This paper is devoted to studying the superconvergence of streamline diffusion finite element methods for convection-diffusion problems. In [8], under the condition that ε ≤ h^2 the optimal finite element error esti...This paper is devoted to studying the superconvergence of streamline diffusion finite element methods for convection-diffusion problems. In [8], under the condition that ε ≤ h^2 the optimal finite element error estimate was obtained in L^2-norm. In the present paper, however, the same error estimate result is gained under the weaker condition that ε≤h.展开更多
This paper is an introduction to mesh based generated reluctance network modeling using triangular elements.Many contributions on mesh based generated reluctance networks using rectangular shaped elements have been pu...This paper is an introduction to mesh based generated reluctance network modeling using triangular elements.Many contributions on mesh based generated reluctance networks using rectangular shaped elements have been published,but very few on those generated from a mesh using triangular elements.The use of triangular elements is aimed at extending the application of the approach to any shape of modeled devices.Basic concepts of the approach are presented in the case of electromagnetic devices.The procedure for coding the approach in the case of a flat linear permanent magnet machine is presented.Codes developed under MATLAB environment are also included.展开更多
A general method to construct locking free Reissner-Mindlin plate elements is presented. According to this method the shear strain is replaced by its proper interpolation polynomial, which corresponds to the Kirchoff ...A general method to construct locking free Reissner-Mindlin plate elements is presented. According to this method the shear strain is replaced by its proper interpolation polynomial, which corresponds to the Kirchoff conditions at the interpolation points as the thickness of plate tends to zero, so the element is locking free. We construct two triangular elements by this method - a 3-node element and a 6-node element. The numerical results are provided.展开更多
Superconvergence structures for rectangular and triangular finite elements are summarized. Two debatable issues in Zhu's paper [18] are discussed. A superclose polynomial to cubic triangular finite element is cons...Superconvergence structures for rectangular and triangular finite elements are summarized. Two debatable issues in Zhu's paper [18] are discussed. A superclose polynomial to cubic triangular finite element is constructed by area coordinate.展开更多
Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite struc...Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite structures.The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational variables in the co-rotational local coordinate system.In the global coordinate system,two smaller components of one vector,together with the smallest or second smallest component of another vector,of an orthogonal triad at a node on a non-smooth intersection of plates and/or shells are defined as rotational variables,whereas the two smaller components of the mid-surface normal vector at a node on the smooth part of the plate or shell(away from non-smooth intersections)are defined as rotational variables.All these vectorial rotational variables can be updated in an additive manner during an incremental solution procedure,and thus improve the computational efficiency in the nonlinear solution of these composite shell structures.Due to the commutativity of all nodal variables in calculating of the second derivatives of the local nodal variables with respect to global nodal variables,and the second derivatives of the strain energy functional with respect to local nodal variables,symmetric tangent stiffness matrices in local and global coordinate systems are obtained.To overcome shear locking,the assumed transverse shear strains obtained from the line-integration approach are employed.The reliability and computational accuracy of the present 3-node triangular shell finite element are verified through modeling two patch tests,several smooth and non-smooth laminated composite shells undergoing large displacements and large rotations.展开更多
The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh disto...The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previous work, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B- net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian co- ordinates. In this paper, a thin plate spline element is devel- oped based on the spline element L8 and the refined tech- nique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.展开更多
With the application of Hammer integral formulas of a continuous function on a triangular element, the numerical integral formulas of some discrete functions on the element are derived by means of decomposition and re...With the application of Hammer integral formulas of a continuous function on a triangular element, the numerical integral formulas of some discrete functions on the element are derived by means of decomposition and recombination of base functions. Hammer integral formulas are the special examples of those of the paper.展开更多
The application of the finite layer & triangular prism element method to the 3D ground subsidence and stress analysis caused by mining is presented. The layer elements and the triangular prism elements have been a...The application of the finite layer & triangular prism element method to the 3D ground subsidence and stress analysis caused by mining is presented. The layer elements and the triangular prism elements have been alternatively used in the numerical simulation system, the displacement pattern, strain matrix, elastic matrix, stiffness matrix, load matrix and the stress matrix of the layer element and triangular prism element have been presented. By means of the Fortran90 programming language, a numerical simulation system based on finite layer & triangular prism element have been built up, and this system is suitable for subsidence prediction and stress analysis of all mining condition and mining methods. Comparing with the infinite element method, this approach dramatically reduces the size of the set of equations that need to be solved, and greatly reduces the amount of data preparation required. It not only saves the internal storage, and the computation time, but also decreases the cost.展开更多
In this paper, a nonconforming triangular mixed finite element scheme with second order convergence behavior is proposed for the stationary Navier-Stokes equations.The new nonconforming triangular element is taken as ...In this paper, a nonconforming triangular mixed finite element scheme with second order convergence behavior is proposed for the stationary Navier-Stokes equations.The new nonconforming triangular element is taken as approximation space for the velocity and the linear element for the pressure. The convergence analysis is presented and optimal error estimates of both broken H^1-norm and L^2-norm for velocity as well as the L^2-norm for the pressure are derived.展开更多
A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation ...A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.展开更多
Using Stricklin Melhod ̄[5],we have this paper has derived the formulas for the ge-neration of non-linear element stiffness matrix of a triangle element when considering both the bending and the in-plane membrane forc...Using Stricklin Melhod ̄[5],we have this paper has derived the formulas for the ge-neration of non-linear element stiffness matrix of a triangle element when considering both the bending and the in-plane membrane forces. A computer programme for the calculation of large deflection and inner forces of shallow shells is designed on theseformulas. The central deflection curve computed by this programme is compared with other pertaining results.展开更多
Based on the strain formulation of the quasi-conforming finite element, displacement functions are constructed which have definite physical meaning, and a conclusion can be obtained that the coefficients of the consta...Based on the strain formulation of the quasi-conforming finite element, displacement functions are constructed which have definite physical meaning, and a conclusion can be obtained that the coefficients of the constant and the linear strain are uniquely determined, and the quasi-conforming finite element method is convergent to constant strain. There are different methods for constructing the rigid displacement items, and different methods correspond to different order node errors, and this is different from ordinary displacement method finite element.展开更多
In fracture simulation,how to model the pre-existing cracks and simulate their propagation without remeshing is an important topic.The newly developed triangular element partition method(TEPM)provides an efficient app...In fracture simulation,how to model the pre-existing cracks and simulate their propagation without remeshing is an important topic.The newly developed triangular element partition method(TEPM)provides an efficient approach to this problem.It firstly meshes the cracked body regardless of the geometry integrity of the interesting object with triangular elements.After the meshing procedure is completed,some elements are intersected by cracks.For the element intersected by a crack,the TEPM takes the element partition technique to incorporate the discontinuity into the numerical model without any interpolation enrichment.By this approach,the TEPM can simulate fracture without mesh modification.In the TEPM,all the cracked elements are treated as the usual partitioned elements in which the crack runs through.The virtual node pairs(the intersection points of crack faces and elements)at the opposite faces of the crack move independently.Their displacements are respectively determined by their neighbor real nodes(nodes formatted in the original mesh scheme)at the same side of the crack.However,among these cracked elements,the element containing a crack tip,referred to as the crack tip element thereafter,behaves differently from those cut through by the crack.Its influence on the singular field at the vicinity of the fracture tip becomes increasingly significant with the element size increasing.In the crack tip element,the virtual node pair at the crack tip move consistently before fracture occurs while the virtual node pair separate and each virtual node moves independently after the fracture propagates.Accordingly,the crack tip element is automatically transformed into the usual partitioned element.In the present paper,the crack tip element is introduced into the TEPM to account for the effect of the crack tip.Validation examples indicate that the present method is almost free from the element size effect.It can reach the same precision as the conventional finite element method under the same meshing scheme.But the TEPM is much more efficient and convenient than the conventional finite element method because the TEPM avoids the troubles that the conventional finite element method suffers,e.g.,the meshing problem of cracked body,modification of mesh scheme,etc.Though the extended finite element method can also avoid these troubles,it introduces extra degrees of freedom due to node interpolation enrichment.Due to the simplicity of the present TEPM,it is believed that its perspective should be highly inspiring.展开更多
The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approx...The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.展开更多
In this paper,we propose a spectral vanishing viscosity method for the triangular spectral element computation of high Reynolds number incompressible flows.This can be regarded as an extension of a similar stabilizati...In this paper,we propose a spectral vanishing viscosity method for the triangular spectral element computation of high Reynolds number incompressible flows.This can be regarded as an extension of a similar stabilization technique for the standard spectral element method.The difficulty of this extension lies in the fact that a suitable definition of spectral vanishing viscosity operator in non-structured elements does not exist,and it is not clear that if a suitably defined spectral vanishing viscosity provides desirable dissipation for the artificially accumulated energy.The main contribution of the paper includes:1)a well-defined spectral vanishing viscosity operator is proposed for non-standard spectral element methods for the Navier-Stokes equations based on triangular or tetrahedron partitions;2)an evaluation technique is introduced to efficiently implement the stabilization term without extra computational cost;3)the accuracy and efficiency of the proposed method is carefully examined through several numerical examples.Our numerical results show that the proposed method not only preserves the exponential convergence,but also produces improved accuracy when applied to the unsteady Navier-Stokes equations having smooth solutions.Especially,the stabilized triangular spectral element method efficiently stabilizes the simulation of high Reynolds incompressible flows.展开更多
An unstructured nodal spectral-elementmethod for theNavier-Stokes equations is developed in this paper.The method is based on a triangular and tetrahedral rational approximation and an easy-to-implement nodal basis wh...An unstructured nodal spectral-elementmethod for theNavier-Stokes equations is developed in this paper.The method is based on a triangular and tetrahedral rational approximation and an easy-to-implement nodal basis which fully enjoys the tensorial product property.It allows arbitrary triangular and tetrahedralmesh,affording greater flexibility in handling complex domains while maintaining all essential features of the usual spectral-element method.The details of the implementation and some numerical examples are provided to validate the efficiency and flexibility of the proposed method.展开更多
Temperature as an indicator of tissue response is widely used in clinical applications. In view of above a problem of temperature distribution in peripheral regions of extended spherical organs of a human body like, h...Temperature as an indicator of tissue response is widely used in clinical applications. In view of above a problem of temperature distribution in peripheral regions of extended spherical organs of a human body like, human breast involving uniformly perfused tumor is investigated in this paper. The human breast is assumed to be spherical in shape with upper hemisphere projecting out from the trunk of the body and lower hemisphere is considered to be a part of the body core. The outer surface of the breast is assumed to be exposed to the environment from where the heat loss takes place by conduction, convection, radiation and evaporation. The heat transfer from core to the surface takes place by thermal conduction and blood perfusion. Also metabolic activity takes place at different rates in different layers of the breast. An elliptical-shaped tumor is assumed to be present in the dermis region of human breast. A finite element model is developed for a two-dimensional steady state case incorporating the important parameters like blood flow, metabolic activity and thermal conductivity. The triangular ring elements are employed to discretize the region. Appropriate boundary conditions are framed using biophysical conditions. The numerical results are used to study the effect of tumor on temperature distribution in the region.展开更多
In this paper,we present a novel surface mesh generation approach that splits B-rep geometry models into isotropic triangular meshes based on neural networks and splitting lines.In the first stage,a recursive method i...In this paper,we present a novel surface mesh generation approach that splits B-rep geometry models into isotropic triangular meshes based on neural networks and splitting lines.In the first stage,a recursive method is designed to generate plentiful data to train the neural network model offline.In the second stage,the implemented mesh generator,ISpliter,maps each surface patch into the parameter plane,and then the trained neural network model is applied to select the optimal splitting line to divide the patch into subdomains continuously until they are all triangles.In the third stage,ISpliter remaps the 2D mesh back to the physical space and further optimizes it.Several typical cases are evaluated to compare the mesh quality generated by ISpliter and two baselines,Gmsh and NNW-GridStar.The results show that ISpliter can generate isotropic triangular meshes with high average quality,and the generated meshes are comparable to those generated by the other two software under the same configuration.展开更多
基金Supported by the National Natural Science Foundation of China(10471103)
文摘This paper is devoted to studying the superconvergence of streamline diffusion finite element methods for convection-diffusion problems. In [8], under the condition that ε ≤ h^2 the optimal finite element error estimate was obtained in L^2-norm. In the present paper, however, the same error estimate result is gained under the weaker condition that ε≤h.
文摘This paper is an introduction to mesh based generated reluctance network modeling using triangular elements.Many contributions on mesh based generated reluctance networks using rectangular shaped elements have been published,but very few on those generated from a mesh using triangular elements.The use of triangular elements is aimed at extending the application of the approach to any shape of modeled devices.Basic concepts of the approach are presented in the case of electromagnetic devices.The procedure for coding the approach in the case of a flat linear permanent magnet machine is presented.Codes developed under MATLAB environment are also included.
文摘A general method to construct locking free Reissner-Mindlin plate elements is presented. According to this method the shear strain is replaced by its proper interpolation polynomial, which corresponds to the Kirchoff conditions at the interpolation points as the thickness of plate tends to zero, so the element is locking free. We construct two triangular elements by this method - a 3-node element and a 6-node element. The numerical results are provided.
基金This work was supported by The Special funds of State Major Basic Research Projection (No. G1999032804) The National Natural Science Foundation of China (No. 19331021).
文摘Superconvergence structures for rectangular and triangular finite elements are summarized. Two debatable issues in Zhu's paper [18] are discussed. A superclose polynomial to cubic triangular finite element is constructed by area coordinate.
基金This work was supported by National Natural Science Foundation of China under Grant 11672266.
文摘Based on the first-order shear deformation theory,a 3-node co-rotational triangular finite element formulation is developed for large deformation modeling of non-smooth,folded and multi-shell laminated composite structures.The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational variables in the co-rotational local coordinate system.In the global coordinate system,two smaller components of one vector,together with the smallest or second smallest component of another vector,of an orthogonal triad at a node on a non-smooth intersection of plates and/or shells are defined as rotational variables,whereas the two smaller components of the mid-surface normal vector at a node on the smooth part of the plate or shell(away from non-smooth intersections)are defined as rotational variables.All these vectorial rotational variables can be updated in an additive manner during an incremental solution procedure,and thus improve the computational efficiency in the nonlinear solution of these composite shell structures.Due to the commutativity of all nodal variables in calculating of the second derivatives of the local nodal variables with respect to global nodal variables,and the second derivatives of the strain energy functional with respect to local nodal variables,symmetric tangent stiffness matrices in local and global coordinate systems are obtained.To overcome shear locking,the assumed transverse shear strains obtained from the line-integration approach are employed.The reliability and computational accuracy of the present 3-node triangular shell finite element are verified through modeling two patch tests,several smooth and non-smooth laminated composite shells undergoing large displacements and large rotations.
基金supported by the National Natural Science Foundation of China(11001037,11102037,11290143)the Fundamental Research Funds for the Central Universities(DUT13LK07)
文摘The quadrilateral discrete Kirchhoff thin plate bending element DKQ is based on the isoparametric element Q8, however, the accuracy of the isoparametric quadrilateral elements will drop significantly due to mesh distortions. In a previous work, we constructed an 8-node quadrilateral spline element L8 using the triangular area coordinates and the B- net method, which can be insensitive to mesh distortions and possess the second order completeness in the Cartesian co- ordinates. In this paper, a thin plate spline element is devel- oped based on the spline element L8 and the refined tech- nique. Numerical examples show that the present element indeed possesses higher accuracy than the DKQ element for distorted meshes.
文摘With the application of Hammer integral formulas of a continuous function on a triangular element, the numerical integral formulas of some discrete functions on the element are derived by means of decomposition and recombination of base functions. Hammer integral formulas are the special examples of those of the paper.
文摘The application of the finite layer & triangular prism element method to the 3D ground subsidence and stress analysis caused by mining is presented. The layer elements and the triangular prism elements have been alternatively used in the numerical simulation system, the displacement pattern, strain matrix, elastic matrix, stiffness matrix, load matrix and the stress matrix of the layer element and triangular prism element have been presented. By means of the Fortran90 programming language, a numerical simulation system based on finite layer & triangular prism element have been built up, and this system is suitable for subsidence prediction and stress analysis of all mining condition and mining methods. Comparing with the infinite element method, this approach dramatically reduces the size of the set of equations that need to be solved, and greatly reduces the amount of data preparation required. It not only saves the internal storage, and the computation time, but also decreases the cost.
基金Supported by the National Natural Science Foundation of China(11271340,116713697)Supported by Henan Natural Science Foundation of China(132300410376)
文摘In this paper, a nonconforming triangular mixed finite element scheme with second order convergence behavior is proposed for the stationary Navier-Stokes equations.The new nonconforming triangular element is taken as approximation space for the velocity and the linear element for the pressure. The convergence analysis is presented and optimal error estimates of both broken H^1-norm and L^2-norm for velocity as well as the L^2-norm for the pressure are derived.
基金Project supported by the National Natural Science Foundation of China(Nos.10971203,11271340,and 11101381)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20094101110006)
文摘A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.
文摘Using Stricklin Melhod ̄[5],we have this paper has derived the formulas for the ge-neration of non-linear element stiffness matrix of a triangle element when considering both the bending and the in-plane membrane forces. A computer programme for the calculation of large deflection and inner forces of shallow shells is designed on theseformulas. The central deflection curve computed by this programme is compared with other pertaining results.
文摘Based on the strain formulation of the quasi-conforming finite element, displacement functions are constructed which have definite physical meaning, and a conclusion can be obtained that the coefficients of the constant and the linear strain are uniquely determined, and the quasi-conforming finite element method is convergent to constant strain. There are different methods for constructing the rigid displacement items, and different methods correspond to different order node errors, and this is different from ordinary displacement method finite element.
基金supported by the National Natural Science Foundation of China (Grant No. 11172172)the National Basic Research Program of China ("973" Project) (Grant No. 2011CB013505)
文摘In fracture simulation,how to model the pre-existing cracks and simulate their propagation without remeshing is an important topic.The newly developed triangular element partition method(TEPM)provides an efficient approach to this problem.It firstly meshes the cracked body regardless of the geometry integrity of the interesting object with triangular elements.After the meshing procedure is completed,some elements are intersected by cracks.For the element intersected by a crack,the TEPM takes the element partition technique to incorporate the discontinuity into the numerical model without any interpolation enrichment.By this approach,the TEPM can simulate fracture without mesh modification.In the TEPM,all the cracked elements are treated as the usual partitioned elements in which the crack runs through.The virtual node pairs(the intersection points of crack faces and elements)at the opposite faces of the crack move independently.Their displacements are respectively determined by their neighbor real nodes(nodes formatted in the original mesh scheme)at the same side of the crack.However,among these cracked elements,the element containing a crack tip,referred to as the crack tip element thereafter,behaves differently from those cut through by the crack.Its influence on the singular field at the vicinity of the fracture tip becomes increasingly significant with the element size increasing.In the crack tip element,the virtual node pair at the crack tip move consistently before fracture occurs while the virtual node pair separate and each virtual node moves independently after the fracture propagates.Accordingly,the crack tip element is automatically transformed into the usual partitioned element.In the present paper,the crack tip element is introduced into the TEPM to account for the effect of the crack tip.Validation examples indicate that the present method is almost free from the element size effect.It can reach the same precision as the conventional finite element method under the same meshing scheme.But the TEPM is much more efficient and convenient than the conventional finite element method because the TEPM avoids the troubles that the conventional finite element method suffers,e.g.,the meshing problem of cracked body,modification of mesh scheme,etc.Though the extended finite element method can also avoid these troubles,it introduces extra degrees of freedom due to node interpolation enrichment.Due to the simplicity of the present TEPM,it is believed that its perspective should be highly inspiring.
文摘The goal of this paper is to study a mixed finite element approximation of the general convex optimal control problems governed by quasilinear elliptic partial differential equations. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a priori error estimates both for the state variables and the control variable. Finally, some numerical examples are given to demonstrate the theoretical results.
基金NNW2018-ZT4A06 project and NSFC grant 11971408Lizhen Chen is partially supported by Grant U1930402.
文摘In this paper,we propose a spectral vanishing viscosity method for the triangular spectral element computation of high Reynolds number incompressible flows.This can be regarded as an extension of a similar stabilization technique for the standard spectral element method.The difficulty of this extension lies in the fact that a suitable definition of spectral vanishing viscosity operator in non-structured elements does not exist,and it is not clear that if a suitably defined spectral vanishing viscosity provides desirable dissipation for the artificially accumulated energy.The main contribution of the paper includes:1)a well-defined spectral vanishing viscosity operator is proposed for non-standard spectral element methods for the Navier-Stokes equations based on triangular or tetrahedron partitions;2)an evaluation technique is introduced to efficiently implement the stabilization term without extra computational cost;3)the accuracy and efficiency of the proposed method is carefully examined through several numerical examples.Our numerical results show that the proposed method not only preserves the exponential convergence,but also produces improved accuracy when applied to the unsteady Navier-Stokes equations having smooth solutions.Especially,the stabilized triangular spectral element method efficiently stabilizes the simulation of high Reynolds incompressible flows.
基金The work of the second author is partially supported by NFS grant DMS-0610646The research of the third author was partially supported by National NSF of China(Grant number 11071203).
文摘An unstructured nodal spectral-elementmethod for theNavier-Stokes equations is developed in this paper.The method is based on a triangular and tetrahedral rational approximation and an easy-to-implement nodal basis which fully enjoys the tensorial product property.It allows arbitrary triangular and tetrahedralmesh,affording greater flexibility in handling complex domains while maintaining all essential features of the usual spectral-element method.The details of the implementation and some numerical examples are provided to validate the efficiency and flexibility of the proposed method.
文摘Temperature as an indicator of tissue response is widely used in clinical applications. In view of above a problem of temperature distribution in peripheral regions of extended spherical organs of a human body like, human breast involving uniformly perfused tumor is investigated in this paper. The human breast is assumed to be spherical in shape with upper hemisphere projecting out from the trunk of the body and lower hemisphere is considered to be a part of the body core. The outer surface of the breast is assumed to be exposed to the environment from where the heat loss takes place by conduction, convection, radiation and evaporation. The heat transfer from core to the surface takes place by thermal conduction and blood perfusion. Also metabolic activity takes place at different rates in different layers of the breast. An elliptical-shaped tumor is assumed to be present in the dermis region of human breast. A finite element model is developed for a two-dimensional steady state case incorporating the important parameters like blood flow, metabolic activity and thermal conductivity. The triangular ring elements are employed to discretize the region. Appropriate boundary conditions are framed using biophysical conditions. The numerical results are used to study the effect of tumor on temperature distribution in the region.
基金the National Key Research and Development Program of China(No.2021YFB0300101)the National Natural Science Foundation of China(Nos.12102467 and 12102468)+1 种基金the Foundation of National University of Defense Technology(No.ZK21-02)the Foundation of State Key Laboratory of High Performance Computing of China(Nos.202101-01 and 202101-19).
文摘In this paper,we present a novel surface mesh generation approach that splits B-rep geometry models into isotropic triangular meshes based on neural networks and splitting lines.In the first stage,a recursive method is designed to generate plentiful data to train the neural network model offline.In the second stage,the implemented mesh generator,ISpliter,maps each surface patch into the parameter plane,and then the trained neural network model is applied to select the optimal splitting line to divide the patch into subdomains continuously until they are all triangles.In the third stage,ISpliter remaps the 2D mesh back to the physical space and further optimizes it.Several typical cases are evaluated to compare the mesh quality generated by ISpliter and two baselines,Gmsh and NNW-GridStar.The results show that ISpliter can generate isotropic triangular meshes with high average quality,and the generated meshes are comparable to those generated by the other two software under the same configuration.