A series of random copolymers (PCLAs) were synthesized by ring-opening polymerization of D,L-lactide (LA) and ε-caprolactone (CL) with different molar ratios. PCLA based polyurethanes (PCLAUs) were obtained b...A series of random copolymers (PCLAs) were synthesized by ring-opening polymerization of D,L-lactide (LA) and ε-caprolactone (CL) with different molar ratios. PCLA based polyurethanes (PCLAUs) were obtained by chain-extending of PCLA and polytetramethylene ether (PTMEG) with hexamethylene diisocyanate (HDI). All the PCLAUs exhibit good shape memory properties with high shape fixity ratios above 98% and shape recovery ratios above 82% in the first cycle and 91% in the second cycle. PCLAUs with less CL content show faster recovery speed and PCLAUs with more CL content show higher shape recovery ratio. The trigger temperature can be tuned or controlled around body temperature by adjusting the molar ratio of LA to CL. The PCLAUs have potential applications in implant biomedical devices, especially for minimally invasive deployable devices.展开更多
基金financially supported by the National Key Technology R&D Program(No.2012BAI17B05)
文摘A series of random copolymers (PCLAs) were synthesized by ring-opening polymerization of D,L-lactide (LA) and ε-caprolactone (CL) with different molar ratios. PCLA based polyurethanes (PCLAUs) were obtained by chain-extending of PCLA and polytetramethylene ether (PTMEG) with hexamethylene diisocyanate (HDI). All the PCLAUs exhibit good shape memory properties with high shape fixity ratios above 98% and shape recovery ratios above 82% in the first cycle and 91% in the second cycle. PCLAUs with less CL content show faster recovery speed and PCLAUs with more CL content show higher shape recovery ratio. The trigger temperature can be tuned or controlled around body temperature by adjusting the molar ratio of LA to CL. The PCLAUs have potential applications in implant biomedical devices, especially for minimally invasive deployable devices.