP), China are essential. However, the effects of micro-sprinkler irrigation and topsoil compaction after wheat seed sowing on the GY and WUE are unclear. Therefore, a two-year field experiment was conducted during the 2021–2023 winter wheat growing seasons with a total six treatments: rain-fed(RF), conventional irrigation(CI) and micro-sprinkler irrigation(MI), as well as topsoil compaction after seed sowing under these three irrigation methods(RFC, CIC, and MIC). The results in the two years indicated that MI significantly increased GY compared to CI and RF, by averages of 17.9 and 42.1%, respectively. The increase in GY of MI was due to its significant increases in the number of spikes, kernels per spike, and grain weight. The chlorophyll concentration in flag leaves of MI after the anthesis stage maintained higher levels than with CI and RF, and was the lowest in RF. This was due to the dramatically enhanced catalase and peroxidase activities and lower malondialdehyde content under MI. Compared with RF and CI, MI significantly promoted dry matter remobilization and production after anthesis, as well as its contribution to GY. In addition, MI significantly boosted root growth, and root activity during the grain-filling stage was remarkably enhanced compared to CI and RF. In 2021–2022, there was no significant difference in WUE between MI and RF, but the WUE of RF was significantly lower than that of MI in 2022–2023. However, the WUE in MI was significantly improved compared to CI, and it increased by averages of 15.1 and 17.6% for the two years. Topsoil compaction significantly increased GY and WUE under rain-fed conditions due to improved spike numbers and dry matter production. Overall, topsoil compaction is advisable for enhancing GY and WUE in rain-fed conditions, whereas micro-sprinkler irrigation can be adopted to simultaneously achieve high GY and WUE in the HP.
基金he National Key Research and Development Program of China(2022YFD2300304)the National Natural Science Foundation of China(31671617)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China。
文摘Reducing water consumption in rice production in China without affecting grain yield and quality is a significant challenge.This study explored how various dry cultivation methods could improve rice quality while balancing yield to maintain sustainable rice production.A japonica upland rice cultivar and a japonica paddy rice cultivar were cultivated in the field with three cultivation methods:plastic film mulching dry cultivation(PFMC),bare dry cultivation(BC),and continuous flooding cultivation(CF)as control.There was no significant difference in upland rice yield between PFMC and BC,nor in paddy rice yield between PFMC and CF.Compared with CF,the two varieties'yields decreased significantly with BC.Dry cultivation,especially PFMC,could decrease the active filling period,chalky rice rate,chalkiness,amylose content,gel consistency,breakdown viscosity,the ratio of glutelin to prolamin,and leaf senescence while increasing water use efficiency,protein components content,setback viscosity,grain starch branching enzyme(Q-enzyme)activity,and average filling rate.Compared with paddy rice,upland rice had a lower yield,shorter active filling period,lower chalkiness grain rate and gel consistency,higher amylose content,breakdown viscosity,protein components content,and average filling rate.Grain Q-enzyme activity and grain-filling parameters were closely related to rice quality.Reasonable dry cultivation methods could balance yield and quality,especially by improving rice's nutritional and appearance quality.
基金supported by the Natural Science Fund of China(31771724)the Key Research and Development Project of Shaanxi Province(2024NC-ZDCYL-01-10).
文摘The increase in soil temperature associated with climate change has introduced considerable challenges to crop production.Split nitrogen application(SN)represents a potential strategy for improving crop nitrogen use efficiency and enhancing crop stress resistance.Nevertheless,the precise interaction between soil warming(SW)and SN remains unclear.In order to ascertain the impact of SW on maize growth and whether SN can improve the tolerance of maize to SW,a two-year field experiment was conducted(2022-2023).The aim was to examine the influence of two SW ranges(MT,warming 1.40℃;HT,warming 2.75℃)and two nitrogen application methods(N1,one-time basal application of nitrogen fertilizer;N2,one third of base nitrogen fertilizer+two thirds of jointing stage supplemental nitrogen fertilizer)on maize root growth,photosynthetic characteristics,nitrogen use efficiency,and yield.The results demonstrated that SW impeded root growth and precipitated the premature aging of maize leaves following anthesis,particularly in the HT,which led to a notable reduction in maize yield.In comparison to N1,SN has been shown to increase root length density by 8.54%,root bleeding rate by 8.57%,and enhance root distribution ratio in the middle soil layers(20-60 cm).The interaction between SW and SN had a notable impact on maize growth and yield.The SN improved the absorption and utilization efficiency of nitrogen by promoting root development and downward canopy growth,thus improving the tolerance of maize to SW at the later stage of growth.In particular,the N2HT resulted in a 14.51%increase in the photosynthetic rate,a 18.58%increase in nitrogen absorption efficiency,and a 18.32%increase in maize yield compared with N1HT.It can be posited that the SN represents a viable nitrogen management measure with the potential to enhance maize tolerance to soil high-temperature stress.
基金supported by the Key Research and Development Program of Ningxia(Grant No.2023BCF01046)。
文摘Brackish water(BW)irrigation may cause soil quality deterioration and thereby a decrease in crop yields.Here we examined the impacts of applying gasification filter cake(GFC),intercropping with Portulaca oleracea(PO),and their combination on soil quality,nutrient uptake by plants and tomato yields under BW irrigation.The treatments evaluated included(i)freshwater irrigation(Control),(ii)BW irrigation,(iii)GFC application under BW irrigation(BW+GFC),(iv)intercropping with PO under BW irrigation(BW+PO),and(v)the combined application of GFC and PO under BW irrigation(BW+PO+GFC).Overall,the use of BW for irrigation resulted in a decline in both soil quality(assessed by a soil quality index(SQI)integrating a wide range of key soil properties including salinity,nutrient availability and microbial activities)and crop yields.Nevertheless,when subjected to BW irrigation,the application of GFC successfully prevented soil salinity.Additionally,the intercropping of PO decreased the soil sodium adsorption ratio and improved the absorption of nutrients by plants.As a result,the BW+GFC+PO treatment generally showed higher tomato yield as compared to other BW-related treatments(i.e.BW,BW+GFC and BW+PO).Compared to BW,the BW+GFC+PO treatment had an average increase of 24.7% in the total fruit yield of four Cropping Seasons.Furthermore,the BW+GFC+PO treatment consistently exhibited the highest fruit quality index(FQI).Taken together,the combined application of GFC and PO is effective in promoting soil quality and crop yields under BW irrigation.
基金funded through India Meteorological Department,New Delhi,India under the Forecasting Agricultural output using Space,Agrometeorol ogy and Land based observations(FASAL)project and fund number:No.ASC/FASAL/KT-11/01/HQ-2010.
文摘Background Cotton is one of the most important commercial crops after food crops,especially in countries like India,where it’s grown extensively under rainfed conditions.Because of its usage in multiple industries,such as textile,medicine,and automobile industries,it has greater commercial importance.The crop’s performance is greatly influenced by prevailing weather dynamics.As climate changes,assessing how weather changes affect crop performance is essential.Among various techniques that are available,crop models are the most effective and widely used tools for predicting yields.Results This study compares statistical and machine learning models to assess their ability to predict cotton yield across major producing districts of Karnataka,India,utilizing a long-term dataset spanning from 1990 to 2023 that includes yield and weather factors.The artificial neural networks(ANNs)performed superiorly with acceptable yield deviations ranging within±10%during both vegetative stage(F1)and mid stage(F2)for cotton.The model evaluation metrics such as root mean square error(RMSE),normalized root mean square error(nRMSE),and modelling efficiency(EF)were also within the acceptance limits in most districts.Furthermore,the tested ANN model was used to assess the importance of the dominant weather factors influencing crop yield in each district.Specifically,the use of morning relative humidity as an individual parameter and its interaction with maximum and minimum tempera-ture had a major influence on cotton yield in most of the yield predicted districts.These differences highlighted the differential interactions of weather factors in each district for cotton yield formation,highlighting individual response of each weather factor under different soils and management conditions over the major cotton growing districts of Karnataka.Conclusions Compared with statistical models,machine learning models such as ANNs proved higher efficiency in forecasting the cotton yield due to their ability to consider the interactive effects of weather factors on yield forma-tion at different growth stages.This highlights the best suitability of ANNs for yield forecasting in rainfed conditions and for the study on relative impacts of weather factors on yield.Thus,the study aims to provide valuable insights to support stakeholders in planning effective crop management strategies and formulating relevant policies.
文摘The article contains a list of 14 structured technical sheets on roots, rhizomes or tubers that will serve as guidance in improving the quality of health of people. The used method was through an active search for literature that brought the observed aspects to the structuring of the technical sheets, i.e., literature that contains data related to composition, active ingredients, interaction (when described in the consulted literature), health condition in which they may be useful in helath care by various health professionals and anyone who may be of interest. The data obtained shows that there is a need for a careful evaluation of the foods (that contain roots, rhizomes, or tubers) used by polymedicated people due to possible interactions and incompatibilities that may exist.