This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for ...This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.展开更多
To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve ...To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve the efficiency of interchanging load information, is presented. To support the algorithm, a complete set of DLB messages and a schema of maintaining DLB information in each processing node are designed. The load migration request messages from the heavily loaded node (HLN)are spread along an MT whose root is the HLN. And the lightly loaded nodes(LLNs) covered by the MT are the candidate destinations of load migration; the load information interchanged between the LLNs and the HLN can be transmitted along the MT. So the HLN can migrate excess loads out as many as possible during a one time execution of the THINDLBA, and its load state can be improved as quickly as possible. To avoid wrongly transmitted or redundant DLB messages due to MT overlapping, the MT construction is restricted in the design of the THINDLBA. Through experiments, the effectiveness of four DLB algorithms are compared, and the results show that the THINDLBA can effectively decrease the time costs of THIN systems in dealing with large scale computeintensive tasks more than others.展开更多
To build any spatial soil database, a set of environmental data including digital elevation model(DEM) and satellite images beside geomorphic landscape description are essentials. Such a database, integrates field obs...To build any spatial soil database, a set of environmental data including digital elevation model(DEM) and satellite images beside geomorphic landscape description are essentials. Such a database, integrates field observations and laboratory analyses data with the results obtained from qualitative and quantitative models. So far, various techniques have been developed for soil data processing. The performance of Artificial Neural Network(ANN) and Decision Tree(DT) models was compared to map out some soil attributes in Alborz Province, Iran. Terrain attributes derived from a DEM along with Landsat 8 ETM+, geomorphology map, and the routine laboratory analyses of the studied area were used as input data. The relationships between soil properties(including sand, silt, clay, electrical conductivity, organic carbon, and carbonates) and the environmental variables were assessed using the Pearson Correlation Coefficient and Principle Components Analysis. Slope, elevation, geomforms, carbonate index, stream network, wetness index, and the band’s number 2, 3, 4, and 5 were the most significantly correlated variables. ANN and DT did not show the same accuracy in predicting all parameters. The DT model showed higher performances in estimating sand(R^2=0.73), silt(R^2=0.70), clay(R^2=0.72), organic carbon(R^2=0.71), and carbonates(R^2=0.70). While the ANN model only showed higher performance in predicting soil electrical conductivity(R^2=0.95). The results showed that determination the best model to use, is dependent upon the relation between the considered soil properties with the environmental variables. However, the DT model showed more reasonable results than the ANN model in this study. The results showed that before using a certain model to predict variability of all soil parameters, it would be better to evaluate the efficiency of all possible models for choosing the best fitted model for each property. In other words, most of the developed models are sitespecific and may not be applicable to use for predicting other soil properties or other area.展开更多
A new core-based shared tree algorithm,viz core-cluster combination-based shared tree(CCST)algorithm and the weighted version(i.e.w-CCST algorithm)are proposed in order to resolve the channel resources waste problem i...A new core-based shared tree algorithm,viz core-cluster combination-based shared tree(CCST)algorithm and the weighted version(i.e.w-CCST algorithm)are proposed in order to resolve the channel resources waste problem in typical source-based multicast routing algorithms in low earth orbit(LEO)satellite IP networks.The CCST algorithm includes the dynamic approximate center(DAC)core selection method and the core-cluster combination multicast route construction scheme.Without complicated onboard computation,the DAC method is uniquely developed for highly dynamic networks of periodical and regular movement.The core-cluster combination method takes core node as the initial core-cluster,and expands it stepwise to construct an entire multicast tree at the lowest tree cost by a shortest path scheme between the newly-generated core-cluster and surplus group members,which results in great bandwidth utilization.Moreover,the w-CCST algorithm is able to strike a balance between performance of tree cost and that of end-to-end propagation delay by adjusting the weighted factor to meet strict end-to-end delay requirements of some real-time multicast services at the expense of a slight increase in tree cost.Finally,performance comparison is conducted between the proposed algorithms and typical algorithms in LEO satellite IP networks.Simulation results show that the CCST algorithm significantly decreases the average tree cost against to the others,and also the average end-to-end propagation delay ofw-CCST algorithm is lower than that of the CCST algorithm.展开更多
Fetal distress is one of the main factors to cesarean section in obstetrics and gynecology. If the fetus lack of oxygen in uterus, threat to the fetal health and fetal death could happen. Cardiotocography (CTG) is the...Fetal distress is one of the main factors to cesarean section in obstetrics and gynecology. If the fetus lack of oxygen in uterus, threat to the fetal health and fetal death could happen. Cardiotocography (CTG) is the most widely used technique to monitor the fetal health and fetal heart rate (FHR) is an important index to identify occurs of fetal distress. This study is to propose discriminant analysis (DA), decision tree (DT), and artificial neural network (ANN) to evaluate fetal distress. The results show that the accuracies of DA, DT and ANN are 82.1%, 86.36% and 97.78%, respectively.展开更多
In this work, a hardware intrusion detection system (IDS) model and its implementation are introduced to perform online real-time traffic monitoring and analysis. The introduced system gathers some advantages of man...In this work, a hardware intrusion detection system (IDS) model and its implementation are introduced to perform online real-time traffic monitoring and analysis. The introduced system gathers some advantages of many IDSs: hardware based from implementation point of view, network based from system type point of view, and anomaly detection from detection approach point of view. In addition, it can detect most of network attacks, such as denial of services (DOS), leakage, etc. from detection behavior point of view and can detect both internal and external intruders from intruder type point of view. Gathering these features in one IDS system gives lots of strengths and advantages of the work. The system is implemented by using field programmable gate array (FPGA), giving a more advantages to the system. A C5.0 decision tree classifier is used as inference engine to the system and gives a high detection ratio of 99.93%.展开更多
DEAR EDITOR,Cognitive flexibility is crucial for animal survival but is frequently impaired in neuropsychiatric disorders.Although many brain structures and functional networks are involved in cognitive flexibility,th...DEAR EDITOR,Cognitive flexibility is crucial for animal survival but is frequently impaired in neuropsychiatric disorders.Although many brain structures and functional networks are involved in cognitive flexibility,the neural mechanisms underlying cooperation among specific functional networks remain unclear from a global perspective.In this study,[^(18)F]-fluorodeoxyglucose positron emission tomography(FDG-PET)was performed on 19 male tree shrews after four different visual discrimination tasks,including baseline,learning expert(LE),reversal naive(RN),and reversal expert(RE).展开更多
With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by...With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by expanding the traditional loop-equation theory through utilization of the advantages of the graph theory in efficiency. The utilization of the spanning tree technique from graph theory makes the proposed algorithm efficient in calculation and simple to use for computer coding. The algorithms for topological generation and practical implementations are presented in detail in this paper. Through the application to a practical urban system, the consumption of the CPU time and computation memory were decreased while the accuracy was greatly enhanced compared with the present existing methods.展开更多
The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas...The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas from local learning, constraint- based, and search-and-score techniques in a principled and ef- fective way. It first reconstructs the junction tree of a BN and then performs a K2-scoring greedy search to orientate the local edges in the cliques of junction tree. Theoretical and experimental results show the proposed algorithm is capable of handling networks with a large number of variables. Its comparison with the well-known K2 algorithm is also presented.展开更多
Determinations of fracture network connections would help the investigators remove those "meaningless" no-flow-passing fractures, providing an updated and more effective fracture network that could considerably impr...Determinations of fracture network connections would help the investigators remove those "meaningless" no-flow-passing fractures, providing an updated and more effective fracture network that could considerably improve the computation efficiency in the pertinent numerical simulations of fluid flow and solute transport. The effective algorithms with higher computational efficiency are needed to accomplish this task in large-scale fractured rock masses. A new approach using R tree indexing was proposed for determining fracture connection in 3D stochastically distributed fracture network. By com- paring with the traditional exhaustion algorithm, it was observed that from the simulation results, this approach was much more effective; and the more the fractures were investigated, the more obvious the advantages of the approach were. Furthermore, it was indicated that the runtime used for creating the R tree indexing has a major part in the total of the runtime used for calculating Minimum Bounding Rectangles (MBRs), creating the R tree indexing, precisely finding out fracture intersections, and identifying flow paths, which are four important steps to determine fracture connections. This proposed approach for the determination of fracture connections in three-dimensional fractured rocks are expected to provide efficient preprocessing and critical database for practically accomplishing numerical computation of fluid flow and solute transport in large-scale fractured rock masses.展开更多
Recently,so-called tree-based phylogenetic networks have attracted considerable attention.These networks can be constructed from a phylogenetic tree,called the base tree,by adding additional edges.The primary aim of t...Recently,so-called tree-based phylogenetic networks have attracted considerable attention.These networks can be constructed from a phylogenetic tree,called the base tree,by adding additional edges.The primary aim of this study is to provide sufficient criteria for tree-basedness by reducing phylogenetic networks to related graph structures.Even though it is generally known that determining whether a network is tree-based is an NP-complete problem,one of these criteria,namely edge-basedness,can be verified in linear time.Surprisingly,the class of edgebased networks is closely related to a well-known family of graphs,namely,the class of generalized series-parallel graphs,and we explore this relationship in full detail.Additionally,we introduce further classes of tree-based networks and analyze their relationships.展开更多
The Wireless Sensor Network (WSN) is spatially distributed autonomous sensor to sense special task. WSN like ZigBee network forms simple interconnecting, low power, and low processing capability wireless devices. The ...The Wireless Sensor Network (WSN) is spatially distributed autonomous sensor to sense special task. WSN like ZigBee network forms simple interconnecting, low power, and low processing capability wireless devices. The ZigBee devices facilitate numerous applications such as pervasive computing, security monitoring and control. ZigBee end devices collect sensing data and send them to ZigBee Coordinator. The Coordinator processes end device requests. The effect of a large number of random unsynchronized requests may degrade the overall network performance. An effective technique is particularly needed for synchronizing available node’s request processing to design a reliable ZigBee network. In this paper, region based priority mechanism is implemented to synchronize request with Tree Routing Method. Riverbed is used to simulate and analyze overall ZigBee network performance. The results show that the performance of the overall priority based ZigBee network model is better than without a priority based model. This research paves the way for further designing and modeling a large scale ZigBee network.展开更多
In this paper a new modeling framework for the dependability analysis of complex systems is presented and related to dynamic fault trees (DFTs). The methodology is based on a modular approach: two separate models are ...In this paper a new modeling framework for the dependability analysis of complex systems is presented and related to dynamic fault trees (DFTs). The methodology is based on a modular approach: two separate models are used to handle, the fault logic and the stochastic dependencies of the system. Thus, the fault schema, free of any dependency logic, can be easily evaluated, while the dependency schema allows the modeler to design new kind of non-trivial dependencies not easily caught by the traditional holistic methodologies. Moreover, the use of a dependency schema allows building a pure behavioral model that can be used for various kinds of dependability studies. In the paper is shown how to build and integrate the two modular models and convert them in a Stochastic Activity Network. Furthermore, based on the construction of the schema that embeds the stochastic dependencies, the procedure to convert DFTs into static fault trees is shown, allowing the resolution of DFTs in a very efficient way.展开更多
Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network, statistical techniques and expert systems are used to model network packets in the field of intrusion detection. In this pap...Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network, statistical techniques and expert systems are used to model network packets in the field of intrusion detection. In this paper a novel intrusion detection mode based on understandable Neural Network Tree (NNTree) is pre-sented. NNTree is a modular neural network with the overall structure being a Decision Tree (DT), and each non-terminal node being an Expert Neural Network (ENN). One crucial advantage of using NNTrees is that they keep the non-symbolic model ENN’s capability of learning in changing environments. Another potential advantage of using NNTrees is that they are actually “gray boxes” as they can be interpreted easily if the num-ber of inputs for each ENN is limited. We showed through experiments that the trained NNTree achieved a simple ENN at each non-terminal node as well as a satisfying recognition rate of the network packets dataset. We also compared the performance with that of a three-layer backpropagation neural network. Experimental results indicated that the NNTree based intrusion detection model achieved better performance than the neural network based intrusion detection model.展开更多
Structural damage detection(SDD)remains highly challenging,due to the difficulty in selecting the optimal damage features from a vast amount of information.In this study,a tree model-based method using decision tree a...Structural damage detection(SDD)remains highly challenging,due to the difficulty in selecting the optimal damage features from a vast amount of information.In this study,a tree model-based method using decision tree and random forest was employed for feature selection of vibration response signals in SDD.Signal datasets were obtained by numerical experiments and vibration experiments,respectively.Dataset features extracted using this method were input into a convolutional neural network to determine the location of structural damage.Results indicated a 5%to 10%improvement in detection accuracy compared to using original datasets without feature selection,demonstrating the feasibility of this method.The proposed method,based on tree model and classification,addresses the issue of extracting effective information from numerous vibration response signals in structural health monitoring.展开更多
Based on a fuzzy neural network, the letter presents an approach for the induction of decision trees. The approach makes use of the weights of fuzzy mappings in the fuzzy neural network which has been trained. It can ...Based on a fuzzy neural network, the letter presents an approach for the induction of decision trees. The approach makes use of the weights of fuzzy mappings in the fuzzy neural network which has been trained. It can realize the optimization of fuzzy decision trees by branch cutting, and improve the ratio of correctness and efficiency of the induction of decision trees.展开更多
In Wireless Sensor Networks (WSNs), sensor nodes are developed densely. They have limit processing ca-pability and low power resources. Thus, energy is one of most important constraints in these networks. In some appl...In Wireless Sensor Networks (WSNs), sensor nodes are developed densely. They have limit processing ca-pability and low power resources. Thus, energy is one of most important constraints in these networks. In some applications of sensor networks, sensor nodes sense data from the environment periodically and trans-mit these data to sink node. In order to decrease energy consumption and so, increase network’s lifetime, volume of transmitted data should be decreased. A solution, which is suggested, is aggregation. In aggrega-tion mechanisms, the nodes aggregate received data and send aggregated result instead of raw data to sink, so, the volume of the transmitted data is decreased. Aggregation algorithms should construct aggregation tree and transmit data to sink based on this tree. In this paper, we propose an automaton based algorithm to con-struct aggregation tree by using energy and distance parameters. Automaton is a decision-making machine that is able-to-learn. Since network’s topology is dynamic, algorithm should construct aggregation tree peri-odically. In order to aware nodes of topology and so, select optimal path, routing packets must be flooded in entire network that led to high energy consumption. By using automaton machine which is in interaction with environment, we solve this problem based on automat learning. By using this strategy, aggregation tree is reconstructed locally, that result in decreasing energy consumption. Simulation results show that the pro-posed algorithm has better performance in terms of energy efficiency which increase the network lifetime and support better coverage.展开更多
Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in p...Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in patients with depression,this paper proposes a depression analysis method based on brain function network(BFN).To avoid the volume conductor effect,BFN was constructed based on phase lag index(PLI).Then the indicators closely related to depression were selected from weighted BFN based on small-worldness(SW)characteristics and binarization BFN based on the minimum spanning tree(MST).Differences analysis between groups and correlation analysis between these indicators and diagnostic indicators were performed in turn.The resting state electroencephalogram(EEG)data of 24 patients with depression and 29 healthy controls(HC)was used to verify our proposed method.The results showed that compared with HC,the information processing of BFN in patients with depression decreased,and BFN showed a trend of randomization.展开更多
Wireless Sensor Networks (WSNs) have inherent and unique characteristics rather than traditional networks. They have many different constraints, such as computational power, storage capacity, energy supply and etc;of ...Wireless Sensor Networks (WSNs) have inherent and unique characteristics rather than traditional networks. They have many different constraints, such as computational power, storage capacity, energy supply and etc;of course the most important issue is their energy constraint. Energy aware routing protocol is very important in WSN, but routing protocol which only considers energy has not efficient performance. Therefore considering other parameters beside energy efficiency is crucial for protocols efficiency. Depending on sensor network application, different parameters can be considered for its protocols. Congestion management can affect routing protocol performance. Congestion occurrence in network nodes leads to increasing packet loss and energy consumption. Another parameter which affects routing protocol efficiency is providing fairness in nodes energy consumption. When fairness is not considered in routing process, network will be partitioned very soon and then the network performance will be decreased. In this paper a Tree based Energy and Congestion Aware Routing Protocol (TECARP) is proposed. The proposed protocol is an energy efficient routing protocol which tries to manage congestion and to provide fairness in network. Simulation results shown in this paper imply that the TECARP has achieved its goals.展开更多
基金supported by Istanbul Technical University(Project No.45698)supported through the“Young Researchers’Career Development Project-training of doctoral students”of the Croatian Science Foundation.
文摘This paper investigates the reliability of internal marine combustion engines using an integrated approach that combines Fault Tree Analysis(FTA)and Bayesian Networks(BN).FTA provides a structured,top-down method for identifying critical failure modes and their root causes,while BN introduces flexibility in probabilistic reasoning,enabling dynamic updates based on new evidence.This dual methodology overcomes the limitations of static FTA models,offering a comprehensive framework for system reliability analysis.Critical failures,including External Leakage(ELU),Failure to Start(FTS),and Overheating(OHE),were identified as key risks.By incorporating redundancy into high-risk components such as pumps and batteries,the likelihood of these failures was significantly reduced.For instance,redundant pumps reduced the probability of ELU by 31.88%,while additional batteries decreased the occurrence of FTS by 36.45%.The results underscore the practical benefits of combining FTA and BN for enhancing system reliability,particularly in maritime applications where operational safety and efficiency are critical.This research provides valuable insights for maintenance planning and highlights the importance of redundancy in critical systems,especially as the industry transitions toward more autonomous vessels.
基金The National Natural Science Foundation of China(No.69973007).
文摘To solve the load balancing problem in a triplet-based hierarchical interconnection network(THIN) system, a dynamic load balancing (DLB)algorithm--THINDLBA, which adopts multicast tree (MT)technology to improve the efficiency of interchanging load information, is presented. To support the algorithm, a complete set of DLB messages and a schema of maintaining DLB information in each processing node are designed. The load migration request messages from the heavily loaded node (HLN)are spread along an MT whose root is the HLN. And the lightly loaded nodes(LLNs) covered by the MT are the candidate destinations of load migration; the load information interchanged between the LLNs and the HLN can be transmitted along the MT. So the HLN can migrate excess loads out as many as possible during a one time execution of the THINDLBA, and its load state can be improved as quickly as possible. To avoid wrongly transmitted or redundant DLB messages due to MT overlapping, the MT construction is restricted in the design of the THINDLBA. Through experiments, the effectiveness of four DLB algorithms are compared, and the results show that the THINDLBA can effectively decrease the time costs of THIN systems in dealing with large scale computeintensive tasks more than others.
基金College of Agriculture and Natural Resources,University of Tehran for financial support of the study(Grant No.7104017/6/24 and 28)
文摘To build any spatial soil database, a set of environmental data including digital elevation model(DEM) and satellite images beside geomorphic landscape description are essentials. Such a database, integrates field observations and laboratory analyses data with the results obtained from qualitative and quantitative models. So far, various techniques have been developed for soil data processing. The performance of Artificial Neural Network(ANN) and Decision Tree(DT) models was compared to map out some soil attributes in Alborz Province, Iran. Terrain attributes derived from a DEM along with Landsat 8 ETM+, geomorphology map, and the routine laboratory analyses of the studied area were used as input data. The relationships between soil properties(including sand, silt, clay, electrical conductivity, organic carbon, and carbonates) and the environmental variables were assessed using the Pearson Correlation Coefficient and Principle Components Analysis. Slope, elevation, geomforms, carbonate index, stream network, wetness index, and the band’s number 2, 3, 4, and 5 were the most significantly correlated variables. ANN and DT did not show the same accuracy in predicting all parameters. The DT model showed higher performances in estimating sand(R^2=0.73), silt(R^2=0.70), clay(R^2=0.72), organic carbon(R^2=0.71), and carbonates(R^2=0.70). While the ANN model only showed higher performance in predicting soil electrical conductivity(R^2=0.95). The results showed that determination the best model to use, is dependent upon the relation between the considered soil properties with the environmental variables. However, the DT model showed more reasonable results than the ANN model in this study. The results showed that before using a certain model to predict variability of all soil parameters, it would be better to evaluate the efficiency of all possible models for choosing the best fitted model for each property. In other words, most of the developed models are sitespecific and may not be applicable to use for predicting other soil properties or other area.
基金National Natural Science Foundation of China(60532030,10577005,60625102)Innovation Foundation of Aerospace Science and Technology of China
文摘A new core-based shared tree algorithm,viz core-cluster combination-based shared tree(CCST)algorithm and the weighted version(i.e.w-CCST algorithm)are proposed in order to resolve the channel resources waste problem in typical source-based multicast routing algorithms in low earth orbit(LEO)satellite IP networks.The CCST algorithm includes the dynamic approximate center(DAC)core selection method and the core-cluster combination multicast route construction scheme.Without complicated onboard computation,the DAC method is uniquely developed for highly dynamic networks of periodical and regular movement.The core-cluster combination method takes core node as the initial core-cluster,and expands it stepwise to construct an entire multicast tree at the lowest tree cost by a shortest path scheme between the newly-generated core-cluster and surplus group members,which results in great bandwidth utilization.Moreover,the w-CCST algorithm is able to strike a balance between performance of tree cost and that of end-to-end propagation delay by adjusting the weighted factor to meet strict end-to-end delay requirements of some real-time multicast services at the expense of a slight increase in tree cost.Finally,performance comparison is conducted between the proposed algorithms and typical algorithms in LEO satellite IP networks.Simulation results show that the CCST algorithm significantly decreases the average tree cost against to the others,and also the average end-to-end propagation delay ofw-CCST algorithm is lower than that of the CCST algorithm.
文摘Fetal distress is one of the main factors to cesarean section in obstetrics and gynecology. If the fetus lack of oxygen in uterus, threat to the fetal health and fetal death could happen. Cardiotocography (CTG) is the most widely used technique to monitor the fetal health and fetal heart rate (FHR) is an important index to identify occurs of fetal distress. This study is to propose discriminant analysis (DA), decision tree (DT), and artificial neural network (ANN) to evaluate fetal distress. The results show that the accuracies of DA, DT and ANN are 82.1%, 86.36% and 97.78%, respectively.
文摘In this work, a hardware intrusion detection system (IDS) model and its implementation are introduced to perform online real-time traffic monitoring and analysis. The introduced system gathers some advantages of many IDSs: hardware based from implementation point of view, network based from system type point of view, and anomaly detection from detection approach point of view. In addition, it can detect most of network attacks, such as denial of services (DOS), leakage, etc. from detection behavior point of view and can detect both internal and external intruders from intruder type point of view. Gathering these features in one IDS system gives lots of strengths and advantages of the work. The system is implemented by using field programmable gate array (FPGA), giving a more advantages to the system. A C5.0 decision tree classifier is used as inference engine to the system and gives a high detection ratio of 99.93%.
基金supported by National Natural Science Foundation of China(61304256)Zhejiang Provincial Natural Science Foundation of China(LQ13F030013)+4 种基金Project of the Education Department of Zhejiang Province(Y201327006)Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering and Zhejiang Sci-Tech University Key Laboratory(ZSTUME01B15)New Century 151 Talent Project of Zhejiang Province521 Talent Project of Zhejiang Sci-Tech UniversityYoung and Middle-aged Talents Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering
基金supported by the National Natural Science Foundation of China(11975249,81771923,12175268,32071029,31861143037)China Postdoctoral Science Foundation(2021T140668)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB32020000)。
文摘DEAR EDITOR,Cognitive flexibility is crucial for animal survival but is frequently impaired in neuropsychiatric disorders.Although many brain structures and functional networks are involved in cognitive flexibility,the neural mechanisms underlying cooperation among specific functional networks remain unclear from a global perspective.In this study,[^(18)F]-fluorodeoxyglucose positron emission tomography(FDG-PET)was performed on 19 male tree shrews after four different visual discrimination tasks,including baseline,learning expert(LE),reversal naive(RN),and reversal expert(RE).
文摘With the purpose of making calculation more efficient in practical hydraulic simulations, an improved algorithm was proposed and was applied in the practical water distribution field. This methodology was developed by expanding the traditional loop-equation theory through utilization of the advantages of the graph theory in efficiency. The utilization of the spanning tree technique from graph theory makes the proposed algorithm efficient in calculation and simple to use for computer coding. The algorithms for topological generation and practical implementations are presented in detail in this paper. Through the application to a practical urban system, the consumption of the CPU time and computation memory were decreased while the accuracy was greatly enhanced compared with the present existing methods.
基金supported by the National Natural Science Fundation of China (6097408261075055)the Fundamental Research Funds for the Central Universities (K50510700004)
文摘The learning Bayesian network (BN) structure from data is an NP-hard problem and still one of the most exciting chal- lenges in the machine learning. In this work, a novel algorithm is presented which combines ideas from local learning, constraint- based, and search-and-score techniques in a principled and ef- fective way. It first reconstructs the junction tree of a BN and then performs a K2-scoring greedy search to orientate the local edges in the cliques of junction tree. Theoretical and experimental results show the proposed algorithm is capable of handling networks with a large number of variables. Its comparison with the well-known K2 algorithm is also presented.
基金Supported by the Major State Basic Research Development Program of China (973 Program) (2010CB428804) the National Science Foundation ot China (40672172) and the Major Science and Technology Program for Water Pollution Control and Treatment(2009ZX07212-003)
文摘Determinations of fracture network connections would help the investigators remove those "meaningless" no-flow-passing fractures, providing an updated and more effective fracture network that could considerably improve the computation efficiency in the pertinent numerical simulations of fluid flow and solute transport. The effective algorithms with higher computational efficiency are needed to accomplish this task in large-scale fractured rock masses. A new approach using R tree indexing was proposed for determining fracture connection in 3D stochastically distributed fracture network. By com- paring with the traditional exhaustion algorithm, it was observed that from the simulation results, this approach was much more effective; and the more the fractures were investigated, the more obvious the advantages of the approach were. Furthermore, it was indicated that the runtime used for creating the R tree indexing has a major part in the total of the runtime used for calculating Minimum Bounding Rectangles (MBRs), creating the R tree indexing, precisely finding out fracture intersections, and identifying flow paths, which are four important steps to determine fracture connections. This proposed approach for the determination of fracture connections in three-dimensional fractured rocks are expected to provide efficient preprocessing and critical database for practically accomplishing numerical computation of fluid flow and solute transport in large-scale fractured rock masses.
基金funded by the state Mecklenburg-Western Pomerania by the Landesgraduierten-Studentshipfunded by the University of Greifswald by the Bogislaw-Studentshipfunded by the German Academic Scholarship Foundation by a studentship.
文摘Recently,so-called tree-based phylogenetic networks have attracted considerable attention.These networks can be constructed from a phylogenetic tree,called the base tree,by adding additional edges.The primary aim of this study is to provide sufficient criteria for tree-basedness by reducing phylogenetic networks to related graph structures.Even though it is generally known that determining whether a network is tree-based is an NP-complete problem,one of these criteria,namely edge-basedness,can be verified in linear time.Surprisingly,the class of edgebased networks is closely related to a well-known family of graphs,namely,the class of generalized series-parallel graphs,and we explore this relationship in full detail.Additionally,we introduce further classes of tree-based networks and analyze their relationships.
文摘The Wireless Sensor Network (WSN) is spatially distributed autonomous sensor to sense special task. WSN like ZigBee network forms simple interconnecting, low power, and low processing capability wireless devices. The ZigBee devices facilitate numerous applications such as pervasive computing, security monitoring and control. ZigBee end devices collect sensing data and send them to ZigBee Coordinator. The Coordinator processes end device requests. The effect of a large number of random unsynchronized requests may degrade the overall network performance. An effective technique is particularly needed for synchronizing available node’s request processing to design a reliable ZigBee network. In this paper, region based priority mechanism is implemented to synchronize request with Tree Routing Method. Riverbed is used to simulate and analyze overall ZigBee network performance. The results show that the performance of the overall priority based ZigBee network model is better than without a priority based model. This research paves the way for further designing and modeling a large scale ZigBee network.
文摘In this paper a new modeling framework for the dependability analysis of complex systems is presented and related to dynamic fault trees (DFTs). The methodology is based on a modular approach: two separate models are used to handle, the fault logic and the stochastic dependencies of the system. Thus, the fault schema, free of any dependency logic, can be easily evaluated, while the dependency schema allows the modeler to design new kind of non-trivial dependencies not easily caught by the traditional holistic methodologies. Moreover, the use of a dependency schema allows building a pure behavioral model that can be used for various kinds of dependability studies. In the paper is shown how to build and integrate the two modular models and convert them in a Stochastic Activity Network. Furthermore, based on the construction of the schema that embeds the stochastic dependencies, the procedure to convert DFTs into static fault trees is shown, allowing the resolution of DFTs in a very efficient way.
基金Supported in part by the National Natural Science Foundation of China (No.60272046, No.60102011), Na-tional High Technology Project of China (No.2002AA143010), Natural Science Foundation of Jiangsu Province (No.BK2001042), and the Foundation for Excellent Doctoral Dissertation of Southeast Univer-sity (No.YBJJ0412).
文摘Several data mining techniques such as Hidden Markov Model (HMM), artificial neural network, statistical techniques and expert systems are used to model network packets in the field of intrusion detection. In this paper a novel intrusion detection mode based on understandable Neural Network Tree (NNTree) is pre-sented. NNTree is a modular neural network with the overall structure being a Decision Tree (DT), and each non-terminal node being an Expert Neural Network (ENN). One crucial advantage of using NNTrees is that they keep the non-symbolic model ENN’s capability of learning in changing environments. Another potential advantage of using NNTrees is that they are actually “gray boxes” as they can be interpreted easily if the num-ber of inputs for each ENN is limited. We showed through experiments that the trained NNTree achieved a simple ENN at each non-terminal node as well as a satisfying recognition rate of the network packets dataset. We also compared the performance with that of a three-layer backpropagation neural network. Experimental results indicated that the NNTree based intrusion detection model achieved better performance than the neural network based intrusion detection model.
基金supported by the Project of Guangdong Province High Level University Construction for Guangdong University of Technology(Grant No.262519003)the College Student Innovation Training Program of Guangdong University of Technology(Grant Nos.S202211845154 and xj2023118450384).
文摘Structural damage detection(SDD)remains highly challenging,due to the difficulty in selecting the optimal damage features from a vast amount of information.In this study,a tree model-based method using decision tree and random forest was employed for feature selection of vibration response signals in SDD.Signal datasets were obtained by numerical experiments and vibration experiments,respectively.Dataset features extracted using this method were input into a convolutional neural network to determine the location of structural damage.Results indicated a 5%to 10%improvement in detection accuracy compared to using original datasets without feature selection,demonstrating the feasibility of this method.The proposed method,based on tree model and classification,addresses the issue of extracting effective information from numerous vibration response signals in structural health monitoring.
文摘Based on a fuzzy neural network, the letter presents an approach for the induction of decision trees. The approach makes use of the weights of fuzzy mappings in the fuzzy neural network which has been trained. It can realize the optimization of fuzzy decision trees by branch cutting, and improve the ratio of correctness and efficiency of the induction of decision trees.
文摘In Wireless Sensor Networks (WSNs), sensor nodes are developed densely. They have limit processing ca-pability and low power resources. Thus, energy is one of most important constraints in these networks. In some applications of sensor networks, sensor nodes sense data from the environment periodically and trans-mit these data to sink node. In order to decrease energy consumption and so, increase network’s lifetime, volume of transmitted data should be decreased. A solution, which is suggested, is aggregation. In aggrega-tion mechanisms, the nodes aggregate received data and send aggregated result instead of raw data to sink, so, the volume of the transmitted data is decreased. Aggregation algorithms should construct aggregation tree and transmit data to sink based on this tree. In this paper, we propose an automaton based algorithm to con-struct aggregation tree by using energy and distance parameters. Automaton is a decision-making machine that is able-to-learn. Since network’s topology is dynamic, algorithm should construct aggregation tree peri-odically. In order to aware nodes of topology and so, select optimal path, routing packets must be flooded in entire network that led to high energy consumption. By using automaton machine which is in interaction with environment, we solve this problem based on automat learning. By using this strategy, aggregation tree is reconstructed locally, that result in decreasing energy consumption. Simulation results show that the pro-posed algorithm has better performance in terms of energy efficiency which increase the network lifetime and support better coverage.
基金supported by the National Natural Science Foundation of China(Nos.61962034,61862058)Longyuan Youth Innovation and Entrepreneurship Talent(Individual)Project and Tianyou Youth Talent Lift Program of Lanzhou Jiaotong Univesity。
文摘Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in patients with depression,this paper proposes a depression analysis method based on brain function network(BFN).To avoid the volume conductor effect,BFN was constructed based on phase lag index(PLI).Then the indicators closely related to depression were selected from weighted BFN based on small-worldness(SW)characteristics and binarization BFN based on the minimum spanning tree(MST).Differences analysis between groups and correlation analysis between these indicators and diagnostic indicators were performed in turn.The resting state electroencephalogram(EEG)data of 24 patients with depression and 29 healthy controls(HC)was used to verify our proposed method.The results showed that compared with HC,the information processing of BFN in patients with depression decreased,and BFN showed a trend of randomization.
文摘Wireless Sensor Networks (WSNs) have inherent and unique characteristics rather than traditional networks. They have many different constraints, such as computational power, storage capacity, energy supply and etc;of course the most important issue is their energy constraint. Energy aware routing protocol is very important in WSN, but routing protocol which only considers energy has not efficient performance. Therefore considering other parameters beside energy efficiency is crucial for protocols efficiency. Depending on sensor network application, different parameters can be considered for its protocols. Congestion management can affect routing protocol performance. Congestion occurrence in network nodes leads to increasing packet loss and energy consumption. Another parameter which affects routing protocol efficiency is providing fairness in nodes energy consumption. When fairness is not considered in routing process, network will be partitioned very soon and then the network performance will be decreased. In this paper a Tree based Energy and Congestion Aware Routing Protocol (TECARP) is proposed. The proposed protocol is an energy efficient routing protocol which tries to manage congestion and to provide fairness in network. Simulation results shown in this paper imply that the TECARP has achieved its goals.