Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve thro...Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve throughout the disease course.This review examined 95 studies(2000-2025)from PubMed,Web of Science,and CNKI databases including longitudinal cohorts,randomized controlled trials,and mixed-methods research,to characterize the complex interplay between biological,psychological,and social factors affecting RA patients’mental health.Findings revealed three distinct vulnerability trajectories(45%persistently low,30%fluctuating improvement,25%persistently high)and four adaptation stages,with critical intervention periods occurring 3-6 months postdiagnosis and during disease flares.Multiple factors significantly influence psychological outcomes,including gender(females showing 1.8-fold increased risk),age(younger patients experiencing 42%higher vulnerability),pain intensity,inflammatory markers,and neuroendocrine dysregulation(48%showing cortisol rhythm disruption).Early psychological intervention(within 3 months of diagnosis)demonstrated robust benefits,reducing depression incidence by 42%with effects persisting 24-36 months,while different modalities showed complementary advantages:Cognitive behavioral therapy for depression(Cohen’s d=0.68),mindfulness for pain acceptance(38%improvement),and peer support for meaning reconstruction(25.6%increase).These findings underscore the importance of integrating routine psychological assessment into standard RA care,developing stage-appropriate interventions,and advancing research toward personalized biopsychosocial approaches that address the dynamic psychological dimensions of the disease.展开更多
Retinal ganglion cells,a crucial component of the central nervous system,are often affected by irreversible visual impairment due to various conditions,including trauma,tumors,ischemia,and glaucoma.Studies have shown ...Retinal ganglion cells,a crucial component of the central nervous system,are often affected by irreversible visual impairment due to various conditions,including trauma,tumors,ischemia,and glaucoma.Studies have shown that the optic nerve crush model and glaucoma model are commonly used to study retinal ganglion cell injury.While these models differ in their mechanisms,both ultimately result in retinal ganglion cell injury.With advancements in high-throughput technologies,techniques such as microarray analysis,RNA sequencing,and single-cell RNA sequencing have been widely applied to characterize the transcriptomic profiles of retinal ganglion cell injury,revealing underlying molecular mechanisms.This review focuses on optic nerve crush and glaucoma models,elucidating the mechanisms of optic nerve injury and neuron degeneration induced by glaucoma through single-cell transcriptomics,transcriptome analysis,and chip analysis.Research using the optic nerve crush model has shown that different retinal ganglion cell subtypes exhibit varying survival and regenerative capacities following injury.Single-cell RNA sequencing has identified multiple genes associated with retinal ganglion cell protection and regeneration,such as Gal,Ucn,and Anxa2.In glaucoma models,high-throughput sequencing has revealed transcriptomic changes in retinal ganglion cells under elevated intraocular pressure,identifying genes related to immune response,oxidative stress,and apoptosis.These genes are significantly upregulated early after optic nerve injury and may play key roles in neuroprotection and axon regeneration.Additionally,CRISPR-Cas9 screening and ATAC-seq analysis have identified key transcription factors that regulate retinal ganglion cell survival and axon regeneration,offering new potential targets for neurorepair strategies in glaucoma.In summary,single-cell transcriptomic technologies provide unprecedented insights into the molecular mechanisms underlying optic nerve injury,aiding in the identification of novel therapeutic targets.Future researchers should integrate advanced single-cell sequencing with multi-omics approaches to investigate cell-specific responses in retinal ganglion cell injury and regeneration.Furthermore,computational models and systems biology methods could help predict molecular pathways interactions,providing valuable guidance for clinical research on optic nerve regeneration and repair.展开更多
Drug development for Alzheimer’s disease is extremely challenging,as demonstrated by the repeated failures of amyloid-β-targeted therapeutics and the controversies surrounding the amyloid-βcascade hypothesis.More r...Drug development for Alzheimer’s disease is extremely challenging,as demonstrated by the repeated failures of amyloid-β-targeted therapeutics and the controversies surrounding the amyloid-βcascade hypothesis.More recently,advances in the development of Lecanemab,an anti-amyloid-βmonoclonal antibody,have shown positive results in reducing brain A burden and slowing cognitive decline in patients with early-stage Alzheimer’s disease in the Phase Ⅲ clinical trial(Clarity Alzheimer’s disease).Despite these promising results,side effects such as amyloid-related imaging abnormalities(ARIA)may limit its usage.ARIA can manifest as ARIA-E(cerebral edema or effusions)and ARIA-H(microhemorrhages or superficial siderosis)and is thought to be caused by increased vascular permeability due to inflammatory responses,leading to leakages of blood products and protein-rich fluid into brain parenchyma.Endothelial dysfunction is an early pathological feature of Alzheimer’s disease,and the blood-brain barrier becomes increasingly leaky as the disease progresses.In addition,APOE4,the strongest genetic risk factor for Alzheimer’s disease,is associated with higher vascular amyloid burden,increased ARIA incidence,and accelerated blood-brain barrier disruptions.These interconnected vascular abnormalities highlight the importance of vascular contributions to the pathophysiology of Alzheimer’s disease.Here,we will closely examine recent research evaluating the heterogeneity of brain endothelial cells in the microvasculature of different brain regions and their relationships with Alzheimer’s disease progression.展开更多
Drought stress is the main limiting plant growth factor in arid and semiarid regions.The Lanzhou lily(Lilium davidii var.unicolor)is the only sweet-tasting lily grown in these regions of China that offers highly edibl...Drought stress is the main limiting plant growth factor in arid and semiarid regions.The Lanzhou lily(Lilium davidii var.unicolor)is the only sweet-tasting lily grown in these regions of China that offers highly edible,medicinal,health,and ornamental value.The Tresor lily is an ornamental flower known for its strong resistance.Plants were grown under three different drought intensity treatments,namely,being watered at intervals of 5,15,and 25 d(either throughout the study or during specific growth stages).We measured the biomass,leaf area,photosynthetic response,chlorophyll content(SPAD value),and osmoregulation of both the Lanzhou lily and the Tresor lily(Lilium‘Tresor’).Additionally,we employed RNA sequencing(RNA-Seq)and qRT-PCR to investigate transcriptomic changes of the Lanzhou lily in response to drought stress.Results showed that under drought stress,the decreasing rate in the Lanzhou lily bulb weight was lower than the corresponding Tresor lily bulb rate;the net photosynthetic rate,transpiration rate,and stomatal conductance of the Lanzhou lily were all higher compared to the Tresor lily;osmoregulation constituents,such as glucose,fructose,sucrose,trehalose,and soluble sugar,in the Lanzhou lily were comparatively higher;PYL,NCED,and ERS genes were significantly expressed in the Lanzhou lily.Under moderate drought,the biosynthesis of flavonoids,circadian rhythms,and the tryptophan metabolism pathway of the Lanzhou lily were all significant.Under severe drought stress,fatty acid elongation,photosynthetic antenna protein,plant hormone signal transduction,flavone and flavonol biosynthesis,and the carotenoid biosynthesis pathway were all significant.The Lanzhou lily adapted to drought stress by coordinating its organs and the unique role of its bulb,regulating photosynthesis,increasing osmolyte content,activating circadian rhythms,signal transduction,fatty acid elongation metabolism,and phenylalanine and flavonoid metabolic pathways,which may collectively be the main adaptation strategy and mechanisms used by the Lanzhou lily under drought stress.展开更多
Microwave thermochemotherapy(MTC)has been applied to treat lip squamous cell carcinoma(LSCC),but a deeper understanding of its therapeutic mechanisms and molecular biology is needed.To address this,we used single-cell...Microwave thermochemotherapy(MTC)has been applied to treat lip squamous cell carcinoma(LSCC),but a deeper understanding of its therapeutic mechanisms and molecular biology is needed.To address this,we used single-cell transcriptomics(scRNA-seq)and spatial transcriptomics(ST)to highlight the pivotal role of tumor-associated neutrophils(TANs)among tumor-infiltrating immune cells and their therapeutic response to MTC.MNDA+TANs with anti-tumor activity(N1-phenotype)are found to be abundantly infiltrated by MTC with benefit of increased blood perfusion,and these TANs are characterized by enhanced cytotoxicity,ameliorated hypoxia,and upregulated IL1B,activating T&NK cells and fibroblasts via IL1B-IL1R.In this highly anti-tumor immunogenic and hypoxia-reversed microenvironment under MTC,fibroblasts accumulated in the tumor front(TF)can recruit N1-TANs via CXCL2-CXCR2 and clear N2-TANs(pro-tumor phenotype)via CXCL12-CXCR4,which results in the aggregation of N1-TANs and extracellular matrix(ECM)deposition.In addition,we construct an N1-TANs marker,MX2,which positively correlates with better prognosis in LSCC patients,and employ deep learning techniques to predict expression of MX2 from hematoxylin-eosin(H&E)-stained images so as to conveniently guide decision making in clinical practice.Collectively,our findings demonstrate that the N1-TANs/fibroblasts defense wall formed in response to MTC effectively combat LSCC.展开更多
Ascorbic acid, also referred to as vitamin C(Vc), is an important nutrient found in fruits and vegetables that promotes produce quality and human health. Rosa roxburghii is an underutilized natural fruit that contains...Ascorbic acid, also referred to as vitamin C(Vc), is an important nutrient found in fruits and vegetables that promotes produce quality and human health. Rosa roxburghii is an underutilized natural fruit that contains very high levels of Vc. However, the Vc content of R. roxburghii varies considerably during plant development and ripening. To better understand the molecular mechanisms that underlie fluctuations in Vc content of R. roxburghii fruit at different developmental stages, we performed transcriptomic and metabolomic analyses and identified two significant gene networks/modules and 168 transcription factors directly involved in Vc synthesis. Promoter analysis of two core genes involved in Vc synthesis, RrGGP and RrGalUR, revealed the presence of a retroviral long terminal repeat(LTR) insert in the RrGalUR promoter. Using yeast one-hybrid and dual-luciferase assays, we demonstrated that the transcription factors RrHY5H and RrZIP9 bind to the promoter of RrGGP to promote its expression. RrZIP6 and RrWRKY4 bind to the LTR in the RrGalUR promoter to promote its expression. Our results reveal a molecular mechanism that controls Vc synthesis and accumulation in R. roxburghii fruit.展开更多
Benzo[a]pyrene(B[a]P)is a carcinogenic environmental pollutant widely present in the environment and can enter the human body through the food chain.It is therefore essential to treat and remediate the B[a]P-contamina...Benzo[a]pyrene(B[a]P)is a carcinogenic environmental pollutant widely present in the environment and can enter the human body through the food chain.It is therefore essential to treat and remediate the B[a]P-contaminated environment.Microbial remediation of B[a]Pcontaminated environments is considered to be one of the most effective strategies,and the addition of biostimulants is a feasible method to further improve the effectiveness of microbial remediation.In this study,we used Bacillus subtilis MSC4 to screen for the stimulation of sodium gluconate,which promoted B[a]P degradation.Based on biochemical and transcriptomic analyses,Sodium gluconate was found to significantly increase the biomass of MSC4 and the expression of most genes involved in B[a]P degradation.Activities of central carbon metabolism,fatty acidβ-oxidation and oxidative phosphorylation were all promoted.The significant increase in acid-induced oxalate decarboxylase expression indicates a decrease in intracellular pH,which promoted the synthesis of acetoin and lactate.Genes involved in the nitrogen cycle,especially nitrification and denitrification,were significantly up-regulated,contributing to B[a]P degradation.Genes involved in the synthesis of enzyme cofactors,including thiamine,molybdenum cofactors,NAD and heme,were up-regulated,which contributes to increasing enzyme activity in metabolic pathways.Up-regulation of genes in flagella assembly,chemotaxis,and lipopeptide synthesis is beneficial for the dissolution and uptake of B[a]P.Genes related to the sugar transport system were upregulated,which facilitates the transport and absorption of monosaccharides and oligosaccharides by MSC4.This study provides a theoretical basis for the further application of sodium gluconate in the treatment of PAH-contaminated sites.展开更多
Background:This study aims to identify distinct cellular subtypes within brain tissue using single-cell transcriptomic analysis,focusing on specific biomarkers that differentiate cell types and the effects of traditio...Background:This study aims to identify distinct cellular subtypes within brain tissue using single-cell transcriptomic analysis,focusing on specific biomarkers that differentiate cell types and the effects of traditional and exercise therapy.Methods:Four samples were analyzed:older control(OC),older exercise(OE),younger control(YC),and younger exercise(YE).Single-cell RNA sequencing was used to distinguish cellular subtypes through their biomarker profiles.Data visualization included violin and t-SNE plots to illustrate biomarker expression across cell clusters such as oligodendrocytes,microglia,and astrocytes.Additionally,BV2 cells were exposed to amyloid-beta fragments to simulate Alzheimer’s disease,assessing the impact of exercise-induced cellular responses.Results:Distinct cellular subtypes were identified:oligodendrocytes(MBP,St18),microglia(Dock8),and astrocytes(Aqp4,Gpc5).Sample OE was predominantly oligodendrocytes,while YE had more astrocytes,inhibitory neurons,and Canal-Retzius cells.YC showed a significant presence of Olfm3+ganglion neurons.ZEB1 gene knockout revealed changes in SMAD family gene expression,which regulate ferroptosis.Oxidative stress levels were also evaluated.Conclusion:This profiling enhances our understanding of brain cellular functions and interactions,potentially informing targeted therapies in neurological research.Exercise may influence brain cell immune responses and cell death pathways by regulating specific gene expressions,offering new insights for treating neuroinflammation and degeneration.展开更多
The WSC proteins produced by Penicillium expansum play a crucial role in causing blue mold on pears.To analyze the role of the WSC1 gene in the pathogenic process of this fungal pathogen,we conducted transcriptomic an...The WSC proteins produced by Penicillium expansum play a crucial role in causing blue mold on pears.To analyze the role of the WSC1 gene in the pathogenic process of this fungal pathogen,we conducted transcriptomic analysis of a WSC1 knockout(ΔWSC1)strain.The knockout of WSC1 significantly altered the gene expression profile in P.expansum,particularly for genes involved in cell wall integrity,signaling,stress response,and toxin production.The differential expression of these genes might make theΔWSC1 strain more vulnerable to environmental stress,while reducing the toxin production capacity,ultimately leading to a decrease in the pathogenicity.The transcriptomic analysis revealed that the expression of genes related to stress response signals,defense mechanisms and oxidative stress management changed when pear fruits were infected with theΔWSC1 strain.These changes may trigger a cascade of responses in pear fruits.In addition,compared with those infected with the wild-type strain,pear fruits infected with theΔWSC1 strain exhibited up-regulated expression of genes related to defense and oxidative stress.This study clarifies how the WSC1 gene influences P.expansum’s ability to infect pear fruits and how pear fruits respond to the infection.展开更多
Understanding the ecological adaptation of tree species can not only reveal the evolutionary potential but also benefit biodiversity conservation under global climate change.Quercus is a keystone genus in Northern Hem...Understanding the ecological adaptation of tree species can not only reveal the evolutionary potential but also benefit biodiversity conservation under global climate change.Quercus is a keystone genus in Northern Hemisphere forests,and its wide distribution in diverse ecosystems and long evolutionary history make it an ideal model for studying the genomic basis of ecological adaptations.Here we used a newly sequenced genome of Quercus gilva,an evergreen oak species from East Asia,with 18 published Fagales genomes to determine how Fagaceae genomes have evolved,identify genomic footprints of ecological adaptability in oaks in general,as well as between evergreen and deciduous oaks.We found that oak species exhibited a higher degree of genomic conservation and stability,as indicated by the absence of large-scale chromosomal structural variations or additional whole-genome duplication events.In addition,we identified expansion and tandem repetitions within gene families that contribute to plant physical and chemical defense(e.g.,cuticle biosynthesis and oxidosqualene cyclase genes),which may represent the foundation for the ecological adaptation of oak species.Circadian rhythm and hormone-related genes may regulate the habits of evergreen and deciduous oaks.This study provides a comprehensive perspective on the ecological adaptations of tree species based on phylogenetic,genome evolutionary,and functional genomic analyses.展开更多
As climate change triggers unprecedented ecological shifts,it becomes imperative to understand the genetic underpinnings of species’adaptability.Adaptive introgression significantly contributes to organismal adaptati...As climate change triggers unprecedented ecological shifts,it becomes imperative to understand the genetic underpinnings of species’adaptability.Adaptive introgression significantly contributes to organismal adaptation to new environments by introducing genetic variation across species boundaries.However,despite growing recognition of its importance,the extent to which adaptive introgression has shaped the evolutionary history of closely related species remains poorly understood.Here we employed population genetic analyses of high-throughput sequencing data to investigate the interplay between genetic introgression and local adaptation in three species of spruce trees in the genus Picea(P.asperata,P.crassifolia,and P.meyeri).We find distinct genetic differentiation among these species,despite a substantial gene flow.Crucially,we find bidirectional adaptive introgression between allopatrically distributed species pairs and unearthed dozens of genes linked to stress resilience and flowering time.These candidate genes most likely have promoted adaptability of these spruces to historical environmental changes and may enhance their survival and resilience to future climate changes.Our findings highlight that adaptive introgression could be prevalent and bidirectional in a topographically complex area,and this could have contributed to rich genetic variation and diverse habitat usage by tree species.展开更多
Glial cells play crucial roles in regulating physiological and pathological functions,including sensation,the response to infection and acute injury,and chronic neurodegenerative disorders.Glial cells include astrocyt...Glial cells play crucial roles in regulating physiological and pathological functions,including sensation,the response to infection and acute injury,and chronic neurodegenerative disorders.Glial cells include astrocytes,microglia,and oligodendrocytes in the central nervous system,and satellite glial cells and Schwann cells in the peripheral nervous system.Despite the greater understanding of glial cell types and functional heterogeneity achieved through single-cell and single-nucleus RNA sequencing in animal models,few studies have investigated the transcriptomic profiles of glial cells in the human spinal cord.Here,we used high-throughput single-nucleus RNA sequencing and spatial transcriptomics to map the cellular and molecular heterogeneity of astrocytes,microglia,and oligodendrocytes in the human spinal cord.To explore the conservation and divergence across species,we compared these findings with those from mice.In the human spinal cord,astrocytes,microglia,and oligodendrocytes were each divided into six distinct transcriptomic subclusters.In the mouse spinal cord,astrocytes,microglia,and oligodendrocytes were divided into five,four,and five distinct transcriptomic subclusters,respectively.The comparative results revealed substantial heterogeneity in all glial cell types between humans and mice.Additionally,we detected sex differences in gene expression in human spinal cord glial cells.Specifically,in all astrocyte subtypes,the levels of NEAT1 and CHI3L1 were higher in males than in females,whereas the levels of CST3 were lower in males than in females.In all microglial subtypes,all differentially expressed genes were located on the sex chromosomes.In addition to sex-specific gene differences,the levels of MT-ND4,MT2A,MT-ATP6,MT-CO3,MT-ND2,MT-ND3,and MT-CO_(2) in all spinal cord oligodendrocyte subtypes were higher in females than in males.Collectively,the present dataset extensively characterizes glial cell heterogeneity and offers a valuable resource for exploring the cellular basis of spinal cordrelated illnesses,including chronic pain,amyotrophic lateral sclerosis,and multiple sclerosis.展开更多
As a common malignant tumor,the heterogeneity of colorectal cancer plays an important role in tumor progression and treatment response.In recent years,the rapid development of single-cell transcriptomics and spatial t...As a common malignant tumor,the heterogeneity of colorectal cancer plays an important role in tumor progression and treatment response.In recent years,the rapid development of single-cell transcriptomics and spatial transcriptomics technologies has provided new perspectives for resolving the heterogeneity of colorectal cancer.These techniques can reveal the complexity of cellular composition and their interactions in the tumor microenvironment,and thus facilitate a deeper understanding of tumor biology.However,in practical applications,researchers still face technical challenges such as data processing and result interpretation.The aim of this paper is to explore how to use artificial intelligence(AI)technology to enhance the research efficiency of single-cell and spatial transcriptomics,analyze the current research progress and its limitations,and explore how combining AI approaches can provide new ideas for decoding the heterogeneity of colorectal cancer,and ultimately provide theoretical basis and practical guidance for the clinical precision treatment.展开更多
[Objectives]To further explore the mechanism of quercetin regulating the activity of Sune-1 cells.[Methods]High-throughput mRNA-miRNA transcriptome sequencing technology was used to screen miRNA in Sune-1 cells treate...[Objectives]To further explore the mechanism of quercetin regulating the activity of Sune-1 cells.[Methods]High-throughput mRNA-miRNA transcriptome sequencing technology was used to screen miRNA in Sune-1 cells treated with quercetin.[Results]Statistical analysis showed that 1264 miRNAs were differentially expressed in Sune-1 cells treated with quercetin,of which 716 were significantly up-regulated and 548 were significantly down-regulated;191 miRNAs were differentially expressed in Sune-1 cells treated with quercetin,of which 129 were significantly up-regulated and 62 were significantly down-regulated.By comparing the expression differences of these mRNAs and miRNAs in different samples,six different expression patterns were clustered.The expression of the above miRNAs was verified by real-time quantitative PCR(qPCR),and the results were highly consistent with the transcriptome sequencing data.In addition,Gene Ontology annotation and functional enrichment analysis of miRNA target genes showed that CTGF,VHL and H19,which are related to the regulation of cell proliferation signal transduction,were predicted to be new targets of differential miRNAs such as miR494-3p and miR675-3p and may play an important regulatory role in the process of Quercetin inhibiting the proliferation of Sune-1 cells.[Conclusions]This study provides a basis for the rational use of anti-tumor functional components of traditional Chinese medicine,and also provides a theoretical basis for the targeted therapy of nasopharyngeal carcinoma.展开更多
The intertwined challenges of climate change, resource scarcity, and conflict require innovative integrated solutions that address both environmental and societal vulnerabilities. Technological innovation offers a tra...The intertwined challenges of climate change, resource scarcity, and conflict require innovative integrated solutions that address both environmental and societal vulnerabilities. Technological innovation offers a transformative pathway for climate change adaptation and peacebuilding, with emphasis on a holistic approach to managing resource conflicts and environmental challenges. This paper explores the synergies between emerging technologies and strategic framework to mitigate climate-induced tensions and foster resilience. It focuses on the application of renewable energy systems to reduce dependence on contested resources, blockchain technology to ensure transparency in climate finance, equitable resource allocation and Artificial Intelligence (AI) to enhance early warning systems for climate-related disaster and conflicts. Additionally, technologies such as precision agriculture and remote sensing empower communities to optimize resource use, adapt to shifting environmental conditions, and reduce competition over scares resources. These innovations with inclusive governance and local capacity-building are very primordial. Ultimately, the convergence of technology, policy, and local participation offers a scalable and replicable model for addressing the dual challenges of environmental degradation and instability, thereby paving the way for a more sustainable and peaceful future.展开更多
Waterlogging stress significantly impairs plant growth and reduces crop yields.Spermidine(Spd),functioning as a second messenger,demonstrates positive effects on plant growth under waterlogging stress conditions.Howev...Waterlogging stress significantly impairs plant growth and reduces crop yields.Spermidine(Spd),functioning as a second messenger,demonstrates positive effects on plant growth under waterlogging stress conditions.However,the molecular mechanisms by which exogenous Spd application alleviates waterlogging stress remain unclear.This study employed physiological analysis and multi-omics approaches to investigate the effect of Spd application on waterlogging stress.The application of Spd enhanced the expression of genes related to light-harvesting complex(LHC),photosynthesis,and starch-related pathways,while inhibiting chlorophyll degradation and maintaining higher photosynthetic rates,thereby increasing biomass accumulation under waterlogging stress.The activation of genes associated with trehalose and Spd biosynthesis resulted in elevated accumulation of trehalose and endogenous Spd.The inhibition of 1-aminocyclopropane-1-carboxylic acid(ACC)oxidase(ACO)expression contributed to reduced ethylene emission,enhancing maize resistance to waterlogging.Following Spd application,auxin-related genes were up-regulated and indole acetic acid(IAA)content increased,promoting cell elongation in maize and maintaining normal growth under waterlogging stress.Additionally,the upregulation of lipid-related genes led to increased lipid content,protecting cell membranes under waterlogging conditions.These molecular and physiological modifications collectively enhanced resistance to waterlogging stress.These findings advance our understanding of Spd's regulatory roles in mitigating waterlogging damage and provide valuable insights for breeding waterlogging-tolerant maize varieties.展开更多
BACKGROUND Endometriosis is a clinical condition characterized by the presence of endometrial glands outside the uterine cavity.While its incidence remains mostly uncertain,endometriosis impacts around 180 million wom...BACKGROUND Endometriosis is a clinical condition characterized by the presence of endometrial glands outside the uterine cavity.While its incidence remains mostly uncertain,endometriosis impacts around 180 million women worldwide.Despite the presentation of several epidemiological and clinical explanations,the precise mechanism underlying the disease remains ambiguous.In recent years,researchers have examined the hereditary dimension of the disease.Genetic research has aimed to discover the gene or genes responsible for the disease through association or linkage studies involving candidate genes or DNA mapping techniques.AIM To identify genetic biomarkers linked to endometriosis by the application of machine learning(ML)approaches.METHODS This case-control study accounted for the open-access transcriptomic data set of endometriosis and the control group.We included data from 22 controls and 16 endometriosis patients for this purpose.We used AdaBoost,XGBoost,Stochasting Gradient Boosting,Bagged Classification and Regression Trees(CART)for classification using five-fold cross validation.We evaluated the performance of the models using the performance measures of accuracy,balanced accuracy,sensitivity,specificity,positive predictive value,negative predictive value and F1 score.RESULTS Bagged CART gave the best classification metrics.The metrics obtained from this model are 85.7%,85.7%,100%,75%,75%,100%and 85.7%for accuracy,balanced accuracy,sensitivity,specificity,positive predictive value,negative predictive value and F1 score,respectively.Based on the variable importance of modeling,we can use the genes CUX2,CLMP,CEP131,EHD4,CDH24,ILRUN,LINC01709,HOTAIR,SLC30A2 and NKG7 and other transcripts with inaccessible gene names as potential biomarkers for endometriosis.CONCLUSION This study determined possible genomic biomarkers for endometriosis using transcriptomic data from patients with/without endometriosis.The applied ML model successfully classified endometriosis and created a highly accurate diagnostic prediction model.Future genomic studies could explain the underlying pathology of endometriosis,and a non-invasive diagnostic method could replace the invasive ones.展开更多
This study explores the cultural,social,and academic adaptation experiences of international students in Wenzhou,China.Based on surveys and interviews with 52 students from 20 countries—predominantly Morocco—the res...This study explores the cultural,social,and academic adaptation experiences of international students in Wenzhou,China.Based on surveys and interviews with 52 students from 20 countries—predominantly Morocco—the research investigates key challenges and coping strategies related to local integration.The findings indicate that while Wenzhou offers a generally supportive academic environment—enhanced by AI integration and practical teaching methods—language barriers continue to hinder students’daily life,academic engagement,and social interactions.Limited Mandarin proficiency made it difficult for many students to build friendships with locals and navigate everyday tasks.Cultural adaptation also presented obstacles,particularly in adjusting to local food and social norms.Despite these challenges,students employed various strategies to facilitate integration,such as attending HSK language courses,watching Chinese media,and initiating conversations with local peers.While most participants described the local community as welcoming,perceptions varied based on individual experiences and language ability.The study highlights the importance of enhanced language support and structured cross-cultural exchange initiatives in improving international students’experiences.It contributes to the broader discourse on international student mobility by offering insights from a second-tier Chinese city,emphasizing the role of institutional practices in shaping adaptation outcomes.展开更多
BACKGROUND Schizophrenia(SZ),a chronic and widespread brain disorder,presents with complex etiology and pathogenesis that remain inadequately understood.Despite the absence of a universally recognized endophenotype,pe...BACKGROUND Schizophrenia(SZ),a chronic and widespread brain disorder,presents with complex etiology and pathogenesis that remain inadequately understood.Despite the absence of a universally recognized endophenotype,peripheral blood mononuclear cells(PBMCs)serve as a robust model for investigating intracellular alterations linked to SZ.AIM To preliminarily investigate potential pathogenic mechanisms and identify novel biomarkers for SZ.METHODS PBMCs from SZ patients were subjected to integrative transcriptomic and proteomic analyses to uncover differentially expressed genes(DEGs)and differentially expressed proteins while mapping putative disease-associated signaling pathways.Key findings were validated using western blot(WB)and real-time fluorescence quantitative PCR(RT-qPCR).RNAi-lentivirus was employed to transfect rat hippocampal CA1 neurons in vitro,with subsequent verification of target gene expression via RT-qPCR.The levels of neuronal conduction proteins,including calmodulin-dependent protein kinase II(caMKII),CREB,and BDNF,were assessed through WB.Apoptosis was quantified by flow cytometry,while cell proliferation and viability were evaluated using the Cell Counting Kit-8 assay.RESULTS The integration of transcriptomic and proteomic analyses identified 6079 co-expressed genes,among which 25 DEGs were significantly altered between the SZ group and healthy controls.Notably,haptoglobin(HP),lactotransferrin(LTF),and SERPING1 exhibited marked upregulation.KEGG pathway enrichment analysis implicated neuroactive ligand-receptor interaction pathways in disease pathogenesis.Clinical sample validation demonstrated elevated protein and mRNA levels of HP,LTF,and SERPING1 in the SZ group compared to controls.WB analysis of all clinical samples further corroborated the significant upregulation of SERPING1.In hippocampal CA1 neurons transfected with lentivirus,reduced SERPING1 expression was accompanied by increased levels of CaMKII,CREB,and BDNF,enhanced cell viability,and reduced apoptosis.CONCLUSION SERPING1 may suppress neural cell proliferation in SZ patients via modulation of the CaMKII-CREB-BDNF signaling pathway.展开更多
基金Supported by Chongqing Health Commission and Chongqing Science and Technology Bureau,No.2023MSXM182。
文摘Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve throughout the disease course.This review examined 95 studies(2000-2025)from PubMed,Web of Science,and CNKI databases including longitudinal cohorts,randomized controlled trials,and mixed-methods research,to characterize the complex interplay between biological,psychological,and social factors affecting RA patients’mental health.Findings revealed three distinct vulnerability trajectories(45%persistently low,30%fluctuating improvement,25%persistently high)and four adaptation stages,with critical intervention periods occurring 3-6 months postdiagnosis and during disease flares.Multiple factors significantly influence psychological outcomes,including gender(females showing 1.8-fold increased risk),age(younger patients experiencing 42%higher vulnerability),pain intensity,inflammatory markers,and neuroendocrine dysregulation(48%showing cortisol rhythm disruption).Early psychological intervention(within 3 months of diagnosis)demonstrated robust benefits,reducing depression incidence by 42%with effects persisting 24-36 months,while different modalities showed complementary advantages:Cognitive behavioral therapy for depression(Cohen’s d=0.68),mindfulness for pain acceptance(38%improvement),and peer support for meaning reconstruction(25.6%increase).These findings underscore the importance of integrating routine psychological assessment into standard RA care,developing stage-appropriate interventions,and advancing research toward personalized biopsychosocial approaches that address the dynamic psychological dimensions of the disease.
基金supported by the National Natural Science Foundation of China,Nos.82471123,82171053the Jilin Province Special Project for Talent in Medical and Health Sciences,No.2024WSXK-E01the Natural Science Foundation of Jilin Province,YDZJ202501ZYTS318(all to GL).
文摘Retinal ganglion cells,a crucial component of the central nervous system,are often affected by irreversible visual impairment due to various conditions,including trauma,tumors,ischemia,and glaucoma.Studies have shown that the optic nerve crush model and glaucoma model are commonly used to study retinal ganglion cell injury.While these models differ in their mechanisms,both ultimately result in retinal ganglion cell injury.With advancements in high-throughput technologies,techniques such as microarray analysis,RNA sequencing,and single-cell RNA sequencing have been widely applied to characterize the transcriptomic profiles of retinal ganglion cell injury,revealing underlying molecular mechanisms.This review focuses on optic nerve crush and glaucoma models,elucidating the mechanisms of optic nerve injury and neuron degeneration induced by glaucoma through single-cell transcriptomics,transcriptome analysis,and chip analysis.Research using the optic nerve crush model has shown that different retinal ganglion cell subtypes exhibit varying survival and regenerative capacities following injury.Single-cell RNA sequencing has identified multiple genes associated with retinal ganglion cell protection and regeneration,such as Gal,Ucn,and Anxa2.In glaucoma models,high-throughput sequencing has revealed transcriptomic changes in retinal ganglion cells under elevated intraocular pressure,identifying genes related to immune response,oxidative stress,and apoptosis.These genes are significantly upregulated early after optic nerve injury and may play key roles in neuroprotection and axon regeneration.Additionally,CRISPR-Cas9 screening and ATAC-seq analysis have identified key transcription factors that regulate retinal ganglion cell survival and axon regeneration,offering new potential targets for neurorepair strategies in glaucoma.In summary,single-cell transcriptomic technologies provide unprecedented insights into the molecular mechanisms underlying optic nerve injury,aiding in the identification of novel therapeutic targets.Future researchers should integrate advanced single-cell sequencing with multi-omics approaches to investigate cell-specific responses in retinal ganglion cell injury and regeneration.Furthermore,computational models and systems biology methods could help predict molecular pathways interactions,providing valuable guidance for clinical research on optic nerve regeneration and repair.
基金supported by the National Natural Science Foundation of China,Nos.82404892(to QY),82061160374(to ZZ)the Science and Technology Development Fund,Macao Special Administrative Region,China,Nos.0023/2020/AFJ,0035/2020/AGJ+2 种基金the University of Macao Research Grant,Nos.MYRG2022-00248-ICMS,MYRG-CRG2022-00010-ICMS(to MPMH)the Natural Science Foundation of Guangdong Province,No.2024A1515012818(to ZZ)the Fundamental Research Funds for the Central Universities,No.21623114(to ZZ).
文摘Drug development for Alzheimer’s disease is extremely challenging,as demonstrated by the repeated failures of amyloid-β-targeted therapeutics and the controversies surrounding the amyloid-βcascade hypothesis.More recently,advances in the development of Lecanemab,an anti-amyloid-βmonoclonal antibody,have shown positive results in reducing brain A burden and slowing cognitive decline in patients with early-stage Alzheimer’s disease in the Phase Ⅲ clinical trial(Clarity Alzheimer’s disease).Despite these promising results,side effects such as amyloid-related imaging abnormalities(ARIA)may limit its usage.ARIA can manifest as ARIA-E(cerebral edema or effusions)and ARIA-H(microhemorrhages or superficial siderosis)and is thought to be caused by increased vascular permeability due to inflammatory responses,leading to leakages of blood products and protein-rich fluid into brain parenchyma.Endothelial dysfunction is an early pathological feature of Alzheimer’s disease,and the blood-brain barrier becomes increasingly leaky as the disease progresses.In addition,APOE4,the strongest genetic risk factor for Alzheimer’s disease,is associated with higher vascular amyloid burden,increased ARIA incidence,and accelerated blood-brain barrier disruptions.These interconnected vascular abnormalities highlight the importance of vascular contributions to the pathophysiology of Alzheimer’s disease.Here,we will closely examine recent research evaluating the heterogeneity of brain endothelial cells in the microvasculature of different brain regions and their relationships with Alzheimer’s disease progression.
基金the Gansu Science and Technology Major Project(Grant No.182D2NA010)the Science and Technology Service Network Initiative of the Chinese Academy of Sciences(Grant No.KFJ-STS-QYZD-120)the Key R&D plan of the Ningxia Hui Autonomous Region(Grant No.2019BBF02018)for the funding they provided。
文摘Drought stress is the main limiting plant growth factor in arid and semiarid regions.The Lanzhou lily(Lilium davidii var.unicolor)is the only sweet-tasting lily grown in these regions of China that offers highly edible,medicinal,health,and ornamental value.The Tresor lily is an ornamental flower known for its strong resistance.Plants were grown under three different drought intensity treatments,namely,being watered at intervals of 5,15,and 25 d(either throughout the study or during specific growth stages).We measured the biomass,leaf area,photosynthetic response,chlorophyll content(SPAD value),and osmoregulation of both the Lanzhou lily and the Tresor lily(Lilium‘Tresor’).Additionally,we employed RNA sequencing(RNA-Seq)and qRT-PCR to investigate transcriptomic changes of the Lanzhou lily in response to drought stress.Results showed that under drought stress,the decreasing rate in the Lanzhou lily bulb weight was lower than the corresponding Tresor lily bulb rate;the net photosynthetic rate,transpiration rate,and stomatal conductance of the Lanzhou lily were all higher compared to the Tresor lily;osmoregulation constituents,such as glucose,fructose,sucrose,trehalose,and soluble sugar,in the Lanzhou lily were comparatively higher;PYL,NCED,and ERS genes were significantly expressed in the Lanzhou lily.Under moderate drought,the biosynthesis of flavonoids,circadian rhythms,and the tryptophan metabolism pathway of the Lanzhou lily were all significant.Under severe drought stress,fatty acid elongation,photosynthetic antenna protein,plant hormone signal transduction,flavone and flavonol biosynthesis,and the carotenoid biosynthesis pathway were all significant.The Lanzhou lily adapted to drought stress by coordinating its organs and the unique role of its bulb,regulating photosynthesis,increasing osmolyte content,activating circadian rhythms,signal transduction,fatty acid elongation metabolism,and phenylalanine and flavonoid metabolic pathways,which may collectively be the main adaptation strategy and mechanisms used by the Lanzhou lily under drought stress.
基金supported by National Natural Science Foundation of China grants(Nos.82173326 and 82473058)Key Research and Development Project of Sichuan Province(Nos.2024YFFK0374 and 2024YFFK0198)Interdisciplinary Innovation Project of West China College of Stomatology,Sichuan University(RD-03-202004).
文摘Microwave thermochemotherapy(MTC)has been applied to treat lip squamous cell carcinoma(LSCC),but a deeper understanding of its therapeutic mechanisms and molecular biology is needed.To address this,we used single-cell transcriptomics(scRNA-seq)and spatial transcriptomics(ST)to highlight the pivotal role of tumor-associated neutrophils(TANs)among tumor-infiltrating immune cells and their therapeutic response to MTC.MNDA+TANs with anti-tumor activity(N1-phenotype)are found to be abundantly infiltrated by MTC with benefit of increased blood perfusion,and these TANs are characterized by enhanced cytotoxicity,ameliorated hypoxia,and upregulated IL1B,activating T&NK cells and fibroblasts via IL1B-IL1R.In this highly anti-tumor immunogenic and hypoxia-reversed microenvironment under MTC,fibroblasts accumulated in the tumor front(TF)can recruit N1-TANs via CXCL2-CXCR2 and clear N2-TANs(pro-tumor phenotype)via CXCL12-CXCR4,which results in the aggregation of N1-TANs and extracellular matrix(ECM)deposition.In addition,we construct an N1-TANs marker,MX2,which positively correlates with better prognosis in LSCC patients,and employ deep learning techniques to predict expression of MX2 from hematoxylin-eosin(H&E)-stained images so as to conveniently guide decision making in clinical practice.Collectively,our findings demonstrate that the N1-TANs/fibroblasts defense wall formed in response to MTC effectively combat LSCC.
基金supported in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the State Key Laboratory of Crop Genetics and Germplasm Enhancement (Grant No. ZW201813)supported by the high-performance computing platform at the Bioinformatics Center of Nanjing Agricultural University。
文摘Ascorbic acid, also referred to as vitamin C(Vc), is an important nutrient found in fruits and vegetables that promotes produce quality and human health. Rosa roxburghii is an underutilized natural fruit that contains very high levels of Vc. However, the Vc content of R. roxburghii varies considerably during plant development and ripening. To better understand the molecular mechanisms that underlie fluctuations in Vc content of R. roxburghii fruit at different developmental stages, we performed transcriptomic and metabolomic analyses and identified two significant gene networks/modules and 168 transcription factors directly involved in Vc synthesis. Promoter analysis of two core genes involved in Vc synthesis, RrGGP and RrGalUR, revealed the presence of a retroviral long terminal repeat(LTR) insert in the RrGalUR promoter. Using yeast one-hybrid and dual-luciferase assays, we demonstrated that the transcription factors RrHY5H and RrZIP9 bind to the promoter of RrGGP to promote its expression. RrZIP6 and RrWRKY4 bind to the LTR in the RrGalUR promoter to promote its expression. Our results reveal a molecular mechanism that controls Vc synthesis and accumulation in R. roxburghii fruit.
基金supported by the National Key R&D Program of China(No.2020YFC1808803).
文摘Benzo[a]pyrene(B[a]P)is a carcinogenic environmental pollutant widely present in the environment and can enter the human body through the food chain.It is therefore essential to treat and remediate the B[a]P-contaminated environment.Microbial remediation of B[a]Pcontaminated environments is considered to be one of the most effective strategies,and the addition of biostimulants is a feasible method to further improve the effectiveness of microbial remediation.In this study,we used Bacillus subtilis MSC4 to screen for the stimulation of sodium gluconate,which promoted B[a]P degradation.Based on biochemical and transcriptomic analyses,Sodium gluconate was found to significantly increase the biomass of MSC4 and the expression of most genes involved in B[a]P degradation.Activities of central carbon metabolism,fatty acidβ-oxidation and oxidative phosphorylation were all promoted.The significant increase in acid-induced oxalate decarboxylase expression indicates a decrease in intracellular pH,which promoted the synthesis of acetoin and lactate.Genes involved in the nitrogen cycle,especially nitrification and denitrification,were significantly up-regulated,contributing to B[a]P degradation.Genes involved in the synthesis of enzyme cofactors,including thiamine,molybdenum cofactors,NAD and heme,were up-regulated,which contributes to increasing enzyme activity in metabolic pathways.Up-regulation of genes in flagella assembly,chemotaxis,and lipopeptide synthesis is beneficial for the dissolution and uptake of B[a]P.Genes related to the sugar transport system were upregulated,which facilitates the transport and absorption of monosaccharides and oligosaccharides by MSC4.This study provides a theoretical basis for the further application of sodium gluconate in the treatment of PAH-contaminated sites.
文摘Background:This study aims to identify distinct cellular subtypes within brain tissue using single-cell transcriptomic analysis,focusing on specific biomarkers that differentiate cell types and the effects of traditional and exercise therapy.Methods:Four samples were analyzed:older control(OC),older exercise(OE),younger control(YC),and younger exercise(YE).Single-cell RNA sequencing was used to distinguish cellular subtypes through their biomarker profiles.Data visualization included violin and t-SNE plots to illustrate biomarker expression across cell clusters such as oligodendrocytes,microglia,and astrocytes.Additionally,BV2 cells were exposed to amyloid-beta fragments to simulate Alzheimer’s disease,assessing the impact of exercise-induced cellular responses.Results:Distinct cellular subtypes were identified:oligodendrocytes(MBP,St18),microglia(Dock8),and astrocytes(Aqp4,Gpc5).Sample OE was predominantly oligodendrocytes,while YE had more astrocytes,inhibitory neurons,and Canal-Retzius cells.YC showed a significant presence of Olfm3+ganglion neurons.ZEB1 gene knockout revealed changes in SMAD family gene expression,which regulate ferroptosis.Oxidative stress levels were also evaluated.Conclusion:This profiling enhances our understanding of brain cellular functions and interactions,potentially informing targeted therapies in neurological research.Exercise may influence brain cell immune responses and cell death pathways by regulating specific gene expressions,offering new insights for treating neuroinflammation and degeneration.
文摘The WSC proteins produced by Penicillium expansum play a crucial role in causing blue mold on pears.To analyze the role of the WSC1 gene in the pathogenic process of this fungal pathogen,we conducted transcriptomic analysis of a WSC1 knockout(ΔWSC1)strain.The knockout of WSC1 significantly altered the gene expression profile in P.expansum,particularly for genes involved in cell wall integrity,signaling,stress response,and toxin production.The differential expression of these genes might make theΔWSC1 strain more vulnerable to environmental stress,while reducing the toxin production capacity,ultimately leading to a decrease in the pathogenicity.The transcriptomic analysis revealed that the expression of genes related to stress response signals,defense mechanisms and oxidative stress management changed when pear fruits were infected with theΔWSC1 strain.These changes may trigger a cascade of responses in pear fruits.In addition,compared with those infected with the wild-type strain,pear fruits infected with theΔWSC1 strain exhibited up-regulated expression of genes related to defense and oxidative stress.This study clarifies how the WSC1 gene influences P.expansum’s ability to infect pear fruits and how pear fruits respond to the infection.
基金supported by the National Natural Science Foundation of China(No.31901217)the Special Fund for Scientific Research of Shanghai Landscaping and City Appearance Administrative Bureau(grant numbers G192422,G242414,and G242416).
文摘Understanding the ecological adaptation of tree species can not only reveal the evolutionary potential but also benefit biodiversity conservation under global climate change.Quercus is a keystone genus in Northern Hemisphere forests,and its wide distribution in diverse ecosystems and long evolutionary history make it an ideal model for studying the genomic basis of ecological adaptations.Here we used a newly sequenced genome of Quercus gilva,an evergreen oak species from East Asia,with 18 published Fagales genomes to determine how Fagaceae genomes have evolved,identify genomic footprints of ecological adaptability in oaks in general,as well as between evergreen and deciduous oaks.We found that oak species exhibited a higher degree of genomic conservation and stability,as indicated by the absence of large-scale chromosomal structural variations or additional whole-genome duplication events.In addition,we identified expansion and tandem repetitions within gene families that contribute to plant physical and chemical defense(e.g.,cuticle biosynthesis and oxidosqualene cyclase genes),which may represent the foundation for the ecological adaptation of oak species.Circadian rhythm and hormone-related genes may regulate the habits of evergreen and deciduous oaks.This study provides a comprehensive perspective on the ecological adaptations of tree species based on phylogenetic,genome evolutionary,and functional genomic analyses.
基金the Project of Qinghai provincial central government guides local funds for science and technology development(2024ZY005).
文摘As climate change triggers unprecedented ecological shifts,it becomes imperative to understand the genetic underpinnings of species’adaptability.Adaptive introgression significantly contributes to organismal adaptation to new environments by introducing genetic variation across species boundaries.However,despite growing recognition of its importance,the extent to which adaptive introgression has shaped the evolutionary history of closely related species remains poorly understood.Here we employed population genetic analyses of high-throughput sequencing data to investigate the interplay between genetic introgression and local adaptation in three species of spruce trees in the genus Picea(P.asperata,P.crassifolia,and P.meyeri).We find distinct genetic differentiation among these species,despite a substantial gene flow.Crucially,we find bidirectional adaptive introgression between allopatrically distributed species pairs and unearthed dozens of genes linked to stress resilience and flowering time.These candidate genes most likely have promoted adaptability of these spruces to historical environmental changes and may enhance their survival and resilience to future climate changes.Our findings highlight that adaptive introgression could be prevalent and bidirectional in a topographically complex area,and this could have contributed to rich genetic variation and diverse habitat usage by tree species.
基金supported by the National Natural Science Foundation of China,No.82301403(to DZ)。
文摘Glial cells play crucial roles in regulating physiological and pathological functions,including sensation,the response to infection and acute injury,and chronic neurodegenerative disorders.Glial cells include astrocytes,microglia,and oligodendrocytes in the central nervous system,and satellite glial cells and Schwann cells in the peripheral nervous system.Despite the greater understanding of glial cell types and functional heterogeneity achieved through single-cell and single-nucleus RNA sequencing in animal models,few studies have investigated the transcriptomic profiles of glial cells in the human spinal cord.Here,we used high-throughput single-nucleus RNA sequencing and spatial transcriptomics to map the cellular and molecular heterogeneity of astrocytes,microglia,and oligodendrocytes in the human spinal cord.To explore the conservation and divergence across species,we compared these findings with those from mice.In the human spinal cord,astrocytes,microglia,and oligodendrocytes were each divided into six distinct transcriptomic subclusters.In the mouse spinal cord,astrocytes,microglia,and oligodendrocytes were divided into five,four,and five distinct transcriptomic subclusters,respectively.The comparative results revealed substantial heterogeneity in all glial cell types between humans and mice.Additionally,we detected sex differences in gene expression in human spinal cord glial cells.Specifically,in all astrocyte subtypes,the levels of NEAT1 and CHI3L1 were higher in males than in females,whereas the levels of CST3 were lower in males than in females.In all microglial subtypes,all differentially expressed genes were located on the sex chromosomes.In addition to sex-specific gene differences,the levels of MT-ND4,MT2A,MT-ATP6,MT-CO3,MT-ND2,MT-ND3,and MT-CO_(2) in all spinal cord oligodendrocyte subtypes were higher in females than in males.Collectively,the present dataset extensively characterizes glial cell heterogeneity and offers a valuable resource for exploring the cellular basis of spinal cordrelated illnesses,including chronic pain,amyotrophic lateral sclerosis,and multiple sclerosis.
基金Supported by the Shandong Province Medical and Health Science and Technology Development Plan Project,No.202203030713Yantai Science and Technology Program,No.2024YD005,No.2024YD007 and No.2024YD010and Science and Technology Program of Yantai Affiliated Hospital of Binzhou Medical University,No.YTFY2022KYQD06。
文摘As a common malignant tumor,the heterogeneity of colorectal cancer plays an important role in tumor progression and treatment response.In recent years,the rapid development of single-cell transcriptomics and spatial transcriptomics technologies has provided new perspectives for resolving the heterogeneity of colorectal cancer.These techniques can reveal the complexity of cellular composition and their interactions in the tumor microenvironment,and thus facilitate a deeper understanding of tumor biology.However,in practical applications,researchers still face technical challenges such as data processing and result interpretation.The aim of this paper is to explore how to use artificial intelligence(AI)technology to enhance the research efficiency of single-cell and spatial transcriptomics,analyze the current research progress and its limitations,and explore how combining AI approaches can provide new ideas for decoding the heterogeneity of colorectal cancer,and ultimately provide theoretical basis and practical guidance for the clinical precision treatment.
基金Supported by Educational Research Project for Young and Middle-aged Teachers in Fujian Province(Science and Technology Category,JAT210477)。
文摘[Objectives]To further explore the mechanism of quercetin regulating the activity of Sune-1 cells.[Methods]High-throughput mRNA-miRNA transcriptome sequencing technology was used to screen miRNA in Sune-1 cells treated with quercetin.[Results]Statistical analysis showed that 1264 miRNAs were differentially expressed in Sune-1 cells treated with quercetin,of which 716 were significantly up-regulated and 548 were significantly down-regulated;191 miRNAs were differentially expressed in Sune-1 cells treated with quercetin,of which 129 were significantly up-regulated and 62 were significantly down-regulated.By comparing the expression differences of these mRNAs and miRNAs in different samples,six different expression patterns were clustered.The expression of the above miRNAs was verified by real-time quantitative PCR(qPCR),and the results were highly consistent with the transcriptome sequencing data.In addition,Gene Ontology annotation and functional enrichment analysis of miRNA target genes showed that CTGF,VHL and H19,which are related to the regulation of cell proliferation signal transduction,were predicted to be new targets of differential miRNAs such as miR494-3p and miR675-3p and may play an important regulatory role in the process of Quercetin inhibiting the proliferation of Sune-1 cells.[Conclusions]This study provides a basis for the rational use of anti-tumor functional components of traditional Chinese medicine,and also provides a theoretical basis for the targeted therapy of nasopharyngeal carcinoma.
文摘The intertwined challenges of climate change, resource scarcity, and conflict require innovative integrated solutions that address both environmental and societal vulnerabilities. Technological innovation offers a transformative pathway for climate change adaptation and peacebuilding, with emphasis on a holistic approach to managing resource conflicts and environmental challenges. This paper explores the synergies between emerging technologies and strategic framework to mitigate climate-induced tensions and foster resilience. It focuses on the application of renewable energy systems to reduce dependence on contested resources, blockchain technology to ensure transparency in climate finance, equitable resource allocation and Artificial Intelligence (AI) to enhance early warning systems for climate-related disaster and conflicts. Additionally, technologies such as precision agriculture and remote sensing empower communities to optimize resource use, adapt to shifting environmental conditions, and reduce competition over scares resources. These innovations with inclusive governance and local capacity-building are very primordial. Ultimately, the convergence of technology, policy, and local participation offers a scalable and replicable model for addressing the dual challenges of environmental degradation and instability, thereby paving the way for a more sustainable and peaceful future.
基金supported by the China Agriculture Research System(CARS-02-20)the Henan Province Agro-ecosystem Field Observation and Research Station,China(30602535)。
文摘Waterlogging stress significantly impairs plant growth and reduces crop yields.Spermidine(Spd),functioning as a second messenger,demonstrates positive effects on plant growth under waterlogging stress conditions.However,the molecular mechanisms by which exogenous Spd application alleviates waterlogging stress remain unclear.This study employed physiological analysis and multi-omics approaches to investigate the effect of Spd application on waterlogging stress.The application of Spd enhanced the expression of genes related to light-harvesting complex(LHC),photosynthesis,and starch-related pathways,while inhibiting chlorophyll degradation and maintaining higher photosynthetic rates,thereby increasing biomass accumulation under waterlogging stress.The activation of genes associated with trehalose and Spd biosynthesis resulted in elevated accumulation of trehalose and endogenous Spd.The inhibition of 1-aminocyclopropane-1-carboxylic acid(ACC)oxidase(ACO)expression contributed to reduced ethylene emission,enhancing maize resistance to waterlogging.Following Spd application,auxin-related genes were up-regulated and indole acetic acid(IAA)content increased,promoting cell elongation in maize and maintaining normal growth under waterlogging stress.Additionally,the upregulation of lipid-related genes led to increased lipid content,protecting cell membranes under waterlogging conditions.These molecular and physiological modifications collectively enhanced resistance to waterlogging stress.These findings advance our understanding of Spd's regulatory roles in mitigating waterlogging damage and provide valuable insights for breeding waterlogging-tolerant maize varieties.
基金approved by the Inonu University institutional review board for noninterventional studies(Approval No:2022/3842).
文摘BACKGROUND Endometriosis is a clinical condition characterized by the presence of endometrial glands outside the uterine cavity.While its incidence remains mostly uncertain,endometriosis impacts around 180 million women worldwide.Despite the presentation of several epidemiological and clinical explanations,the precise mechanism underlying the disease remains ambiguous.In recent years,researchers have examined the hereditary dimension of the disease.Genetic research has aimed to discover the gene or genes responsible for the disease through association or linkage studies involving candidate genes or DNA mapping techniques.AIM To identify genetic biomarkers linked to endometriosis by the application of machine learning(ML)approaches.METHODS This case-control study accounted for the open-access transcriptomic data set of endometriosis and the control group.We included data from 22 controls and 16 endometriosis patients for this purpose.We used AdaBoost,XGBoost,Stochasting Gradient Boosting,Bagged Classification and Regression Trees(CART)for classification using five-fold cross validation.We evaluated the performance of the models using the performance measures of accuracy,balanced accuracy,sensitivity,specificity,positive predictive value,negative predictive value and F1 score.RESULTS Bagged CART gave the best classification metrics.The metrics obtained from this model are 85.7%,85.7%,100%,75%,75%,100%and 85.7%for accuracy,balanced accuracy,sensitivity,specificity,positive predictive value,negative predictive value and F1 score,respectively.Based on the variable importance of modeling,we can use the genes CUX2,CLMP,CEP131,EHD4,CDH24,ILRUN,LINC01709,HOTAIR,SLC30A2 and NKG7 and other transcripts with inaccessible gene names as potential biomarkers for endometriosis.CONCLUSION This study determined possible genomic biomarkers for endometriosis using transcriptomic data from patients with/without endometriosis.The applied ML model successfully classified endometriosis and created a highly accurate diagnostic prediction model.Future genomic studies could explain the underlying pathology of endometriosis,and a non-invasive diagnostic method could replace the invasive ones.
基金supported by Cultural and Ideological Progress Director Center of Ouhai District of Wenzhou(2024-135F).
文摘This study explores the cultural,social,and academic adaptation experiences of international students in Wenzhou,China.Based on surveys and interviews with 52 students from 20 countries—predominantly Morocco—the research investigates key challenges and coping strategies related to local integration.The findings indicate that while Wenzhou offers a generally supportive academic environment—enhanced by AI integration and practical teaching methods—language barriers continue to hinder students’daily life,academic engagement,and social interactions.Limited Mandarin proficiency made it difficult for many students to build friendships with locals and navigate everyday tasks.Cultural adaptation also presented obstacles,particularly in adjusting to local food and social norms.Despite these challenges,students employed various strategies to facilitate integration,such as attending HSK language courses,watching Chinese media,and initiating conversations with local peers.While most participants described the local community as welcoming,perceptions varied based on individual experiences and language ability.The study highlights the importance of enhanced language support and structured cross-cultural exchange initiatives in improving international students’experiences.It contributes to the broader discourse on international student mobility by offering insights from a second-tier Chinese city,emphasizing the role of institutional practices in shaping adaptation outcomes.
基金Supported by the Key R&D Projects of Hainan Province,No.ZDYF2022SHFZ295.
文摘BACKGROUND Schizophrenia(SZ),a chronic and widespread brain disorder,presents with complex etiology and pathogenesis that remain inadequately understood.Despite the absence of a universally recognized endophenotype,peripheral blood mononuclear cells(PBMCs)serve as a robust model for investigating intracellular alterations linked to SZ.AIM To preliminarily investigate potential pathogenic mechanisms and identify novel biomarkers for SZ.METHODS PBMCs from SZ patients were subjected to integrative transcriptomic and proteomic analyses to uncover differentially expressed genes(DEGs)and differentially expressed proteins while mapping putative disease-associated signaling pathways.Key findings were validated using western blot(WB)and real-time fluorescence quantitative PCR(RT-qPCR).RNAi-lentivirus was employed to transfect rat hippocampal CA1 neurons in vitro,with subsequent verification of target gene expression via RT-qPCR.The levels of neuronal conduction proteins,including calmodulin-dependent protein kinase II(caMKII),CREB,and BDNF,were assessed through WB.Apoptosis was quantified by flow cytometry,while cell proliferation and viability were evaluated using the Cell Counting Kit-8 assay.RESULTS The integration of transcriptomic and proteomic analyses identified 6079 co-expressed genes,among which 25 DEGs were significantly altered between the SZ group and healthy controls.Notably,haptoglobin(HP),lactotransferrin(LTF),and SERPING1 exhibited marked upregulation.KEGG pathway enrichment analysis implicated neuroactive ligand-receptor interaction pathways in disease pathogenesis.Clinical sample validation demonstrated elevated protein and mRNA levels of HP,LTF,and SERPING1 in the SZ group compared to controls.WB analysis of all clinical samples further corroborated the significant upregulation of SERPING1.In hippocampal CA1 neurons transfected with lentivirus,reduced SERPING1 expression was accompanied by increased levels of CaMKII,CREB,and BDNF,enhanced cell viability,and reduced apoptosis.CONCLUSION SERPING1 may suppress neural cell proliferation in SZ patients via modulation of the CaMKII-CREB-BDNF signaling pathway.