Let T,U be two Artin algebras and_(U)M_(T)be a U-T-bimodule.In this paper,we get a necessary and sufficient condition such that the formal triangular matrix algebra Λ=(T 0 M U)is(m,n)-Igusa-Todorov when_(U)M,M_(T)are...Let T,U be two Artin algebras and_(U)M_(T)be a U-T-bimodule.In this paper,we get a necessary and sufficient condition such that the formal triangular matrix algebra Λ=(T 0 M U)is(m,n)-Igusa-Todorov when_(U)M,M_(T)are projective.We also study the Igusa-Todorov dimension of Λ.More specifically,it is proved that max{IT.dim T,IT.dim U}≤IT.dim Λ≤min{max{gl.dim T,IT.dim U},max{gl.dim U,IT.dim T}}.展开更多
Let T be a formal triangular matrix ring.We prove that,if for each 1≤j<i≤n,U_(ij) is flat on both sides,then a left T-module■is Ding projective if and only if M1 is a Ding projective left A1-module and for each ...Let T be a formal triangular matrix ring.We prove that,if for each 1≤j<i≤n,U_(ij) is flat on both sides,then a left T-module■is Ding projective if and only if M1 is a Ding projective left A1-module and for each 1≤k≤n-1 the mappingФk+1,k:U_(k+1),k■AkM_(k)→M_(k)+1 is injective with cokernel Ding projective over Ak+1.As a consequence,we describe Ding projective dimension of a left T-module.展开更多
We consider the sufficient and necessary conditions for the formal triangular matrix ring being right minsymmetric, right DS, semicommutative, respectively.
An element a of a ring R is called uniquely strongly clean if it is the sum of an idempotent and a unit that commute, and in addition, this expression is unique. R is called uniquely strongly clean if every element of...An element a of a ring R is called uniquely strongly clean if it is the sum of an idempotent and a unit that commute, and in addition, this expression is unique. R is called uniquely strongly clean if every element of R is uniquely strongly clean. The uniquely strong cleanness of the triangular matrix ring is studied. Let R be a local ring. It is shown that any n × n upper triangular matrix ring over R is uniquely strongly clean if and only if R is uniquely bleached and R/J(R) ≈Z2.展开更多
In this paper we study Gorenstein(semiheredity)heredity,finite presentedness and F P-injectivity of modules over a formal triangular matrix ring.We provide necessary and sufficient conditions for such rings to be Gore...In this paper we study Gorenstein(semiheredity)heredity,finite presentedness and F P-injectivity of modules over a formal triangular matrix ring.We provide necessary and sufficient conditions for such rings to be Gorenstein(semihereditary)hereditary and investigate when a triangular matrix ring is an n-FC ring.展开更多
In this paper we study the formal triangular matrix ring T =and give some necessary and sufficient conditions for T to be (strongly) separative, m-fold stable and unit 1-stable. Moreover, a condition for finitely gene...In this paper we study the formal triangular matrix ring T =and give some necessary and sufficient conditions for T to be (strongly) separative, m-fold stable and unit 1-stable. Moreover, a condition for finitely generated projec-tive T-modules to have n in the stable range is given under the assumption that A and B are exchange rings.展开更多
Let R and S be rings with identity, M be a unitary(R, S)-bimodule and T =(R M0 S)be the upper triangular matrix ring determined by R, S and M. In this paper we prove that under certain conditions a Jordan bideriva...Let R and S be rings with identity, M be a unitary(R, S)-bimodule and T =(R M0 S)be the upper triangular matrix ring determined by R, S and M. In this paper we prove that under certain conditions a Jordan biderivation of an upper triangular matrix ring T is a biderivation of T.展开更多
The upper triangular matrix of Lie algebra is used to construct integrable couplings of discrete solition equations. Correspondingly, a feasible way to construct integrable couplings is presented. A nonlinear lattice ...The upper triangular matrix of Lie algebra is used to construct integrable couplings of discrete solition equations. Correspondingly, a feasible way to construct integrable couplings is presented. A nonlinear lattice soliton equation spectral problem is obtained and leads to a novel hierarchy of the nonlinear lattice equation hierarchy. It indicates that the study of integrable couplings using upper triangular matrix of Lie algebra is an important step towards constructing integrable systems.展开更多
Let T(R) be a two-order upper matrix algebra over the semilocal ring R which is determined by R=F×F where F is a field such that CharF=0. In this paper, we prove that any Jordan automorphism of T(R) can be decomp...Let T(R) be a two-order upper matrix algebra over the semilocal ring R which is determined by R=F×F where F is a field such that CharF=0. In this paper, we prove that any Jordan automorphism of T(R) can be decomposed into a product of involutive, inner and diagonal automorphisms.展开更多
Let F be a field, n ≥ 3, N(n,F) the strictly upper triangular matrix Lie algebra consisting of the n × n strictly upper triangular matrices and with the bracket operation {x, y} = xy-yx. A linear map φ on N(...Let F be a field, n ≥ 3, N(n,F) the strictly upper triangular matrix Lie algebra consisting of the n × n strictly upper triangular matrices and with the bracket operation {x, y} = xy-yx. A linear map φ on N(n,F) is said to be a product zero derivation if {φ(x),y] + [x, φ(y)] = 0 whenever {x, y} = 0,x,y ∈ N(n,F). In this paper, we prove that a linear map on N(n, F) is a product zero derivation if and only if φ is a sum of an inner derivation, a diagonal derivation, an extremal product zero derivation, a central product zero derivation and a scalar multiplication map on N(n, F).展开更多
Let U be a (B, A)-bimodule, A and B be rings, and be a formal triangular matrix ring. In this paper, we characterize the structure of relative Ding projective modules over T under some conditions. Furthermore, using t...Let U be a (B, A)-bimodule, A and B be rings, and be a formal triangular matrix ring. In this paper, we characterize the structure of relative Ding projective modules over T under some conditions. Furthermore, using the left global relative Ding projective dimensions of A and B, we estimate the relative Ding projective dimension of a left T-module.展开更多
In the present paper, an attempt is made to obtain the degree of approximation of conjugate of functions (signals) belonging to the generalized weighted W(LP, ξ(t)), (p ≥ 1)-class, by using lower triangular matrix o...In the present paper, an attempt is made to obtain the degree of approximation of conjugate of functions (signals) belonging to the generalized weighted W(LP, ξ(t)), (p ≥ 1)-class, by using lower triangular matrix operator of conjugate series of its Fourier series.展开更多
Let T=(A0 UB)be a triangular matrix ring with A,B rings and U a B-A-bimodule.We construct resolving subcategories of T-Mod from those of A-Mod and B-Mod.Then we give an estimate of the global resolving resolution dime...Let T=(A0 UB)be a triangular matrix ring with A,B rings and U a B-A-bimodule.We construct resolving subcategories of T-Mod from those of A-Mod and B-Mod.Then we give an estimate of the global resolving resolution dimension of T in terms of that of A and of B.Some applications of these results are given.展开更多
Let R be a ring and S a cancellative and torsion-free monoid and 〈 a strict order on S. If either (S,≤) satisfies the condition that 0 ≤ s for all s ∈ S, or R is reduced, then the ring [[R^S,≤]] of the generali...Let R be a ring and S a cancellative and torsion-free monoid and 〈 a strict order on S. If either (S,≤) satisfies the condition that 0 ≤ s for all s ∈ S, or R is reduced, then the ring [[R^S,≤]] of the generalized power series with coefficients in R and exponents in S has the same triangulating dimension as R. Furthermore, if R is a PWP ring, then so is [[R^S,≤]].展开更多
Let R be a ring with an endomorphism a. We show that the clean property and various Armendariz-type properties of R are inherited by the skew matrix rings S(R, n, σ) and T(R, n,σ). They allow the construction of...Let R be a ring with an endomorphism a. We show that the clean property and various Armendariz-type properties of R are inherited by the skew matrix rings S(R, n, σ) and T(R, n,σ). They allow the construction of rings with a non-zero nilpotent ideal of arbitrary index of nilpotency which inherit various interesting properties of rings.展开更多
Let A and B be rings and U a(B,A)-bimodule.If BU is flat and UA is finitely generated projective(resp.,BU is finitely generated projective and UA is flat),then the characterizations of level modules and Gorenstein AC-...Let A and B be rings and U a(B,A)-bimodule.If BU is flat and UA is finitely generated projective(resp.,BU is finitely generated projective and UA is flat),then the characterizations of level modules and Gorenstein AC-projective modules(resp.,absolutely clean modules and Gorenstein AC-injective modules)over the formal triangular matrix ring T=(A0 UB)are given.As applications,it is proved that every Gorenstein AC-projective left T-module is projective if and only if each Gorenstein AC-projective left A-module and B-module is projective,and every Gorenstein AC-injective left T-module is injective if and only if each Gorenstein AC-injective left A-module and B-module is injective.Moreover,Gorenstein AC-projective and AC-injective dimensions over the formal triangular matrix ring T are studied.展开更多
In this paper we carry out a study of modules over a 3 × 3 formal triangular matrix ringГ=(T 0 0 M U 0 N×UM N V)where T, U, V are rings, M, N are U-T, V-U bimodules, respectively. Using the alternative ...In this paper we carry out a study of modules over a 3 × 3 formal triangular matrix ringГ=(T 0 0 M U 0 N×UM N V)where T, U, V are rings, M, N are U-T, V-U bimodules, respectively. Using the alternative description of left Г-module as quintuple (A, B, C; f, g) with A ∈ mod T, B ∈ mod U and C ∈ mod V, f : M ×T A →B ∈ mod U, g : N ×U B → C ∈ mod V, we shall characterize uniform, hollow and finitely embedded modules over F, respectively. Also the radical as well as the socle of r (A + B + C) is determined.展开更多
Let R be a commutative ring with identity, Tn (R) the R-algebra of all upper triangular n by n matrices over R. In this paper, it is proved that every local Jordan derivation of Tn (R) is an inner derivation and t...Let R be a commutative ring with identity, Tn (R) the R-algebra of all upper triangular n by n matrices over R. In this paper, it is proved that every local Jordan derivation of Tn (R) is an inner derivation and that every local Jordan automorphism of Tn(R) is a Jordan automorphism. As applications, we show that local derivations and local automorphisms of Tn (R) are inner.展开更多
The aim of this paper is mainly to build a new representation-theoretic realization of finite root systems through the so-called Frobenius-type triangular matrix algebras by the method of reflection functors over any ...The aim of this paper is mainly to build a new representation-theoretic realization of finite root systems through the so-called Frobenius-type triangular matrix algebras by the method of reflection functors over any field. Finally, we give an analog of APR-tilting module for this class of algebras. The major conclusions contains the known results as special cases, e.g., that for path algebras over an algebraically closed field and for path algebras with relations from symmetrizable cartan matrices. Meanwhile, it means the corresponding results for some other important classes of algebras, that is, the path algebras of quivers over Frobenius algebras and the generalized path algebras endowed by Frobenius algebras at vertices.展开更多
基金Supported by the National Natural Science Foundation of China(Grant No.12301041)the Science Foundation for Distinguished Young Scholars of Anhui Province(Grant No.2108085J01)。
文摘Let T,U be two Artin algebras and_(U)M_(T)be a U-T-bimodule.In this paper,we get a necessary and sufficient condition such that the formal triangular matrix algebra Λ=(T 0 M U)is(m,n)-Igusa-Todorov when_(U)M,M_(T)are projective.We also study the Igusa-Todorov dimension of Λ.More specifically,it is proved that max{IT.dim T,IT.dim U}≤IT.dim Λ≤min{max{gl.dim T,IT.dim U},max{gl.dim U,IT.dim T}}.
基金Supported by the National Natural Science Foundation of China(Grant No.11861055)。
文摘Let T be a formal triangular matrix ring.We prove that,if for each 1≤j<i≤n,U_(ij) is flat on both sides,then a left T-module■is Ding projective if and only if M1 is a Ding projective left A1-module and for each 1≤k≤n-1 the mappingФk+1,k:U_(k+1),k■AkM_(k)→M_(k)+1 is injective with cokernel Ding projective over Ak+1.As a consequence,we describe Ding projective dimension of a left T-module.
基金Foundation item: Supported by the Fund of Beijing Education Committee(KM200610005024) Supported by the National Natural Science Foundation of China(10671061)
文摘We consider the sufficient and necessary conditions for the formal triangular matrix ring being right minsymmetric, right DS, semicommutative, respectively.
基金The National Natural Science Foundation of China(No.10971024)the Specialized Research Fund for the Doctoral Program of Higher Education(No.200802860024)the Natural Science Foundation of Jiangsu Province(No.BK2010393)
文摘An element a of a ring R is called uniquely strongly clean if it is the sum of an idempotent and a unit that commute, and in addition, this expression is unique. R is called uniquely strongly clean if every element of R is uniquely strongly clean. The uniquely strong cleanness of the triangular matrix ring is studied. Let R be a local ring. It is shown that any n × n upper triangular matrix ring over R is uniquely strongly clean if and only if R is uniquely bleached and R/J(R) ≈Z2.
基金Supported by the National Natural Science Foundation of China(Grant No.11671126)。
文摘In this paper we study Gorenstein(semiheredity)heredity,finite presentedness and F P-injectivity of modules over a formal triangular matrix ring.We provide necessary and sufficient conditions for such rings to be Gorenstein(semihereditary)hereditary and investigate when a triangular matrix ring is an n-FC ring.
文摘In this paper we study the formal triangular matrix ring T =and give some necessary and sufficient conditions for T to be (strongly) separative, m-fold stable and unit 1-stable. Moreover, a condition for finitely generated projec-tive T-modules to have n in the stable range is given under the assumption that A and B are exchange rings.
文摘Let R and S be rings with identity, M be a unitary(R, S)-bimodule and T =(R M0 S)be the upper triangular matrix ring determined by R, S and M. In this paper we prove that under certain conditions a Jordan biderivation of an upper triangular matrix ring T is a biderivation of T.
基金*The project supported by the National Key Basic Research Development of China under Grant No. N1998030600 and National Natural Science Foundation of China under Grant No. 10072013
文摘The upper triangular matrix of Lie algebra is used to construct integrable couplings of discrete solition equations. Correspondingly, a feasible way to construct integrable couplings is presented. A nonlinear lattice soliton equation spectral problem is obtained and leads to a novel hierarchy of the nonlinear lattice equation hierarchy. It indicates that the study of integrable couplings using upper triangular matrix of Lie algebra is an important step towards constructing integrable systems.
文摘Let T(R) be a two-order upper matrix algebra over the semilocal ring R which is determined by R=F×F where F is a field such that CharF=0. In this paper, we prove that any Jordan automorphism of T(R) can be decomposed into a product of involutive, inner and diagonal automorphisms.
基金Supported by the National Natural Science Foundation of China(Grant No.11101084)the Natural Science Foundation of Fujian Province(Grant No.2013J01005)
文摘Let F be a field, n ≥ 3, N(n,F) the strictly upper triangular matrix Lie algebra consisting of the n × n strictly upper triangular matrices and with the bracket operation {x, y} = xy-yx. A linear map φ on N(n,F) is said to be a product zero derivation if {φ(x),y] + [x, φ(y)] = 0 whenever {x, y} = 0,x,y ∈ N(n,F). In this paper, we prove that a linear map on N(n, F) is a product zero derivation if and only if φ is a sum of an inner derivation, a diagonal derivation, an extremal product zero derivation, a central product zero derivation and a scalar multiplication map on N(n, F).
文摘Let U be a (B, A)-bimodule, A and B be rings, and be a formal triangular matrix ring. In this paper, we characterize the structure of relative Ding projective modules over T under some conditions. Furthermore, using the left global relative Ding projective dimensions of A and B, we estimate the relative Ding projective dimension of a left T-module.
文摘In the present paper, an attempt is made to obtain the degree of approximation of conjugate of functions (signals) belonging to the generalized weighted W(LP, ξ(t)), (p ≥ 1)-class, by using lower triangular matrix operator of conjugate series of its Fourier series.
文摘Let T=(A0 UB)be a triangular matrix ring with A,B rings and U a B-A-bimodule.We construct resolving subcategories of T-Mod from those of A-Mod and B-Mod.Then we give an estimate of the global resolving resolution dimension of T in terms of that of A and of B.Some applications of these results are given.
基金National Natural science Foundation of China(10171082)the Cultivation Fund of the Key Scientific Technical Innovation Project,Ministry of Education of ChinaTRAPOYT
文摘Let R be a ring and S a cancellative and torsion-free monoid and 〈 a strict order on S. If either (S,≤) satisfies the condition that 0 ≤ s for all s ∈ S, or R is reduced, then the ring [[R^S,≤]] of the generalized power series with coefficients in R and exponents in S has the same triangulating dimension as R. Furthermore, if R is a PWP ring, then so is [[R^S,≤]].
文摘Let R be a ring with an endomorphism a. We show that the clean property and various Armendariz-type properties of R are inherited by the skew matrix rings S(R, n, σ) and T(R, n,σ). They allow the construction of rings with a non-zero nilpotent ideal of arbitrary index of nilpotency which inherit various interesting properties of rings.
基金partly supported by NSF of China(grants 11761047 and 11861043).
文摘Let A and B be rings and U a(B,A)-bimodule.If BU is flat and UA is finitely generated projective(resp.,BU is finitely generated projective and UA is flat),then the characterizations of level modules and Gorenstein AC-projective modules(resp.,absolutely clean modules and Gorenstein AC-injective modules)over the formal triangular matrix ring T=(A0 UB)are given.As applications,it is proved that every Gorenstein AC-projective left T-module is projective if and only if each Gorenstein AC-projective left A-module and B-module is projective,and every Gorenstein AC-injective left T-module is injective if and only if each Gorenstein AC-injective left A-module and B-module is injective.Moreover,Gorenstein AC-projective and AC-injective dimensions over the formal triangular matrix ring T are studied.
基金the National Natural Science Foundation of China (No. 10371107).
文摘In this paper we carry out a study of modules over a 3 × 3 formal triangular matrix ringГ=(T 0 0 M U 0 N×UM N V)where T, U, V are rings, M, N are U-T, V-U bimodules, respectively. Using the alternative description of left Г-module as quintuple (A, B, C; f, g) with A ∈ mod T, B ∈ mod U and C ∈ mod V, f : M ×T A →B ∈ mod U, g : N ×U B → C ∈ mod V, we shall characterize uniform, hollow and finitely embedded modules over F, respectively. Also the radical as well as the socle of r (A + B + C) is determined.
基金Supported by the Doctor Foundation of Henan Polytechnic University (Grant No. B2010-93)
文摘Let R be a commutative ring with identity, Tn (R) the R-algebra of all upper triangular n by n matrices over R. In this paper, it is proved that every local Jordan derivation of Tn (R) is an inner derivation and that every local Jordan automorphism of Tn(R) is a Jordan automorphism. As applications, we show that local derivations and local automorphisms of Tn (R) are inner.
基金Supported by National Natural Science Foundation of China(Grant Nos.11271318 and 11571173)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LZ13A010001)
文摘The aim of this paper is mainly to build a new representation-theoretic realization of finite root systems through the so-called Frobenius-type triangular matrix algebras by the method of reflection functors over any field. Finally, we give an analog of APR-tilting module for this class of algebras. The major conclusions contains the known results as special cases, e.g., that for path algebras over an algebraically closed field and for path algebras with relations from symmetrizable cartan matrices. Meanwhile, it means the corresponding results for some other important classes of algebras, that is, the path algebras of quivers over Frobenius algebras and the generalized path algebras endowed by Frobenius algebras at vertices.