Operational transfer path analysis(OTPA)is an advanced vibration and noise transfer path identification and contribution evaluation method.However,the application of OTPA to rail transit vehicles considers only the ex...Operational transfer path analysis(OTPA)is an advanced vibration and noise transfer path identification and contribution evaluation method.However,the application of OTPA to rail transit vehicles considers only the excitation amplitude and ignores the influence of the excitation phase.This study considers the influence of the excitation amplitude and phase,and analyzes the contribution of the secondary suspension path to the floor vibration when the metro vehicle runs at 60 km/h,using an analysis based on the OTPA method.The results show that the vertical direction of the anti-rolling torsion bar area provides the maximum contribution to the floor vibration,with a contribution of 22.1%,followed by the longitudinal vibration of the air spring area,with a contribution of 17.1%.Based on the contribution analysis,a transfer path optimization scheme is proposed,which may provide a reference for the optimization of the transfer path of metro vehicles in the future.展开更多
Taking swash plate axial piston pump as the research object,the mechanism of fluid vibration and transfer rule are analyzed.The pump shell can be assumed as the ultimate recipient of vibration transmission,the path mo...Taking swash plate axial piston pump as the research object,the mechanism of fluid vibration and transfer rule are analyzed.The pump shell can be assumed as the ultimate recipient of vibration transmission,the path model and differential equations from the fluid to the shell are established.The parameters of the path model are determined by the simulation software,and the mathematical model is solved by the simulation software.And time/frequency domain analysis of vibration acceleration of shell is presented.Based on the different influence of various parameters in the transfer path model on transfer characteristics and vibrational recipients,the time-varying parameters are studied by using sensitivity analysis theory,and the influence of the structural parameters on the vibration characteristics of vibration subject is quantitatively analyzed.The research in the paper provides theoretical basis for vibration analysis and structure parameter optimization of axial piston pump.展开更多
Passengers’demands for riding comfort have been getting higher and higher as the high-speed railway develops.Scientific methods to analyze the interior noise of the high-speed train are needed and the operational tra...Passengers’demands for riding comfort have been getting higher and higher as the high-speed railway develops.Scientific methods to analyze the interior noise of the high-speed train are needed and the operational transfer path analysis(OTPA)method provides a theoretical basis and guidance for the noise control of the train and overcomes the shortcomings of the traditional method,which has high test efficiency and can be carried out during the working state of the targeted machine.The OTPA model is established from the aspects of“path reference point-target point”and“sound source reference point-target point”.As for the mechanism of the noise transmission path,an assumption is made that the direct sound propagation is ignored,and the symmetric sound source and the symmetric path are merged.Using the operational test data and the OTPA method,combined with the results of spherical array sound source identification,the path contribution and sound source contribution of the interior noise are analyzed,respectively,from aspects of the total value and spectrum.The results show that the OTPA conforms to the calculation results of the spherical array sound source identification.At low speed,the contribution of the floor path and the contribution of the bogie sources are dominant.When the speed is greater than 300 km/h,the contribution of the roof path is dominant.Moreover,for the carriage with a pantograph,the lifted pantograph is an obvious source.The noise from the exterior sources of the train transfer into the interior mainly through the form of structural excitation,and the contribution of air excitation is non-significant.Certain analyses of train parts provide guides for the interior noise control.展开更多
Noise is one of the key issues in the operation of high-speed railways, with sound source localisation and its transfer path as the two major aspects. This study investigates both the exterior and interior sound sourc...Noise is one of the key issues in the operation of high-speed railways, with sound source localisation and its transfer path as the two major aspects. This study investigates both the exterior and interior sound source distribution of a high-speed train and presents a method for performing the contribution analysis of airborne sound with regard to the interior noise. First, both exterior and interior sound source locations of the high-speed train are identified through in-situ measurements. Second, the sound source contribution for di erent regions of the train and the relationships between the exterior and interior noises are analysed. Third, a method for conducting the contribution analysis of airborne sound with regard to the interior noise of the high-speed train is described. Lastly, a case study on the sidewall area is carried out, and the contribution of airborne sound to the interior noise of this area is obtained. The results show that, when the high-speed train runs at 310 km/h, dominant exterior sound sources are located in the bogie and pantograph regions, while main interior sound sources are located at the sidewall and roof. The interior noise, the bogie area noise and the sound source at the middle of the coach exhibit very similar rates of increase with increasing train speed. For the selected sidewall area, structure-borne sound dominates in most of the 1/3 octave bands.展开更多
This paper studies the transfer path planning problem for safe transfer of an aircraft on the aircraft carrier flight deck under a poor visibility condition or at night.First,we analyze the transfer path planning prob...This paper studies the transfer path planning problem for safe transfer of an aircraft on the aircraft carrier flight deck under a poor visibility condition or at night.First,we analyze the transfer path planning problem for carrier-based aircraft on the flight deck,and define the objective to be optimized and the constraints to be met.Second,to solve this problem,the mathematical support models for the flight deck,carrier aircraft entity,entity extension,entity posture,entity conflict detection,and path smoothing are established,as they provide the necessary basis for transfer path planning of the aircraft on the aircraft carrier.Third,to enable automatic transfer path planning,we design a multi-habitat parallel chaos algorithm(called KCMPSO),and use it as the optimization method for transfer path planning.Finally,we take the Kuznetsov aircraft carrier as a verification example,and conduct simulations.The simulation results show that compared with particle swarm optimization,this method can solve the transfer path planning problem for an aircraft on the aircraft carrier flight deck better.展开更多
The vibration transmission paths in a sport-utility vehicle with a frame structure were used to evaluate the coupled vibra-tion of each vibration transmission link.This method was based on the transmission path of an...The vibration transmission paths in a sport-utility vehicle with a frame structure were used to evaluate the coupled vibra-tion of each vibration transmission link.This method was based on the transmission path of an“engine-powertrain mount system-frame-vehicle body suspension-body-driver seat rail,”and the research objective was to improve the vibration char-acteristics of the cab.This coupled transfer path analysis combined analysis and experiment to establish the vehicle vibration transmission path model and a finite element simulation model.With this method,the vibration level of the driver’s seat rail was reduced and engineering practice was effectively used to improve the vibration characteristics of the cab.This method was applied to a framed SUV cabin.展开更多
In the network for data transmission using CMT,there are multiple paths to choose,and the time delay of each path is not the same,there is a certain issue packet out-of-order.This article studied and analyzed the pack...In the network for data transmission using CMT,there are multiple paths to choose,and the time delay of each path is not the same,there is a certain issue packet out-of-order.This article studied and analyzed the packet transmission in the sender,for each path assigned specific packet sequence number,in order to reduce the random sequence problem,improve the efficiency of network transmission.In the network for data transmission using CMT,there are multiple paths to choose,and the time delay of each path is not the same,there is a certain issue packet out-of-order.This article studied and analyzed the packet transmission in the sender,for each path assigned specific packet sequence number,in order to reduce the random sequence problem,improve the efficiency of network transmission.展开更多
Miniaturization of electronic package leads to high heat density and heat accumulation in electronics device, resulting in short life time and premature failure of the device. Junction temperature and thermal resistan...Miniaturization of electronic package leads to high heat density and heat accumulation in electronics device, resulting in short life time and premature failure of the device. Junction temperature and thermal resistance are the critical parameters that determine the thermal management and reliability in electronics cooling. Metal oxide field effect transistor(MOSFET)is an important semiconductor device for light emitting diode-integrated circuit(LED IC) driver application, and thermal management in MOSFET is a major challenge. In this study, investigations on thermal performance of MOSFET are performed for evaluating the junction temperature and thermal resistance. Suitable modifications in FR4 substrates are proposed by introducing thermal vias and copper layer coating to improve the thermal performance of MOSFET. Experiments are conducted using thermal transient tester(T3ster) at 2.0 A input current and ambient temperature varying from25℃ to 75℃. The thermal parameters are measured for three proposed designs: FR4 with circular thermal vias, FR4 with single strip of copper layer and embedded vias, and FR4 with I-shaped copper layer, and compared with that of plain FR4 substrate. From the experimental results, FR4I-shaped shows promising results by 33.71% reduction in junction temperature and 54.19% reduction in thermal resistance. For elevated temperature, the relative increases in junction temperature and thermal resistance are lower for FR4I-shaped than those for other substrates considered. The introduction of thermal vias and copper layer plays a significant role in thermal performance.展开更多
The relationship between differences in microwave humidity sounder(MHS)–channel biases which represent measured brightness temperatures and model-simulated brightness temperatures, and cloud ice water path(IWP) as we...The relationship between differences in microwave humidity sounder(MHS)–channel biases which represent measured brightness temperatures and model-simulated brightness temperatures, and cloud ice water path(IWP) as well as the influence of the cloud liquid water path(LWP) on the relationship is examined. Seven years(2011–17) of NOAA-18 MHS-derived measured brightness temperatures and IWP/LWP data generated by the NOAA Comprehensive Large Array-data Stewardship System Microwave Surface and Precipitation Products System are used. The Community Radiative Transfer Model, version2.2.4, is used to simulate model-simulated brightness temperatures using European Center for Medium-Range Weather Forecasts reanalysis data as background fields. Scan-angle deviations of the MHS window channel biases range from-1.7 K to1.0 K. The relationships between channels 2, 4, and 5 biases and scan angle are symmetrical about the nadir. The latitudedependent deviations of MHS window channel biases are positive and range from 0–7 K. For MHS non-window channels,the latitudinal deviations between measured brightness temperatures and model-simulated brightness temperatures are larger when the detection height is higher. No systematic warm or cold deviations are found in the global spatial distribution of difference between measured brightness temperatures and model-simulated brightness temperatures over oceans after removing scan-angle and latitudinal deviations. The corrected biases of five different MHS channels decrease differently with respect to the increase in IWP. This decrease is stronger when LWP values are higher.展开更多
In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the PO...In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the POMDP framework. The elements of the POMDP model are analyzed and described. The state transfer law in the model can be described by the method of interactive multiple model (IMM) due to the diversity of the target motion law, which is used to switch the motion model to accommodate target maneuvers, and hence improving the tracking accuracy. The simulation results show that the model can achieve efficient planning for the UAV route, and effective tracking for the target. Furthermore, the path planned by this model is more reasonable and efficient than that by using the single state transition law.展开更多
Aiming at the dimension disaster problem, poor model generalization ability and deadlock problem in special obstacles environment caused by the increase of state information in the local path planning process of mobil...Aiming at the dimension disaster problem, poor model generalization ability and deadlock problem in special obstacles environment caused by the increase of state information in the local path planning process of mobile robot, this paper proposed a Double BP Q-learning algorithm based on the fusion of Double Q-learning algorithm and BP neural network. In order to solve the dimensional disaster problem, two BP neural network fitting value functions with the same network structure were used to replace the two <i>Q</i> value tables in Double Q-Learning algorithm to solve the problem that the <i>Q</i> value table cannot store excessive state information. By adding the mechanism of priority experience replay and using the parameter transfer to initialize the model parameters in different environments, it could accelerate the convergence rate of the algorithm, improve the learning efficiency and the generalization ability of the model. By designing specific action selection strategy in special environment, the deadlock state could be avoided and the mobile robot could reach the target point. Finally, the designed Double BP Q-learning algorithm was simulated and verified, and the probability of mobile robot reaching the target point in the parameter update process was compared with the Double Q-learning algorithm under the same condition of the planned path length. The results showed that the model trained by the improved Double BP Q-learning algorithm had a higher success rate in finding the optimal or sub-optimal path in the dense discrete environment, besides, it had stronger model generalization ability, fewer redundant sections, and could reach the target point without entering the deadlock zone in the special obstacles environment.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.U1934203,U1734201)Sichuan Science and Technology Program(Grant No.2020YJ0254)Fundamental Research Funds for the State Key Laboratory of Traction Power(Grant No.2019-Q02).
文摘Operational transfer path analysis(OTPA)is an advanced vibration and noise transfer path identification and contribution evaluation method.However,the application of OTPA to rail transit vehicles considers only the excitation amplitude and ignores the influence of the excitation phase.This study considers the influence of the excitation amplitude and phase,and analyzes the contribution of the secondary suspension path to the floor vibration when the metro vehicle runs at 60 km/h,using an analysis based on the OTPA method.The results show that the vertical direction of the anti-rolling torsion bar area provides the maximum contribution to the floor vibration,with a contribution of 22.1%,followed by the longitudinal vibration of the air spring area,with a contribution of 17.1%.Based on the contribution analysis,a transfer path optimization scheme is proposed,which may provide a reference for the optimization of the transfer path of metro vehicles in the future.
基金Supported by the National Nature Science Foundation of China(No.51705445)General Project of Natural Science Foundation of Hebei Province(No.E2020203052)Youth Fund Project of Scientific Research Project of Hebei University(No.QN202013)。
文摘Taking swash plate axial piston pump as the research object,the mechanism of fluid vibration and transfer rule are analyzed.The pump shell can be assumed as the ultimate recipient of vibration transmission,the path model and differential equations from the fluid to the shell are established.The parameters of the path model are determined by the simulation software,and the mathematical model is solved by the simulation software.And time/frequency domain analysis of vibration acceleration of shell is presented.Based on the different influence of various parameters in the transfer path model on transfer characteristics and vibrational recipients,the time-varying parameters are studied by using sensitivity analysis theory,and the influence of the structural parameters on the vibration characteristics of vibration subject is quantitatively analyzed.The research in the paper provides theoretical basis for vibration analysis and structure parameter optimization of axial piston pump.
文摘Passengers’demands for riding comfort have been getting higher and higher as the high-speed railway develops.Scientific methods to analyze the interior noise of the high-speed train are needed and the operational transfer path analysis(OTPA)method provides a theoretical basis and guidance for the noise control of the train and overcomes the shortcomings of the traditional method,which has high test efficiency and can be carried out during the working state of the targeted machine.The OTPA model is established from the aspects of“path reference point-target point”and“sound source reference point-target point”.As for the mechanism of the noise transmission path,an assumption is made that the direct sound propagation is ignored,and the symmetric sound source and the symmetric path are merged.Using the operational test data and the OTPA method,combined with the results of spherical array sound source identification,the path contribution and sound source contribution of the interior noise are analyzed,respectively,from aspects of the total value and spectrum.The results show that the OTPA conforms to the calculation results of the spherical array sound source identification.At low speed,the contribution of the floor path and the contribution of the bogie sources are dominant.When the speed is greater than 300 km/h,the contribution of the roof path is dominant.Moreover,for the carriage with a pantograph,the lifted pantograph is an obvious source.The noise from the exterior sources of the train transfer into the interior mainly through the form of structural excitation,and the contribution of air excitation is non-significant.Certain analyses of train parts provide guides for the interior noise control.
基金Supported by National Key R&D Program of China(Grant No.2016YFE0205200)National Natural Science Foundation of China(Grant No.U1834201)
文摘Noise is one of the key issues in the operation of high-speed railways, with sound source localisation and its transfer path as the two major aspects. This study investigates both the exterior and interior sound source distribution of a high-speed train and presents a method for performing the contribution analysis of airborne sound with regard to the interior noise. First, both exterior and interior sound source locations of the high-speed train are identified through in-situ measurements. Second, the sound source contribution for di erent regions of the train and the relationships between the exterior and interior noises are analysed. Third, a method for conducting the contribution analysis of airborne sound with regard to the interior noise of the high-speed train is described. Lastly, a case study on the sidewall area is carried out, and the contribution of airborne sound to the interior noise of this area is obtained. The results show that, when the high-speed train runs at 310 km/h, dominant exterior sound sources are located in the bogie and pantograph regions, while main interior sound sources are located at the sidewall and roof. The interior noise, the bogie area noise and the sound source at the middle of the coach exhibit very similar rates of increase with increasing train speed. For the selected sidewall area, structure-borne sound dominates in most of the 1/3 octave bands.
文摘This paper studies the transfer path planning problem for safe transfer of an aircraft on the aircraft carrier flight deck under a poor visibility condition or at night.First,we analyze the transfer path planning problem for carrier-based aircraft on the flight deck,and define the objective to be optimized and the constraints to be met.Second,to solve this problem,the mathematical support models for the flight deck,carrier aircraft entity,entity extension,entity posture,entity conflict detection,and path smoothing are established,as they provide the necessary basis for transfer path planning of the aircraft on the aircraft carrier.Third,to enable automatic transfer path planning,we design a multi-habitat parallel chaos algorithm(called KCMPSO),and use it as the optimization method for transfer path planning.Finally,we take the Kuznetsov aircraft carrier as a verification example,and conduct simulations.The simulation results show that compared with particle swarm optimization,this method can solve the transfer path planning problem for an aircraft on the aircraft carrier flight deck better.
基金Guangdong Province Science and Technology Planning Project(2015B010137002/2016A05053021).
文摘The vibration transmission paths in a sport-utility vehicle with a frame structure were used to evaluate the coupled vibra-tion of each vibration transmission link.This method was based on the transmission path of an“engine-powertrain mount system-frame-vehicle body suspension-body-driver seat rail,”and the research objective was to improve the vibration char-acteristics of the cab.This coupled transfer path analysis combined analysis and experiment to establish the vehicle vibration transmission path model and a finite element simulation model.With this method,the vibration level of the driver’s seat rail was reduced and engineering practice was effectively used to improve the vibration characteristics of the cab.This method was applied to a framed SUV cabin.
文摘In the network for data transmission using CMT,there are multiple paths to choose,and the time delay of each path is not the same,there is a certain issue packet out-of-order.This article studied and analyzed the packet transmission in the sender,for each path assigned specific packet sequence number,in order to reduce the random sequence problem,improve the efficiency of network transmission.In the network for data transmission using CMT,there are multiple paths to choose,and the time delay of each path is not the same,there is a certain issue packet out-of-order.This article studied and analyzed the packet transmission in the sender,for each path assigned specific packet sequence number,in order to reduce the random sequence problem,improve the efficiency of network transmission.
基金Project supported by the Collaborative Research in Engineering,Science&Technology(Grant No.P28C2-13)
文摘Miniaturization of electronic package leads to high heat density and heat accumulation in electronics device, resulting in short life time and premature failure of the device. Junction temperature and thermal resistance are the critical parameters that determine the thermal management and reliability in electronics cooling. Metal oxide field effect transistor(MOSFET)is an important semiconductor device for light emitting diode-integrated circuit(LED IC) driver application, and thermal management in MOSFET is a major challenge. In this study, investigations on thermal performance of MOSFET are performed for evaluating the junction temperature and thermal resistance. Suitable modifications in FR4 substrates are proposed by introducing thermal vias and copper layer coating to improve the thermal performance of MOSFET. Experiments are conducted using thermal transient tester(T3ster) at 2.0 A input current and ambient temperature varying from25℃ to 75℃. The thermal parameters are measured for three proposed designs: FR4 with circular thermal vias, FR4 with single strip of copper layer and embedded vias, and FR4 with I-shaped copper layer, and compared with that of plain FR4 substrate. From the experimental results, FR4I-shaped shows promising results by 33.71% reduction in junction temperature and 54.19% reduction in thermal resistance. For elevated temperature, the relative increases in junction temperature and thermal resistance are lower for FR4I-shaped than those for other substrates considered. The introduction of thermal vias and copper layer plays a significant role in thermal performance.
基金supported by the National Key R&D Program of China (Grant No. 2018YFC1507302)the Mathematical Theories and Methods of Data Assimilation supported by National Natural Science Foundation of China (Grant No. 91730304)
文摘The relationship between differences in microwave humidity sounder(MHS)–channel biases which represent measured brightness temperatures and model-simulated brightness temperatures, and cloud ice water path(IWP) as well as the influence of the cloud liquid water path(LWP) on the relationship is examined. Seven years(2011–17) of NOAA-18 MHS-derived measured brightness temperatures and IWP/LWP data generated by the NOAA Comprehensive Large Array-data Stewardship System Microwave Surface and Precipitation Products System are used. The Community Radiative Transfer Model, version2.2.4, is used to simulate model-simulated brightness temperatures using European Center for Medium-Range Weather Forecasts reanalysis data as background fields. Scan-angle deviations of the MHS window channel biases range from-1.7 K to1.0 K. The relationships between channels 2, 4, and 5 biases and scan angle are symmetrical about the nadir. The latitudedependent deviations of MHS window channel biases are positive and range from 0–7 K. For MHS non-window channels,the latitudinal deviations between measured brightness temperatures and model-simulated brightness temperatures are larger when the detection height is higher. No systematic warm or cold deviations are found in the global spatial distribution of difference between measured brightness temperatures and model-simulated brightness temperatures over oceans after removing scan-angle and latitudinal deviations. The corrected biases of five different MHS channels decrease differently with respect to the increase in IWP. This decrease is stronger when LWP values are higher.
基金supported by the Aeronautical Science Foundation of China(20135153031 20135553035 2017ZC53033)
文摘In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the POMDP framework. The elements of the POMDP model are analyzed and described. The state transfer law in the model can be described by the method of interactive multiple model (IMM) due to the diversity of the target motion law, which is used to switch the motion model to accommodate target maneuvers, and hence improving the tracking accuracy. The simulation results show that the model can achieve efficient planning for the UAV route, and effective tracking for the target. Furthermore, the path planned by this model is more reasonable and efficient than that by using the single state transition law.
文摘Aiming at the dimension disaster problem, poor model generalization ability and deadlock problem in special obstacles environment caused by the increase of state information in the local path planning process of mobile robot, this paper proposed a Double BP Q-learning algorithm based on the fusion of Double Q-learning algorithm and BP neural network. In order to solve the dimensional disaster problem, two BP neural network fitting value functions with the same network structure were used to replace the two <i>Q</i> value tables in Double Q-Learning algorithm to solve the problem that the <i>Q</i> value table cannot store excessive state information. By adding the mechanism of priority experience replay and using the parameter transfer to initialize the model parameters in different environments, it could accelerate the convergence rate of the algorithm, improve the learning efficiency and the generalization ability of the model. By designing specific action selection strategy in special environment, the deadlock state could be avoided and the mobile robot could reach the target point. Finally, the designed Double BP Q-learning algorithm was simulated and verified, and the probability of mobile robot reaching the target point in the parameter update process was compared with the Double Q-learning algorithm under the same condition of the planned path length. The results showed that the model trained by the improved Double BP Q-learning algorithm had a higher success rate in finding the optimal or sub-optimal path in the dense discrete environment, besides, it had stronger model generalization ability, fewer redundant sections, and could reach the target point without entering the deadlock zone in the special obstacles environment.