The four-level model of laser-induced collisional energy transfer (LICET) for the ion-ion collision system is established based on the time-dependent SchrSdinger equation for the electron dynamics, through which the...The four-level model of laser-induced collisional energy transfer (LICET) for the ion-ion collision system is established based on the time-dependent SchrSdinger equation for the electron dynamics, through which the equations of motion of the probability amplitudes and cross section of the collision system are obtained. Numerical calculations are performed for the Ca+ Sr+ system, with the results showing that the peak of the LICET spectrum appears at a resonant frequency of the transfer laser. The magnitude of the obtained collision cross section is in the order of 10-16 cm2, and is comparable to that obtained in atomic systems, which indicates the validity of the established four-level model.展开更多
It is important to select suitable parameters of a submerged entry nozzle (SEN) for optimizing the flow and temperature patterns in a mold. The effect of SEN design on the mould level stability, meniscus steel flow ...It is important to select suitable parameters of a submerged entry nozzle (SEN) for optimizing the flow and temperature patterns in a mold. The effect of SEN design on the mould level stability, meniscus steel flow velocity, and heat transfer of the mold of a medium thin slab caster was studied by means of 1:1 water modeling and industrial testing. The advantages of a 2-port SEN compared with a 3-port SEN are the following: more optimal flow patterns with a lower mold level fluctuation and a lower meniscus steel flow velocity; proper powder consumption without slag bears due to a reasonable liquid powder thickness. The argon flow rate can be reduced and the mold average heat flux and temperature near the edges of the copper plate are reduced. At a casting speed of 2.5 m·min^-1, the mold level fluctuation lies within +5 mm. In addition, soft cooling of the steel shell in the mold is realized, which is suitable for casting crack susceptible steel grades.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10674036 and 10774033)Program of Excellent Team in Harbin Institute of Technology,China
文摘The four-level model of laser-induced collisional energy transfer (LICET) for the ion-ion collision system is established based on the time-dependent SchrSdinger equation for the electron dynamics, through which the equations of motion of the probability amplitudes and cross section of the collision system are obtained. Numerical calculations are performed for the Ca+ Sr+ system, with the results showing that the peak of the LICET spectrum appears at a resonant frequency of the transfer laser. The magnitude of the obtained collision cross section is in the order of 10-16 cm2, and is comparable to that obtained in atomic systems, which indicates the validity of the established four-level model.
文摘It is important to select suitable parameters of a submerged entry nozzle (SEN) for optimizing the flow and temperature patterns in a mold. The effect of SEN design on the mould level stability, meniscus steel flow velocity, and heat transfer of the mold of a medium thin slab caster was studied by means of 1:1 water modeling and industrial testing. The advantages of a 2-port SEN compared with a 3-port SEN are the following: more optimal flow patterns with a lower mold level fluctuation and a lower meniscus steel flow velocity; proper powder consumption without slag bears due to a reasonable liquid powder thickness. The argon flow rate can be reduced and the mold average heat flux and temperature near the edges of the copper plate are reduced. At a casting speed of 2.5 m·min^-1, the mold level fluctuation lies within +5 mm. In addition, soft cooling of the steel shell in the mold is realized, which is suitable for casting crack susceptible steel grades.