AIM:To identify topographic determinants of the anterior chamber angle(ACA)in patients with keratoconus(KCN).METHODS:Four hundred and ten eyes of 294 patients with KCN were recruited for this study.First,complete ocul...AIM:To identify topographic determinants of the anterior chamber angle(ACA)in patients with keratoconus(KCN).METHODS:Four hundred and ten eyes of 294 patients with KCN were recruited for this study.First,complete ocular examinations were performed for all patients,including visual acuity measurement,refraction,and slit-lamp biomicroscopy.Then,all participants underwent corneal imaging by the Oculus Pentacam HR.RESULTS:The mean age of the participants was 32.40±8.52y(15-60y)and 69.5%of them were male.The mean ACA was 38.47°±5.75°(range:14.40°to 56.50°)in the whole sample,38.24°±6.00°in males,and 38.98°±5.11°in females(P=0.447).The mean ACA was significantly different among different groups of cone morphology,as patients with nipple cones showed the lowest mean ACA.Moreover,there were statistically significant differences in the mean ACA among different groups of cone locations,with patients having central cones exhibiting the lowest mean ACA(P<0.001).Anterior and posterior Q values were significantly,directly correlated with ACA(anterior Q:r=0.122,P=0.014,posterior Q:r=0.192,P<0.001).CONCLUSION:This study provides critical insights into the risk factors for ACA narrowing in KCN patients,which is essential for planning intraocular surgeries.Patients with nipple and central cones exhibited the most significant ACA narrowing.Additionally,more negative Q-values are associated with increased ACA narrowing,highlighting the need for targeted diagnostic and therapeutic strategies.展开更多
To improve the vertical axis wind turbine(VAWT)design,the angle of attack(AOA)and airfoil data must be treated correctly.The present paper develops a method for determining AOA on a VAWT based on computational fluid d...To improve the vertical axis wind turbine(VAWT)design,the angle of attack(AOA)and airfoil data must be treated correctly.The present paper develops a method for determining AOA on a VAWT based on computational fluid dynamics(CFD)analysis.First,a CFD analysis of a two-bladed VAWT equipped with a NACA 0012 airfoil is conducted.The thrust and power coefficients are validated through experiments.Second,the blade force and velocity data at monitoring points are collected.The AOA at different azimuth angles is determined by removing the blade self-induction at the monitoring point.Then,the lift and drag coefficients as a function of AOA are extracted.Results show that this method is independent of the monitoring points selection located at certain distance to the blades and the extracted dynamic stall hysteresis is more precise than the one with the“usual”method without considering the self-induction from bound vortices.展开更多
Unsteady aerodynamic characteristics at high angles of attack are of great importance to the design and development of advanced fighter aircraft, which are characterized by post-stall maneuverability with multiple Deg...Unsteady aerodynamic characteristics at high angles of attack are of great importance to the design and development of advanced fighter aircraft, which are characterized by post-stall maneuverability with multiple Degrees-of-Freedom(multi-DOF) and complex flow field structure.In this paper, a special kind of cable-driven parallel mechanism is firstly utilized as a new suspension method to conduct unsteady dynamic wind tunnel tests at high angles of attack, thereby providing experimental aerodynamic data. These tests include a wide range of multi-DOF coupled oscillatory motions with various amplitudes and frequencies. Then, for aerodynamic modeling and analysis, a novel data-driven Feature-Level Attention Recurrent neural network(FLAR) is proposed. This model incorporates a specially designed feature-level attention module that focuses on the state variables affecting the aerodynamic coefficients, thereby enhancing the physical interpretability of the aerodynamic model. Subsequently, spin maneuver simulations, using a mathematical model as the baseline, are conducted to validate the effectiveness of the FLAR. Finally, the results on wind tunnel data reveal that the FLAR accurately predicts aerodynamic coefficients, and observations through the visualization of attention scores identify the key state variables that affect the aerodynamic coefficients. It is concluded that the proposed FLAR enhances the interpretability of the aerodynamic model while achieving good prediction accuracy and generalization capability for multi-DOF coupling motion at high angles of attack.展开更多
To examine the effect of bedding angle upon burst proneness in terms of energy,phyllites with seven various bedding angles are selected for conventional uniaxial compression and single-cyclic loading eunloading uniaxi...To examine the effect of bedding angle upon burst proneness in terms of energy,phyllites with seven various bedding angles are selected for conventional uniaxial compression and single-cyclic loading eunloading uniaxial compression tests.The ejection and failure during compression process of phyllites are monitored in real-time by high-speed camera system.The results demonstrate that the phyllites with different bedding angles all consistently follow the linear energy storage and dissipation(LESD)law during compression.The ultimate energy storage of phyllites with varying bedding angles can be calculated precisely via using the LESD law.Based on this,four kinds of energy-based rockburst indices are applied to quantitatively assess the burst proneness for phyllites.Combined with the recorded images of high-speed camera system,ejection distance,and mass of rock fragments and powder,the burst proneness for phyllites with various bedding angles is qualitatively evaluated adopting the far-field ejection mass ratio.Next,burst proneness of anisotropic phyllites is assessed quantitatively and qualitatively.It is found that phyllites with bedding angles of 0°,15°,and 90°have a high burst proneness,and that with bedding angle of 30°has a medium burst proneness,whereas the ones with bedding angles of 45°,60°,and 75°have a low burst proneness.Finally,the published experimental data of shale and sandstone specimens with different bedding angles are extracted,and it is preliminarily verified that the bedding angle does not change the LESD law of rocks.展开更多
In this study,to better decide the effect of coal seam dip angle upon the dynamic change of the crossfusion in gas transport and storage areas during the progress of working face in the high gas thick coal seam,a two-...In this study,to better decide the effect of coal seam dip angle upon the dynamic change of the crossfusion in gas transport and storage areas during the progress of working face in the high gas thick coal seam,a two-dimensional physical simulation experiment regarded as the theoretical research was conducted to properly explore the variation law of overburden fracture.The results demonstrated that the boundary of the gas transport zone was located in the region of fracture separation.The boundary of the gas storage area was located in the abrupt penetration zone.Also,according to the information theory,the state of the gas transport and storage areas was determined by the changing trend of the fracture rate and fracture entropy.The mathematical representation model of the dip effect in gas transport and storage areas was established.The criteria upon which the regional location of the gas transport area and gas storage area can be based were put forward.The cross-fusion evolution process of the dip effect in gas transport and storage areas was revealed as well.The research results could provide guidance for realising directional and accurate gas extraction.展开更多
AIM:To investigate how angles kappa and alpha affect postoperative visual quality in patients with multifocal intraocular lens(mIOLs)implantation.METHODS:Retrospective cases series.A total of 46 patients(46 eyes)who u...AIM:To investigate how angles kappa and alpha affect postoperative visual quality in patients with multifocal intraocular lens(mIOLs)implantation.METHODS:Retrospective cases series.A total of 46 patients(46 eyes)who underwent phacoemulsification were subsumed.The correlation between Preoperative angles kappa and alpha,wave-front aberrations and objective visual quality of cornea,internal,and total eye after surgery were analyzed using iTrace.RESULTS:The magnitude of angle kappa was negatively correlated with internal and total modulation transfer function(MTF)at 3 mm;the magnitude of angle kappa was positively correlated with astigmatism,trefoil,higher-order aberrations(HOAs)of both internal and total eye at 3 mm.The magnitude of angle alpha was negatively correlated with total MTF and total Strehl ratio at 3 mm.The magnitude of angle alpha was positively correlated with corneal coma at 5 mm,internal astigmatism at both 3 mm and 5 mm,and total spherical aberration(SA)at 3 mm.Multivariate linear regression analysis showed that,among candidate independent variables(kappa,alpha,astigmatism,SA,coma,trefoil,and HOAs),astigmatism is the only independent factor for altering corneal MTF at 3 mm and 5 mm;astigmatism and HOAs emerged as independent factors for altering internal MTF at 3 mm and 5 mm,and total MTF at 3 mm;astigmatism,SA and HOAs emerged as independent factors for altering total MTF at 5 mm.CONCLUSION:With greater preoperative angle kappa or angle alpha,patients who accept mIOL implantation tend to have larger internal astigmatism and HOAs,which resulting in poor visual quality,especially those with small pupil size.展开更多
Background:Trunk lean angle is an underrepre sented biomechanical variable for modulating and redistributing lower extremity joint loading and potentially reducing the risk of running-related overuse injuries.The purp...Background:Trunk lean angle is an underrepre sented biomechanical variable for modulating and redistributing lower extremity joint loading and potentially reducing the risk of running-related overuse injuries.The purpose of this study was to systematically alter the trunk lean angle in distance running using an auditory real-time feedback approach and to derive dose-response relationships between sagittal plane trunk lean angle and lower extremity(cumulative)joint loading to guide overuse load management in clinical practice.Methods:Thirty recreational runners(15 males and 15 females)ran at a constant speed of 2.5 m/s at 5 systematically varied trunk lean conditions on a force-instrumented treadmill while kinematic and kinetic data were captured.Results:A change in trunk lean angle from-2°(extension)to 28°(flexion)resulted in a systematic increase in stance phase angular impulse,cumulative impulse,and peak moment at the hip joint in the sagittal and transversal plane.In contrast,a systematic decrease in these parameters at the knee j oint in the sagittal plane and the hip joint in the frontal plane was found(p<0.001).Linear fitting revealed that with every degree of anterior trunk leaning,the cumulative hip joint extension loading increases by 3.26 Nm·s/kg/1000 m,while simultaneously decreasing knee joint extension loading by 1.08 Nm·s/kg/1000 m.Conclusion:Trunk leaning can reduce knee joint loading and hip joint abduction loading,at the cost of hip joint loading in the sagittal and transversal planes during distance running.Modulating lower extremity joint loading by altering trunk lean angle is an effective strategy to redistribute joint load between/within the knee and hip joints.When implementing anterior trunk leaning in clinical practice,the increased demands on the hip musculature,dynamic stability,and the potential trade-off with running economy should be considered.展开更多
AIM:To explore the effect of Alpha angle and Kappa angle before multifocal intraocular lenses(MIOLs)implantation on postoperative visual quality of patients.METHODS:Before and 3mo after cataract surgery,Alpha angle an...AIM:To explore the effect of Alpha angle and Kappa angle before multifocal intraocular lenses(MIOLs)implantation on postoperative visual quality of patients.METHODS:Before and 3mo after cataract surgery,Alpha angle and Kappa angle were collected using IOL Master 700,iTrace,and Pentacam for clinical observation.Postoperative visual quality indicators,including high-order aberrations(HOA),modulation transfer function(MTF)and point spread function(PSF),were collected using iTrace.multiple linear regression analysis was used to analyze the correlation of the Kappa angle and the Alpha angle with age,axial length(AL),anterior chamber depth(ACD),keratometry(K),lens thickness(LT)and corneal white to white distance(WTW).Pearson correlation coefficient was used to analyze the correlation between Alpha angle and Kappa angle;Bland Altman analysis was used to evaluate the consistency of pairwise detection results of three instruments.RESULTS:The Alpha angle was modeled as Alpha=2.230+0.003×age-0.036×AL-0.025×K-0.058×WTW and the Kappa angle was modeled as Kappa=0.685+0.003×age-0.013×K-0.061×WTW.The correlation between the total Alpha angle and Kappa angle of the three instruments was weakly positive(r=0.291,P=0.000).Comparing the measurement of Alpha angle and Kappa angle using three instruments,only IOL Master 700 and iTrace showed good consistency in measuring Kappa angle(P=0.4254).After 3mo of surgery,the Alpha angle and Kappa angle significantly decreased(P=0.011,0.018;P=0.008,0.036).△Kappa=1.136-0.021×AL-0.013×K.Kappa angle could positively predict HOA(β=0.18,P=0.000),MTF(β=0.171,P=0.000),PSF(β=0.088,P=0.000),Alpha angle cannot(P>0.05).CONCLUSION:The patients with older age,flatter K and shorter WTW should be alert to the possibility of larger Alpha angle and Kappa angle.Alpha angle should also consider the factor of AL.When selecting patients with MIOLs implantation,there is no need to consider the Alpha angle.Careful consideration should be given to the Kappa angle,and the preoperative standard of<0.5 mm can refer to△Kappa=1.136-0.021×AL-0.013×K and be appropriately relaxed.展开更多
Tree trunk instance segmentation is crucial for under-canopy unmanned aerial vehicles(UAVs)to autonomously extract standing tree stem attributes.Using cameras as sensors makes these UAVs compact and lightweight,facili...Tree trunk instance segmentation is crucial for under-canopy unmanned aerial vehicles(UAVs)to autonomously extract standing tree stem attributes.Using cameras as sensors makes these UAVs compact and lightweight,facilitating safe and flexible navigation in dense forests.However,their limited onboard computational power makes real-time,image-based tree trunk segmentation challenging,emphasizing the urgent need for lightweight and efficient segmentation models.In this study,we present RT-Trunk,a model specifically designed for real-time tree trunk instance segmentation in complex forest environments.To ensure real-time performance,we selected SparseInst as the base framework.We incorporated ConvNeXt-T as the backbone to enhance feature extraction for tree trunks,thereby improving segmentation accuracy.We further integrate the lightweight convolutional block attention module(CBAM),enabling the model to focus on tree trunk features while suppressing irrelevant information,which leads to additional gains in segmentation accuracy.To enable RT-Trunk to operate effectively under diverse complex forest environments,we constructed a comprehensive dataset for training and testing by combining self-collected data with multiple public datasets covering different locations,seasons,weather conditions,tree species,and levels of forest clutter.Com-pared with the other tree trunk segmentation methods,the RT-Trunk method achieved an average precision of 91.4%and the fastest inference speed of 32.9 frames per second.Overall,the proposed RT-Trunk provides superior trunk segmentation performance that balances speed and accu-racy,making it a promising solution for supporting under-canopy UAVs in the autonomous extraction of standing tree stem attributes.The code for this work is available at https://github.com/NEFU CVRG/RT Trunk.展开更多
Musculoskeletal Symptoms(MSS)often arise from prolonged maintenance of bent postures in the neck and trunk during surgical procedures.To prevent MSS,a passive exoskeleton utilizing carbon fiber beams to offer support ...Musculoskeletal Symptoms(MSS)often arise from prolonged maintenance of bent postures in the neck and trunk during surgical procedures.To prevent MSS,a passive exoskeleton utilizing carbon fiber beams to offer support to the neck and trunk was proposed.The application of support force is intended to reduce muscle forces and joint compression forces.A nonlinear mathematical model for the neck and trunk support beam is presented to estimate the support force.A validation test is subsequently conducted to assess the accuracy of the mathematical model.Finally,a preliminary functional evaluation test is performed to evaluate movement capabilities and support provided by the exoskeleton.The mathematical model demonstrates an accuracy for beam support force within a range of 0.8–1.2 N Root Mean Square Error(RMSE).The exoskeleton was shown to allow sufficient Range of Motion(ROM)for neck and trunk during open surgery training.While the exoskeleton showed potential in reducing musculoskeletal load and task difficulty during simulated surgery tasks,the observed reduction in perceived task difficulty was deemed non-significant.This prompts the recommendation for further optimization in personalized adjustments of beams to facilitate improvements in task difficulty and enhance comfort.展开更多
Dear Editor,X-linked retinoschisis(XLRS)is a rare X-linked recessive disorder predominantly afflicting young males.The schisis of the retinal layers is a result of deleterious mutations in the RS1 gene.Insufficient ep...Dear Editor,X-linked retinoschisis(XLRS)is a rare X-linked recessive disorder predominantly afflicting young males.The schisis of the retinal layers is a result of deleterious mutations in the RS1 gene.Insufficient epidemiological data has caused significant variation in reported global prevalence,with estimates fluctuating between 1 in 5000 and 1 in 30000 individuals[1].A large follow-up multicenter study recently published has yielded noteworthy findings concerning the phenotypic spectrum,long-term natural history,and genotype of XLRS.The investigation revealed a significant variability in visual function and disease progression,with particular variants of the RS1 gene displaying diverse phenotypic expressions,suggesting the intricate genetic basis underlying this disorder[2].The range of visual impairments associated with XLRS is extensive,varying from minor to severe.This condition is also characterized by specific retinal abnormalities,including radial streaks emanating from a divided central fovea,schisis affecting the inner layers of the retina in peripheral areas,and a diminished amplitude ratio of b-to a-wave,or even an electronegative electroretinography(ERG)[3].At their initial consultation,the majority of individuals with XLRS exhibit visual acuity(VA)levels between 20/60 and 20/120.However,there is a significant diversity in the condition’s presentation and progression,even among relatives,with VA levels spanning from near-normal to complete loss of sight[4-5].While vision tends to be reasonably consistent over several years for those with XLRS,there is documentation of a more rapid decline in later adulthood,specifically during the fourth and fifth decades,due to central retinal degeneration[5-7].Moreover,those with XLRS face an elevated risk for serious visual issues,such as retinal detachment,vitreous hemorrhages,and neovascular glaucoma[4].Female carriers could be found with slightly abnormal retinal changes without clinical symptoms[5].Even within the same family,the manifestation and progression of the condition can vary greatly,with individuals experiencing anything from nearly normal vision to complete loss of sight[8-9].Earlier investigations have revealed that retinoschisisrelated cystoid degeneration can impact multiple layers of the retina,beginning at the retinal nerve fiber zone and continuing to the nuclear stratum,with considerable fluctuation in the severity of the schisis[10-13].展开更多
Accurate target angle estimation is one of the chal-lenges for wideband radars due to the fact that target occupies multiple range bins,resulting in lower energy or signal to noise ratio in a single range bin.This pap...Accurate target angle estimation is one of the chal-lenges for wideband radars due to the fact that target occupies multiple range bins,resulting in lower energy or signal to noise ratio in a single range bin.This paper proposes a processing technique for enhanced accuracy of target angle estimates for wideband monopulse radars.Firstly,to accumulate the energy of the received echo signals from different scatterers on a target,the phase difference between different scatterers on a target is estimated using the minimum entropy phase estimation method combining with the correlation between adjacent pulses.Then,the monopulse ratio is obtained by using the signals from the accumulated sum and difference channels.The target angle is estimated by weighting the accumulated echo energy for accu-racy enhancement.Experimental results based on both numeri-cal simulation and measured data are presented to validate the effectiveness of the proposed technique.展开更多
Endodermal cells and starch-accumulating amyloplasts are well-known gravity sensors initiating shoot gravitropism in Arabidopsis thaliana.The transcription factors SHR and SGR1 regulate endodermal cell formation,while...Endodermal cells and starch-accumulating amyloplasts are well-known gravity sensors initiating shoot gravitropism in Arabidopsis thaliana.The transcription factors SHR and SGR1 regulate endodermal cell formation,while PGM has been demonstrated to regulate starch biosynthesis within chloroplasts,which eventually leads to starch accumulation in amyloplasts.However,the molecular mechanisms of gravity sensing in monocot shoots remain largely unexplored.In this study,we investigated the roles of these genes in rice(Oryza sativa),a model monocot,using CRISPR-Cas9 to generate single,double,and higher-order mutants.The rice genome harbors two orthologs each of SHR and SGR and a single ortholog of PGM.Our results revealed that single mutants of OsPGM,but not OsSHR or OsSGR,showed compromised shoot gravitropism.However,double mutants shr1shr2 and sgr1sgr2 displayed wider tiller angles and reduced gravity sensing,suggesting functional redundancy within each gene pair.Higher-order mutants exhibited progressively severe phenotypes,with quintuple mutants almost unresponsive to gravity stimulation.These findings suggest that these genes act additively through distinct but converging pathways in shoot gravitropism regulation.This study provides novel insights into the molecular mechanisms underlying gravity sensing in monocots and offers valuable knowledge for precision breeding to optimize rice architecture.展开更多
AIM:To evaluate the one-year clinical outcomes of a novel canaloplasty device used in combination with cataract extraction(CE)in patients with mild to severe open angle glaucoma(OAG).METHODS:This study reviewed patien...AIM:To evaluate the one-year clinical outcomes of a novel canaloplasty device used in combination with cataract extraction(CE)in patients with mild to severe open angle glaucoma(OAG).METHODS:This study reviewed patients diagnosed with mild to severe OAG,who underwent canaloplasty with the STREAMLINE®Surgical System combined with CE.The primary outcome was surgical success,defined as achieving≥20%intraocular pressure(IOP)reduction and/or a reduction of≥1 glaucoma medication compared to baseline.Secondary outcomes included mean IOP,average number of glaucoma medications,and best-corrected distance visual acuity(BCDVA).Data was collected preoperatively and at multiple postoperative time points up to one year.RESULTS:A total of 68 eyes of 47 patients were included with mean age was 73.1±7.0y and 60%were females.Surgical success at one year was achieved in 68.8%of eyes,with 67.6%success in mild,80.0%in moderate,and 66.7%in severe OAG cases.IOP was significantly reduced from a baseline of 16.1±0.5 to 14.7±0.4 mm Hg at one year(P=0.0004).The number of medications decreased significantly in all eyes from a baseline of 1.2±0.1 to 0.6±0.1 at one year(P<0.0001).When stratified by glaucoma severity,only the mild group experienced a statistically significant decrease from a baseline of 1.1±0.1 to 0.4±0.1(P<0.0001).BCDVA improved significantly from baseline to one year.No sight-threatening complications were reported.CONCLUSION:Canaloplasty using the STREAMLINE®surgical system combined with CE effectively reduces IOP at one year in mild to severe OAG with minimal complications.IOP lowering efficacy,reduction in IOP lowering medications,and safety in moderate to severe OAG require further study.展开更多
This study experimentally investigates the oscillatory dynamics of wind-driven droplets using high-speed imaging to capture droplet profiles within the symmetry plane and to characterize their natural oscillation freq...This study experimentally investigates the oscillatory dynamics of wind-driven droplets using high-speed imaging to capture droplet profiles within the symmetry plane and to characterize their natural oscillation frequencies.Results reveal that the eigenfrequencies vary spatially due to distinct oscillation modes occurring at different droplet locations.Notably,the fundamental eigenfrequency decreases with reducing droplet volume,while droplet viscosity exerts minimal influence on this frequency.Prior to the onset of motion,the dynamic contact angle consistently remains between the advancing and receding angles.The inertial forces generated by droplet oscillation are found to be significantly greater than the adhesion forces,indicating that classical static models are inadequate for capturing inertial contributions to droplet motion.These findings offer new insights into the role of oscillatory behavior in influencing the dynamics of droplet motion,and contribute to a more detailed understanding of wind-driven droplet transport phenomena.展开更多
This study introduces the lattice spring model(LSM)to investigate the incline angle of a non-uniform three-segment towed array under steady-state conditions.A numerical model was established,and parametric analysis wa...This study introduces the lattice spring model(LSM)to investigate the incline angle of a non-uniform three-segment towed array under steady-state conditions.A numerical model was established,and parametric analysis was conducted to examine the effects of towing speed and cable density on the incline angle.The numerical simulations demonstrate that for a conventional three-segment towed array with heavy vibration-isolation cable and density exceeding that of seawater,the towing speed must exceed 4 kn to maintain the acoustic cable's average incline angle below 10°.To validate the proposed LSM,a 100-meter-long towed array with variable densities was fabricated and tested through lake trials.The experimental results align closely with simulations,confirming LSM as a reliable model for predicting towed array position and posture.The study concludes by analyzing the parallel computing capabilities of LSM and its application in Fluid-Structure Interaction(FSI)problems.The model's precision and parallel computing capabilities make LSM an efficient,reliable tool for analyzing the steady-state behavior of towed systems.展开更多
The ability to localize sound sources rapidly allows human beings to efficiently understand the surrounding environment.Previous studies have suggested that there is an auditory“where”pathway in the cortex for proce...The ability to localize sound sources rapidly allows human beings to efficiently understand the surrounding environment.Previous studies have suggested that there is an auditory“where”pathway in the cortex for processing sound locations.The neural activation in regions along this pathway encodes sound locations by opponent hemifield coding,in which each unilateral region is activated by sounds coming from the contralateral hemifield.However,it is still unclear how these regions interact with each other to form a unified representation of the auditory space.In the present study,we investigated whether functional connectivity in the auditory“where”pathway encoded sound locations during passive listening.Participants underwent functional magnetic resonance imaging while passively listening to sounds from five distinct horizontal locations(−90°,−45°,0°,45°,90°).We were able to decode sound locations from the functional connectivity patterns of the“where”pathway.Furthermore,we found that such neural representation of sound locations was primarily based on the coding of sound lateralization angles to the frontal midline.In addition,whole-brain analysis indicated that functional connectivity between occipital regions and the primary auditory cortex also encoded sound locations by lateralization angles.Overall,our results reveal a lateralization-angle-based representation of sound locations encoded by functional connectivity patterns,which could add on the activation-based opponent hemifield coding to provide a more precise representation of the auditory space.展开更多
AIM:To compare refractive error and angle of deviation in patients with basic esotropia and basic exotropia.METHODS:A retrospective review was conducted on the medical records of patients with basic-type strabismus.De...AIM:To compare refractive error and angle of deviation in patients with basic esotropia and basic exotropia.METHODS:A retrospective review was conducted on the medical records of patients with basic-type strabismus.Demographic data,refractive error,best-corrected distance visual acuity(BCVA),and the horizontal and vertical angle of deviation between basic esotropia and exotropia patients were compared.RESULTS:Among the 7129 patients(mean age 22.98±14.81y)evaluated,44.7%(3185 cases,54.9%male)exhibited basic-type esotropia,while 55.3%(3944 cases,53.9%male)presented with basic-type exotropia.Basic esotropia cases exhibited more hyperopic spherical equivalent measurements in both eyes(right:0.53±3.07 vs left:0.56±2.98 D)than those with basic exotropia(right eye:-0.33±2.84 vs left eye:-0.24±2.68 D,P<0.001 for both eyes).Patients with basic esotropia had significantly greater horizontal deviation angles(near:36.08±18.87 PD and far:35.56±18.75 PD)compared to those with basic exotropia(near:33.75±16.11 PD and far:33.26±15.90 PD,P<0.001).Conversely,patients with basic exotropia had slightly higher vertical deviation angles(near:1.67±5.80 PD and far:1.72±5.89 PD)compared to those with basic esotropia(near:1.12±4.57 PD and far:1.12±4.58 PD,P<0.001).Patients with basic esotropia underwent surgical intervention at younger ages compared to basic exotropia individuals(19.68±15.99 vs 25.66±13.20,P<0.001).CONCLUSION:Basic esotropia patients present more hyperopic refractive errors,better visual acuity,larger horizontal yet smaller vertical ocular misalignments,and tend to undergo strabismus surgery at younger ages relative to basic exotropia cases.展开更多
This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and lo...This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and low precision. A coopera-tive guidance model is proposed, transforming the cooperative interception problem into a consensus problem based on the remaining flight time of the flight vehicles. First, the impact angle constraint is converted into the line of sight (LOS) angle con-straint, and a new fixed-time convergent non-singular terminal sliding surface is introduced, which resolves the singularity issue of the traditional sliding surfaces. With this approach, LOS angle rate and normal overloads can converge in fixed time, ensuring that the upper bound of the system convergence time is not affected by the initial value of the system. Furthermore, the maneuvering movement of the target is considered as a system disturbance, and an extended state observer is employed to estimate and compensate for it in the guidance law. Lastly, by applying consensus theory and distributed communication topology, the remaining flight time of each flight vehicle is syn-chronized to ensure that they intercept the target simulta-neously with different impact angles. Simulation experiments are conducted to validate the effectiveness of the proposed cooper-ative interception and guidance method.展开更多
基金Supported by Iranian University of Medical Sciences(code:IR.IUMS.REC.1401.371).
文摘AIM:To identify topographic determinants of the anterior chamber angle(ACA)in patients with keratoconus(KCN).METHODS:Four hundred and ten eyes of 294 patients with KCN were recruited for this study.First,complete ocular examinations were performed for all patients,including visual acuity measurement,refraction,and slit-lamp biomicroscopy.Then,all participants underwent corneal imaging by the Oculus Pentacam HR.RESULTS:The mean age of the participants was 32.40±8.52y(15-60y)and 69.5%of them were male.The mean ACA was 38.47°±5.75°(range:14.40°to 56.50°)in the whole sample,38.24°±6.00°in males,and 38.98°±5.11°in females(P=0.447).The mean ACA was significantly different among different groups of cone morphology,as patients with nipple cones showed the lowest mean ACA.Moreover,there were statistically significant differences in the mean ACA among different groups of cone locations,with patients having central cones exhibiting the lowest mean ACA(P<0.001).Anterior and posterior Q values were significantly,directly correlated with ACA(anterior Q:r=0.122,P=0.014,posterior Q:r=0.192,P<0.001).CONCLUSION:This study provides critical insights into the risk factors for ACA narrowing in KCN patients,which is essential for planning intraocular surgeries.Patients with nipple and central cones exhibited the most significant ACA narrowing.Additionally,more negative Q-values are associated with increased ACA narrowing,highlighting the need for targeted diagnostic and therapeutic strategies.
文摘To improve the vertical axis wind turbine(VAWT)design,the angle of attack(AOA)and airfoil data must be treated correctly.The present paper develops a method for determining AOA on a VAWT based on computational fluid dynamics(CFD)analysis.First,a CFD analysis of a two-bladed VAWT equipped with a NACA 0012 airfoil is conducted.The thrust and power coefficients are validated through experiments.Second,the blade force and velocity data at monitoring points are collected.The AOA at different azimuth angles is determined by removing the blade self-induction at the monitoring point.Then,the lift and drag coefficients as a function of AOA are extracted.Results show that this method is independent of the monitoring points selection located at certain distance to the blades and the extracted dynamic stall hysteresis is more precise than the one with the“usual”method without considering the self-induction from bound vortices.
基金supported by the National Natural Science Foundation of China(Nos.12172315,12072304,11702232)the Fujian Provincial Natural Science Foundation,China(No.2021J01050)the Aeronautical Science Foundation of China(No.20220013068002).
文摘Unsteady aerodynamic characteristics at high angles of attack are of great importance to the design and development of advanced fighter aircraft, which are characterized by post-stall maneuverability with multiple Degrees-of-Freedom(multi-DOF) and complex flow field structure.In this paper, a special kind of cable-driven parallel mechanism is firstly utilized as a new suspension method to conduct unsteady dynamic wind tunnel tests at high angles of attack, thereby providing experimental aerodynamic data. These tests include a wide range of multi-DOF coupled oscillatory motions with various amplitudes and frequencies. Then, for aerodynamic modeling and analysis, a novel data-driven Feature-Level Attention Recurrent neural network(FLAR) is proposed. This model incorporates a specially designed feature-level attention module that focuses on the state variables affecting the aerodynamic coefficients, thereby enhancing the physical interpretability of the aerodynamic model. Subsequently, spin maneuver simulations, using a mathematical model as the baseline, are conducted to validate the effectiveness of the FLAR. Finally, the results on wind tunnel data reveal that the FLAR accurately predicts aerodynamic coefficients, and observations through the visualization of attention scores identify the key state variables that affect the aerodynamic coefficients. It is concluded that the proposed FLAR enhances the interpretability of the aerodynamic model while achieving good prediction accuracy and generalization capability for multi-DOF coupling motion at high angles of attack.
基金supported by the National Natural Science Foundation of China(Grant No.42077244).
文摘To examine the effect of bedding angle upon burst proneness in terms of energy,phyllites with seven various bedding angles are selected for conventional uniaxial compression and single-cyclic loading eunloading uniaxial compression tests.The ejection and failure during compression process of phyllites are monitored in real-time by high-speed camera system.The results demonstrate that the phyllites with different bedding angles all consistently follow the linear energy storage and dissipation(LESD)law during compression.The ultimate energy storage of phyllites with varying bedding angles can be calculated precisely via using the LESD law.Based on this,four kinds of energy-based rockburst indices are applied to quantitatively assess the burst proneness for phyllites.Combined with the recorded images of high-speed camera system,ejection distance,and mass of rock fragments and powder,the burst proneness for phyllites with various bedding angles is qualitatively evaluated adopting the far-field ejection mass ratio.Next,burst proneness of anisotropic phyllites is assessed quantitatively and qualitatively.It is found that phyllites with bedding angles of 0°,15°,and 90°have a high burst proneness,and that with bedding angle of 30°has a medium burst proneness,whereas the ones with bedding angles of 45°,60°,and 75°have a low burst proneness.Finally,the published experimental data of shale and sandstone specimens with different bedding angles are extracted,and it is preliminarily verified that the bedding angle does not change the LESD law of rocks.
基金supported by the National Natural Science Foundation of China(No.5217-4205)Shaanxi Provincial Outstanding Youth Science Fund Project(No.2023-JC-JQ-40)+4 种基金National Key Research and Development Project(No.2023YFC3009004)Key Project of Shaanxi Provincial Department of Education(No.22JY040)Xinjiang Uygur Autonomous Region Key Research and Development Task Special Project(No.2022B01034-3)Key Laboratory of Green Coal Mining in Xinjiang,Ministry of Education(No.KLXGY-KA2404)Shaanxi Provincial Key Research and Development Task General Project(No.2024GX–YBXM-490)。
文摘In this study,to better decide the effect of coal seam dip angle upon the dynamic change of the crossfusion in gas transport and storage areas during the progress of working face in the high gas thick coal seam,a two-dimensional physical simulation experiment regarded as the theoretical research was conducted to properly explore the variation law of overburden fracture.The results demonstrated that the boundary of the gas transport zone was located in the region of fracture separation.The boundary of the gas storage area was located in the abrupt penetration zone.Also,according to the information theory,the state of the gas transport and storage areas was determined by the changing trend of the fracture rate and fracture entropy.The mathematical representation model of the dip effect in gas transport and storage areas was established.The criteria upon which the regional location of the gas transport area and gas storage area can be based were put forward.The cross-fusion evolution process of the dip effect in gas transport and storage areas was revealed as well.The research results could provide guidance for realising directional and accurate gas extraction.
文摘AIM:To investigate how angles kappa and alpha affect postoperative visual quality in patients with multifocal intraocular lens(mIOLs)implantation.METHODS:Retrospective cases series.A total of 46 patients(46 eyes)who underwent phacoemulsification were subsumed.The correlation between Preoperative angles kappa and alpha,wave-front aberrations and objective visual quality of cornea,internal,and total eye after surgery were analyzed using iTrace.RESULTS:The magnitude of angle kappa was negatively correlated with internal and total modulation transfer function(MTF)at 3 mm;the magnitude of angle kappa was positively correlated with astigmatism,trefoil,higher-order aberrations(HOAs)of both internal and total eye at 3 mm.The magnitude of angle alpha was negatively correlated with total MTF and total Strehl ratio at 3 mm.The magnitude of angle alpha was positively correlated with corneal coma at 5 mm,internal astigmatism at both 3 mm and 5 mm,and total spherical aberration(SA)at 3 mm.Multivariate linear regression analysis showed that,among candidate independent variables(kappa,alpha,astigmatism,SA,coma,trefoil,and HOAs),astigmatism is the only independent factor for altering corneal MTF at 3 mm and 5 mm;astigmatism and HOAs emerged as independent factors for altering internal MTF at 3 mm and 5 mm,and total MTF at 3 mm;astigmatism,SA and HOAs emerged as independent factors for altering total MTF at 5 mm.CONCLUSION:With greater preoperative angle kappa or angle alpha,patients who accept mIOL implantation tend to have larger internal astigmatism and HOAs,which resulting in poor visual quality,especially those with small pupil size.
文摘Background:Trunk lean angle is an underrepre sented biomechanical variable for modulating and redistributing lower extremity joint loading and potentially reducing the risk of running-related overuse injuries.The purpose of this study was to systematically alter the trunk lean angle in distance running using an auditory real-time feedback approach and to derive dose-response relationships between sagittal plane trunk lean angle and lower extremity(cumulative)joint loading to guide overuse load management in clinical practice.Methods:Thirty recreational runners(15 males and 15 females)ran at a constant speed of 2.5 m/s at 5 systematically varied trunk lean conditions on a force-instrumented treadmill while kinematic and kinetic data were captured.Results:A change in trunk lean angle from-2°(extension)to 28°(flexion)resulted in a systematic increase in stance phase angular impulse,cumulative impulse,and peak moment at the hip joint in the sagittal and transversal plane.In contrast,a systematic decrease in these parameters at the knee j oint in the sagittal plane and the hip joint in the frontal plane was found(p<0.001).Linear fitting revealed that with every degree of anterior trunk leaning,the cumulative hip joint extension loading increases by 3.26 Nm·s/kg/1000 m,while simultaneously decreasing knee joint extension loading by 1.08 Nm·s/kg/1000 m.Conclusion:Trunk leaning can reduce knee joint loading and hip joint abduction loading,at the cost of hip joint loading in the sagittal and transversal planes during distance running.Modulating lower extremity joint loading by altering trunk lean angle is an effective strategy to redistribute joint load between/within the knee and hip joints.When implementing anterior trunk leaning in clinical practice,the increased demands on the hip musculature,dynamic stability,and the potential trade-off with running economy should be considered.
基金Supported by National Natural Science Foundation of China(No.81902751).
文摘AIM:To explore the effect of Alpha angle and Kappa angle before multifocal intraocular lenses(MIOLs)implantation on postoperative visual quality of patients.METHODS:Before and 3mo after cataract surgery,Alpha angle and Kappa angle were collected using IOL Master 700,iTrace,and Pentacam for clinical observation.Postoperative visual quality indicators,including high-order aberrations(HOA),modulation transfer function(MTF)and point spread function(PSF),were collected using iTrace.multiple linear regression analysis was used to analyze the correlation of the Kappa angle and the Alpha angle with age,axial length(AL),anterior chamber depth(ACD),keratometry(K),lens thickness(LT)and corneal white to white distance(WTW).Pearson correlation coefficient was used to analyze the correlation between Alpha angle and Kappa angle;Bland Altman analysis was used to evaluate the consistency of pairwise detection results of three instruments.RESULTS:The Alpha angle was modeled as Alpha=2.230+0.003×age-0.036×AL-0.025×K-0.058×WTW and the Kappa angle was modeled as Kappa=0.685+0.003×age-0.013×K-0.061×WTW.The correlation between the total Alpha angle and Kappa angle of the three instruments was weakly positive(r=0.291,P=0.000).Comparing the measurement of Alpha angle and Kappa angle using three instruments,only IOL Master 700 and iTrace showed good consistency in measuring Kappa angle(P=0.4254).After 3mo of surgery,the Alpha angle and Kappa angle significantly decreased(P=0.011,0.018;P=0.008,0.036).△Kappa=1.136-0.021×AL-0.013×K.Kappa angle could positively predict HOA(β=0.18,P=0.000),MTF(β=0.171,P=0.000),PSF(β=0.088,P=0.000),Alpha angle cannot(P>0.05).CONCLUSION:The patients with older age,flatter K and shorter WTW should be alert to the possibility of larger Alpha angle and Kappa angle.Alpha angle should also consider the factor of AL.When selecting patients with MIOLs implantation,there is no need to consider the Alpha angle.Careful consideration should be given to the Kappa angle,and the preoperative standard of<0.5 mm can refer to△Kappa=1.136-0.021×AL-0.013×K and be appropriately relaxed.
基金supported in part by the National Natural Science Foundation of China(No.31470714 and 61701105).
文摘Tree trunk instance segmentation is crucial for under-canopy unmanned aerial vehicles(UAVs)to autonomously extract standing tree stem attributes.Using cameras as sensors makes these UAVs compact and lightweight,facilitating safe and flexible navigation in dense forests.However,their limited onboard computational power makes real-time,image-based tree trunk segmentation challenging,emphasizing the urgent need for lightweight and efficient segmentation models.In this study,we present RT-Trunk,a model specifically designed for real-time tree trunk instance segmentation in complex forest environments.To ensure real-time performance,we selected SparseInst as the base framework.We incorporated ConvNeXt-T as the backbone to enhance feature extraction for tree trunks,thereby improving segmentation accuracy.We further integrate the lightweight convolutional block attention module(CBAM),enabling the model to focus on tree trunk features while suppressing irrelevant information,which leads to additional gains in segmentation accuracy.To enable RT-Trunk to operate effectively under diverse complex forest environments,we constructed a comprehensive dataset for training and testing by combining self-collected data with multiple public datasets covering different locations,seasons,weather conditions,tree species,and levels of forest clutter.Com-pared with the other tree trunk segmentation methods,the RT-Trunk method achieved an average precision of 91.4%and the fastest inference speed of 32.9 frames per second.Overall,the proposed RT-Trunk provides superior trunk segmentation performance that balances speed and accu-racy,making it a promising solution for supporting under-canopy UAVs in the autonomous extraction of standing tree stem attributes.The code for this work is available at https://github.com/NEFU CVRG/RT Trunk.
基金funded by China Scholarship Council,Grant Number 201906840121department of rehabilitation medicine,University Medical Center Groningen,University of Groningen,grant number:O/085350.
文摘Musculoskeletal Symptoms(MSS)often arise from prolonged maintenance of bent postures in the neck and trunk during surgical procedures.To prevent MSS,a passive exoskeleton utilizing carbon fiber beams to offer support to the neck and trunk was proposed.The application of support force is intended to reduce muscle forces and joint compression forces.A nonlinear mathematical model for the neck and trunk support beam is presented to estimate the support force.A validation test is subsequently conducted to assess the accuracy of the mathematical model.Finally,a preliminary functional evaluation test is performed to evaluate movement capabilities and support provided by the exoskeleton.The mathematical model demonstrates an accuracy for beam support force within a range of 0.8–1.2 N Root Mean Square Error(RMSE).The exoskeleton was shown to allow sufficient Range of Motion(ROM)for neck and trunk during open surgery training.While the exoskeleton showed potential in reducing musculoskeletal load and task difficulty during simulated surgery tasks,the observed reduction in perceived task difficulty was deemed non-significant.This prompts the recommendation for further optimization in personalized adjustments of beams to facilitate improvements in task difficulty and enhance comfort.
基金Supported by Capital’s Funds for Health Improvement and Research(No.2024-2-4087)Central Guidance for Local Scientific and Technological Development Funding Projects(No.2022ZY0026).
文摘Dear Editor,X-linked retinoschisis(XLRS)is a rare X-linked recessive disorder predominantly afflicting young males.The schisis of the retinal layers is a result of deleterious mutations in the RS1 gene.Insufficient epidemiological data has caused significant variation in reported global prevalence,with estimates fluctuating between 1 in 5000 and 1 in 30000 individuals[1].A large follow-up multicenter study recently published has yielded noteworthy findings concerning the phenotypic spectrum,long-term natural history,and genotype of XLRS.The investigation revealed a significant variability in visual function and disease progression,with particular variants of the RS1 gene displaying diverse phenotypic expressions,suggesting the intricate genetic basis underlying this disorder[2].The range of visual impairments associated with XLRS is extensive,varying from minor to severe.This condition is also characterized by specific retinal abnormalities,including radial streaks emanating from a divided central fovea,schisis affecting the inner layers of the retina in peripheral areas,and a diminished amplitude ratio of b-to a-wave,or even an electronegative electroretinography(ERG)[3].At their initial consultation,the majority of individuals with XLRS exhibit visual acuity(VA)levels between 20/60 and 20/120.However,there is a significant diversity in the condition’s presentation and progression,even among relatives,with VA levels spanning from near-normal to complete loss of sight[4-5].While vision tends to be reasonably consistent over several years for those with XLRS,there is documentation of a more rapid decline in later adulthood,specifically during the fourth and fifth decades,due to central retinal degeneration[5-7].Moreover,those with XLRS face an elevated risk for serious visual issues,such as retinal detachment,vitreous hemorrhages,and neovascular glaucoma[4].Female carriers could be found with slightly abnormal retinal changes without clinical symptoms[5].Even within the same family,the manifestation and progression of the condition can vary greatly,with individuals experiencing anything from nearly normal vision to complete loss of sight[8-9].Earlier investigations have revealed that retinoschisisrelated cystoid degeneration can impact multiple layers of the retina,beginning at the retinal nerve fiber zone and continuing to the nuclear stratum,with considerable fluctuation in the severity of the schisis[10-13].
文摘Accurate target angle estimation is one of the chal-lenges for wideband radars due to the fact that target occupies multiple range bins,resulting in lower energy or signal to noise ratio in a single range bin.This paper proposes a processing technique for enhanced accuracy of target angle estimates for wideband monopulse radars.Firstly,to accumulate the energy of the received echo signals from different scatterers on a target,the phase difference between different scatterers on a target is estimated using the minimum entropy phase estimation method combining with the correlation between adjacent pulses.Then,the monopulse ratio is obtained by using the signals from the accumulated sum and difference channels.The target angle is estimated by weighting the accumulated echo energy for accu-racy enhancement.Experimental results based on both numeri-cal simulation and measured data are presented to validate the effectiveness of the proposed technique.
基金supported by grants from the Biological Breeding-National Science and Technology Major Project(2024ZD04077)the National Natural Science Foundation of China(31801323)+1 种基金the Innovation Program of the Chinese Academy of Agricultural Sciencesthe Science and Technology Innovation Project of the Shandong Academy of Agricultural Sciences(CXGC2023F14)。
文摘Endodermal cells and starch-accumulating amyloplasts are well-known gravity sensors initiating shoot gravitropism in Arabidopsis thaliana.The transcription factors SHR and SGR1 regulate endodermal cell formation,while PGM has been demonstrated to regulate starch biosynthesis within chloroplasts,which eventually leads to starch accumulation in amyloplasts.However,the molecular mechanisms of gravity sensing in monocot shoots remain largely unexplored.In this study,we investigated the roles of these genes in rice(Oryza sativa),a model monocot,using CRISPR-Cas9 to generate single,double,and higher-order mutants.The rice genome harbors two orthologs each of SHR and SGR and a single ortholog of PGM.Our results revealed that single mutants of OsPGM,but not OsSHR or OsSGR,showed compromised shoot gravitropism.However,double mutants shr1shr2 and sgr1sgr2 displayed wider tiller angles and reduced gravity sensing,suggesting functional redundancy within each gene pair.Higher-order mutants exhibited progressively severe phenotypes,with quintuple mutants almost unresponsive to gravity stimulation.These findings suggest that these genes act additively through distinct but converging pathways in shoot gravitropism regulation.This study provides novel insights into the molecular mechanisms underlying gravity sensing in monocots and offers valuable knowledge for precision breeding to optimize rice architecture.
文摘AIM:To evaluate the one-year clinical outcomes of a novel canaloplasty device used in combination with cataract extraction(CE)in patients with mild to severe open angle glaucoma(OAG).METHODS:This study reviewed patients diagnosed with mild to severe OAG,who underwent canaloplasty with the STREAMLINE®Surgical System combined with CE.The primary outcome was surgical success,defined as achieving≥20%intraocular pressure(IOP)reduction and/or a reduction of≥1 glaucoma medication compared to baseline.Secondary outcomes included mean IOP,average number of glaucoma medications,and best-corrected distance visual acuity(BCDVA).Data was collected preoperatively and at multiple postoperative time points up to one year.RESULTS:A total of 68 eyes of 47 patients were included with mean age was 73.1±7.0y and 60%were females.Surgical success at one year was achieved in 68.8%of eyes,with 67.6%success in mild,80.0%in moderate,and 66.7%in severe OAG cases.IOP was significantly reduced from a baseline of 16.1±0.5 to 14.7±0.4 mm Hg at one year(P=0.0004).The number of medications decreased significantly in all eyes from a baseline of 1.2±0.1 to 0.6±0.1 at one year(P<0.0001).When stratified by glaucoma severity,only the mild group experienced a statistically significant decrease from a baseline of 1.1±0.1 to 0.4±0.1(P<0.0001).BCDVA improved significantly from baseline to one year.No sight-threatening complications were reported.CONCLUSION:Canaloplasty using the STREAMLINE®surgical system combined with CE effectively reduces IOP at one year in mild to severe OAG with minimal complications.IOP lowering efficacy,reduction in IOP lowering medications,and safety in moderate to severe OAG require further study.
基金supported by the National Natural Science Foundation ofChina(GrantNo.12402291)the Beijing Natural Science Foundation(No.3244043)the Research Start-up Funds of Hangzhou International Innovation Institute of Beihang University(Grant Nos.2024KQ008,2024KQ062).
文摘This study experimentally investigates the oscillatory dynamics of wind-driven droplets using high-speed imaging to capture droplet profiles within the symmetry plane and to characterize their natural oscillation frequencies.Results reveal that the eigenfrequencies vary spatially due to distinct oscillation modes occurring at different droplet locations.Notably,the fundamental eigenfrequency decreases with reducing droplet volume,while droplet viscosity exerts minimal influence on this frequency.Prior to the onset of motion,the dynamic contact angle consistently remains between the advancing and receding angles.The inertial forces generated by droplet oscillation are found to be significantly greater than the adhesion forces,indicating that classical static models are inadequate for capturing inertial contributions to droplet motion.These findings offer new insights into the role of oscillatory behavior in influencing the dynamics of droplet motion,and contribute to a more detailed understanding of wind-driven droplet transport phenomena.
基金supported by the Key Research Project of Zhejiang Lab(Grant No.K2022MEOAC01)。
文摘This study introduces the lattice spring model(LSM)to investigate the incline angle of a non-uniform three-segment towed array under steady-state conditions.A numerical model was established,and parametric analysis was conducted to examine the effects of towing speed and cable density on the incline angle.The numerical simulations demonstrate that for a conventional three-segment towed array with heavy vibration-isolation cable and density exceeding that of seawater,the towing speed must exceed 4 kn to maintain the acoustic cable's average incline angle below 10°.To validate the proposed LSM,a 100-meter-long towed array with variable densities was fabricated and tested through lake trials.The experimental results align closely with simulations,confirming LSM as a reliable model for predicting towed array position and posture.The study concludes by analyzing the parallel computing capabilities of LSM and its application in Fluid-Structure Interaction(FSI)problems.The model's precision and parallel computing capabilities make LSM an efficient,reliable tool for analyzing the steady-state behavior of towed systems.
基金supported by the National Key Research and Development Program of China(2023YFF1203502)the National Natural Science Foundation of China(62171300,62301343,and 62394314)+1 种基金the Project of Cultivation for Young Top-Notch Talents of Beijing Municipal Institutions(BPHR202203109)the Capital Medical University Research and Development Fund(PYZ22027).
文摘The ability to localize sound sources rapidly allows human beings to efficiently understand the surrounding environment.Previous studies have suggested that there is an auditory“where”pathway in the cortex for processing sound locations.The neural activation in regions along this pathway encodes sound locations by opponent hemifield coding,in which each unilateral region is activated by sounds coming from the contralateral hemifield.However,it is still unclear how these regions interact with each other to form a unified representation of the auditory space.In the present study,we investigated whether functional connectivity in the auditory“where”pathway encoded sound locations during passive listening.Participants underwent functional magnetic resonance imaging while passively listening to sounds from five distinct horizontal locations(−90°,−45°,0°,45°,90°).We were able to decode sound locations from the functional connectivity patterns of the“where”pathway.Furthermore,we found that such neural representation of sound locations was primarily based on the coding of sound lateralization angles to the frontal midline.In addition,whole-brain analysis indicated that functional connectivity between occipital regions and the primary auditory cortex also encoded sound locations by lateralization angles.Overall,our results reveal a lateralization-angle-based representation of sound locations encoded by functional connectivity patterns,which could add on the activation-based opponent hemifield coding to provide a more precise representation of the auditory space.
文摘AIM:To compare refractive error and angle of deviation in patients with basic esotropia and basic exotropia.METHODS:A retrospective review was conducted on the medical records of patients with basic-type strabismus.Demographic data,refractive error,best-corrected distance visual acuity(BCVA),and the horizontal and vertical angle of deviation between basic esotropia and exotropia patients were compared.RESULTS:Among the 7129 patients(mean age 22.98±14.81y)evaluated,44.7%(3185 cases,54.9%male)exhibited basic-type esotropia,while 55.3%(3944 cases,53.9%male)presented with basic-type exotropia.Basic esotropia cases exhibited more hyperopic spherical equivalent measurements in both eyes(right:0.53±3.07 vs left:0.56±2.98 D)than those with basic exotropia(right eye:-0.33±2.84 vs left eye:-0.24±2.68 D,P<0.001 for both eyes).Patients with basic esotropia had significantly greater horizontal deviation angles(near:36.08±18.87 PD and far:35.56±18.75 PD)compared to those with basic exotropia(near:33.75±16.11 PD and far:33.26±15.90 PD,P<0.001).Conversely,patients with basic exotropia had slightly higher vertical deviation angles(near:1.67±5.80 PD and far:1.72±5.89 PD)compared to those with basic esotropia(near:1.12±4.57 PD and far:1.12±4.58 PD,P<0.001).Patients with basic esotropia underwent surgical intervention at younger ages compared to basic exotropia individuals(19.68±15.99 vs 25.66±13.20,P<0.001).CONCLUSION:Basic esotropia patients present more hyperopic refractive errors,better visual acuity,larger horizontal yet smaller vertical ocular misalignments,and tend to undergo strabismus surgery at younger ages relative to basic exotropia cases.
基金supported by the National Natural Science Foundation of China(61903099)the Natural Science Foundation of Heilongjiang Province(LH2020F025)+2 种基金the Project of Science and Technology Research Program of Chongqing Education Commission of China(KJZD-K20200470)the Postdoctoral Science Foundation of China(2021M690812)the Postdoctoral Science Fund of Heilongjiang Province(LBH-Z21048).
文摘This paper presents a fixed-time cooperative gui-dance method with impact angle constraints for multiple flight vehicles (MFV) to address the challenges of intercepting large maneuvering targets with difficulty and low precision. A coopera-tive guidance model is proposed, transforming the cooperative interception problem into a consensus problem based on the remaining flight time of the flight vehicles. First, the impact angle constraint is converted into the line of sight (LOS) angle con-straint, and a new fixed-time convergent non-singular terminal sliding surface is introduced, which resolves the singularity issue of the traditional sliding surfaces. With this approach, LOS angle rate and normal overloads can converge in fixed time, ensuring that the upper bound of the system convergence time is not affected by the initial value of the system. Furthermore, the maneuvering movement of the target is considered as a system disturbance, and an extended state observer is employed to estimate and compensate for it in the guidance law. Lastly, by applying consensus theory and distributed communication topology, the remaining flight time of each flight vehicle is syn-chronized to ensure that they intercept the target simulta-neously with different impact angles. Simulation experiments are conducted to validate the effectiveness of the proposed cooper-ative interception and guidance method.