期刊文献+
共找到1,181篇文章
< 1 2 60 >
每页显示 20 50 100
An improved BP artificial neural network algorithm for urban traffic flow intelligent prediction 被引量:4
1
作者 XIONG Shi-yong ZHANG Yi 《重庆邮电大学学报(自然科学版)》 北大核心 2009年第2期305-308,共4页
The traffic flow is interrelated to traffic congestion, the big traffic flow directly results in traffic congestion of some section. In this paper, on the basis of the research of overseas traffic accident, considerin... The traffic flow is interrelated to traffic congestion, the big traffic flow directly results in traffic congestion of some section. In this paper, on the basis of the research of overseas traffic accident, considering the characteristic of Chinese traffic, artificial neural network was used to predict traffic accident, and an improved BP artificial neural network model according with Chinese the situation of a country was proposed. The urban traffic flow prediction was simulated under the particular situation, the simulation result shows that the improved BP artificial neural network can fit the urban traffic flow prediction very well and have high performance. 展开更多
关键词 BP人工神经网络模型 人工神经网络算法 城市交通流 智能预测 预测模拟 交通流量 交通拥堵 交通事故
在线阅读 下载PDF
On Minimizing Delay with Probabilistic Splitting of Traffic Flow in Heterogeneous Wireless Networks 被引量:1
2
作者 ZHENG Jie LI Jiandong +2 位作者 LIU Qin SHI Hua YANG Xiaoniu 《China Communications》 SCIE CSCD 2014年第12期62-71,共10页
In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is... In the paper,we propose a framework to investigate how to effectively perform traffic flow splitting in heterogeneous wireless networks from a queue point.The average packet delay in heterogeneous wireless networks is derived in a probabilistic manner.The basic idea can be understood via treating the integrated heterogeneous wireless networks as different coupled and parallel queuing systems.The integrated network performance can approach that of one queue with maximal the multiplexing gain.For the purpose of illustrating the effectively of our proposed model,the Cellular/WLAN interworking is exploited.To minimize the average delay,a heuristic search algorithm is used to get the optimal probability of splitting traffic flow.Further,a Markov process is applied to evaluate the performance of the proposed scheme and compare with that of selecting the best network to access in terms of packet mean delay and blocking probability.Numerical results illustrate our proposed framework is effective and the flow splitting transmission can obtain more performance gain in heterogeneous wireless networks. 展开更多
关键词 traffic flow splitting heterogeneous wireless networks multi-radio access packet delay
在线阅读 下载PDF
Classified VPN Network Traffic Flow Using Time Related to Artificial Neural Network
3
作者 Saad Abdalla Agaili Mohamed Sefer Kurnaz 《Computers, Materials & Continua》 SCIE EI 2024年第7期819-841,共23页
VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and c... VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions. 展开更多
关键词 VPN network traffic flow ANN classification intrusion detection data exfiltration encrypted traffic feature extraction network security
在线阅读 下载PDF
Design of Expressway Toll Station Based on Neural Network and Traffic Flow
4
作者 Yiqian Huang Liang Chen +1 位作者 Yanwen Xia Xiuliang Qiu 《American Journal of Operations Research》 2018年第3期221-237,共17页
This paper is concerned with the design of expressway toll station problem based on neural network and traffic flow. Firstly, the design of the toll plaza is mainly through analyzing the daily traffic flow, different ... This paper is concerned with the design of expressway toll station problem based on neural network and traffic flow. Firstly, the design of the toll plaza is mainly through analyzing the daily traffic flow, different charging mode of construction cost and waiting time of the United States. Secondly, exploring traffic conditions is divided into two kinds, based on the traffic flow speed-density flow model. Then, a fuzzy-BP neural network model is constructed, with capacity, cost, and safety factor as the input layers and performance as the output layer. It is concluded that this scheme will reduce the occurrence of traffic accidents, so it is desirable. Considering that the increase in unmanned vehicles will lead to an increase in safety performance, we increase the number of electronic toll stations to improve security performance and reduce the occurrence of traffic accidents. 展开更多
关键词 TOLL STATION traffic flow Fuzzy-BP NEURAL network
暂未订购
Prediction and Analysis of Elevator Traffic Flow under the LSTM Neural Network
5
作者 Mo Shi Entao Sun +1 位作者 Xiaoyan Xu Yeol Choi 《Intelligent Control and Automation》 2024年第2期63-82,共20页
Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion with... Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion within elevator systems. Many passengers experience dissatisfaction with prolonged wait times, leading to impatience and frustration among building occupants. The widespread adoption of neural networks and deep learning technologies across various fields and industries represents a significant paradigm shift, and unlocking new avenues for innovation and advancement. These cutting-edge technologies offer unprecedented opportunities to address complex challenges and optimize processes in diverse domains. In this study, LSTM (Long Short-Term Memory) network technology is leveraged to analyze elevator traffic flow within a typical office building. By harnessing the predictive capabilities of LSTM, the research aims to contribute to advancements in elevator group control design, ultimately enhancing the functionality and efficiency of vertical transportation systems in built environments. The findings of this research have the potential to reference the development of intelligent elevator management systems, capable of dynamically adapting to fluctuating passenger demand and optimizing elevator usage in real-time. By enhancing the efficiency and functionality of vertical transportation systems, the research contributes to creating more sustainable, accessible, and user-friendly living environments for individuals across diverse demographics. 展开更多
关键词 Elevator traffic flow Neural network LSTM Elevator Group Control
在线阅读 下载PDF
Prediction of elevator traffic flow based on SVM and phase space reconstruction 被引量:4
6
作者 唐海燕 齐维贵 丁宝 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第3期111-114,共4页
To make elevator group control system better follow the change of elevator traffic flow (ETF) in order to adjust the control strategy,the prediction method of support vector machine (SVM) in combination with phase spa... To make elevator group control system better follow the change of elevator traffic flow (ETF) in order to adjust the control strategy,the prediction method of support vector machine (SVM) in combination with phase space reconstruction has been proposed for ETF.Firstly,the phase space reconstruction for elevator traffic flow time series (ETFTS) is processed.Secondly,the small data set method is applied to calculate the largest Lyapunov exponent to judge the chaotic property of ETF.Then prediction model of ETFTS based on SVM is founded.Finally,the method is applied to predict the time series for the incoming and outgoing passenger flow respectively using ETF data collected in some building.Meanwhile,it is compared with RBF neural network model.Simulation results show that the trend of factual traffic flow is better followed by predictive traffic flow.SVM algorithm has much better prediction performance.The fitting and prediction of ETF with better effect are realized. 展开更多
关键词 support vector machine phase space reconstruction prediction of elevator traffic flow RBF neural network
在线阅读 下载PDF
A modification of local path marginal cost on the dynamic traffic network 被引量:1
7
作者 Zhengfeng Huang Gang Ren +1 位作者 Lili Lu Yang Cheng 《Journal of Modern Transportation》 2014年第1期12-19,共8页
Path marginal cost (PMC) is the change in totaltravel cost for flow on the network that arises when timedependentpath flow changes by 1 unit. Because it is hardto obtain the marginal cost on all the links, the local... Path marginal cost (PMC) is the change in totaltravel cost for flow on the network that arises when timedependentpath flow changes by 1 unit. Because it is hardto obtain the marginal cost on all the links, the local PMC,considering marginal cost of partial links, is normallycalculated to approximate the global PMC. When analyzingthe marginal cost at a congested diverge intersection, ajump-point phenomenon may occur. It manifests as alikelihood that a vehicle may unsteadily lift up (down) inthe cumulative flow curve of the downstream links. Previously,the jump-point caused delay was ignored whencalculating the local PMC. This article proposes an analyticalmethod to solve this delay which can contribute toobtaining a more accurate local PMC. Next to that, we usea simple case to calculate the previously local PMC and themodified one. The test shows a large gap between them,which means that this delay should not be omitted in thelocal PMC calculation. 展开更多
关键词 Transportation network Path marginal cost Cumulative flow curve Dynamic traffic Systemoptimization
在线阅读 下载PDF
Novel Real-Time System for Traffic Flow Classification and Prediction
8
作者 YE Dezhong LV Haibing +2 位作者 GAO Yun BAO Qiuxia CHEN Mingzi 《ZTE Communications》 2019年第2期10-18,共9页
Traffic flow prediction has been applied into many wireless communication applications(e.g., smart city, Internet of Things). With the development of wireless communication technologies and artificial intelligence, ho... Traffic flow prediction has been applied into many wireless communication applications(e.g., smart city, Internet of Things). With the development of wireless communication technologies and artificial intelligence, how to design a system for real-time traffic flow prediction and receive high accuracy of prediction are urgent problems for both researchers and equipment suppliers. This paper presents a novel real-time system for traffic flow prediction. Different from the single algorithm for traffic flow prediction, our novel system firstly utilizes dynamic time wrapping to judge whether traffic flow data has regularity,realizing traffic flow data classification. After traffic flow data classification, we respectively make use of XGBoost and wavelet transform-echo state network to predict traffic flow data according to their regularity. Moreover, in order to realize real-time classification and prediction, we apply Spark/Hadoop computing platform to process large amounts of traffic data. Numerical results show that the proposed novel system has better performance and higher accuracy than other schemes. 展开更多
关键词 traffic flow prediction dynamic time WARPING XGBoost ECHO state network Spark/Hadoop computing platform
在线阅读 下载PDF
基于TensorFlow的交通标志识别方法研究 被引量:5
9
作者 王全 梁敬文 《价值工程》 2019年第27期204-206,共3页
交通标志识别系统是智能驾驶系统的重要组成部分;本文分析了现有方法存在的问题,基于TensorFlow框架搭建了改进的卷积神经网络,用于识别交通标志;整个系统在TensorFlow上实现,使用行车记录仪采集的视频验证了本文的算法,结果表明本文算... 交通标志识别系统是智能驾驶系统的重要组成部分;本文分析了现有方法存在的问题,基于TensorFlow框架搭建了改进的卷积神经网络,用于识别交通标志;整个系统在TensorFlow上实现,使用行车记录仪采集的视频验证了本文的算法,结果表明本文算法有一定的实用性,而且在准确率,鲁棒性和实时性等方面也表现较好。 展开更多
关键词 交通标志识别 卷积神经网络 TENSOR flow
在线阅读 下载PDF
基于Echo State Neural Networks的短期交通流预测算法
10
作者 宋炯 李佑慧 +1 位作者 朱文军 赵文珅 《价值工程》 2012年第18期175-177,共3页
在城市交通环境,交通流的正确预测是比较困难,因为多个十字路口,这使得预置的交通控制模型之间的相互作用和intertwinement不能保持始终高性能在所有的交通情况。
关键词 回声状态网络(ESN) 交通流量 预测
在线阅读 下载PDF
Behaviours in a dynamical model of traffic assignment with elastic demand 被引量:2
11
作者 徐猛 高自友 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第6期1608-1614,共7页
This paper investigates the dynamical behaviour of network traffic flow. Assume that trip rates may be influenced by the level of service on the network and travellers are willing to take a faster route. A discrete dy... This paper investigates the dynamical behaviour of network traffic flow. Assume that trip rates may be influenced by the level of service on the network and travellers are willing to take a faster route. A discrete dynamical model for the day-to-day adjustment process of route choice is presented. The model is then applied to a simple network for analysing the day-to-day behaviours of network flow. It finds that equilibrium is arrived if network flow consists of travellers not very sensitive to the differences of travel cost. Oscillations and chaos of network traffic flow are also found when travellers are sensitive to the travel cost and travel demand in a simple network. 展开更多
关键词 discrete dynamical system network traffic flow traffic assignment problem CHAOS
原文传递
Modeling and Generating Realistic Background Traffic by Hybrid Approach 被引量:2
12
作者 QIAN Yaguan GUAN Xiaohui +1 位作者 JIANG Ming CEN Gang 《China Communications》 SCIE CSCD 2015年第10期147-157,共11页
One of the key challenges in largescale network simulation is the huge computation demand in fine-grained traffic simulation.Apart from using high-performance computing facilities and parallelism techniques,an alterna... One of the key challenges in largescale network simulation is the huge computation demand in fine-grained traffic simulation.Apart from using high-performance computing facilities and parallelism techniques,an alternative is to replace the background traffic by simplified abstract models such as fluid flows.This paper suggests a hybrid modeling approach for background traffic,which combines ON/OFF model with TCP activities.The ON/OFF model is to characterize the application activities,and the ordinary differential equations(ODEs) based on fluid flows is to describe the TCP congestion avoidance functionality.The apparent merits of this approach are(1) to accurately capture the traffic self-similarity at source level,(2) properly reflect the network dynamics,and(3) efficiently decrease the computational complexity.The experimental results show that the approach perfectly makes a proper trade-off between accuracy and complexity in background traffic simulation. 展开更多
关键词 network simulation background traffic ON/OFF models fluid flows self-similarity
在线阅读 下载PDF
RobustSketch:支持网络流量抖动的大流弹性识别方法 被引量:1
13
作者 熊兵 刘永青 +2 位作者 夏卓群 赵宝康 张锦 《软件学报》 北大核心 2025年第2期660-679,共20页
大流识别是网络测量中的一项关键基础性工作,目前主流的方法是采用概要型数据结构Sketch快速统计网络流量,进而高效筛选大流.然而,当网络流量发生抖动时,大量分组的急速涌入将导致大流识别精度显著下降.对此,提出一种支持流量抖动的网... 大流识别是网络测量中的一项关键基础性工作,目前主流的方法是采用概要型数据结构Sketch快速统计网络流量,进而高效筛选大流.然而,当网络流量发生抖动时,大量分组的急速涌入将导致大流识别精度显著下降.对此,提出一种支持流量抖动的网络大流弹性识别方法RobustSketch.所提方法首先设计基于Sketch循环链的可伸缩小流过滤器,根据实时分组到达速率适应性扩增与缩减其中的Sketch数量,以始终完整记录当前时间周期内所有到达的网络分组,从而确保网络流量抖动出现时仍能精确过滤小流.然后设计基于动态分段哈希的可拓展大流记录表,根据小流过滤器筛选后的候选大流数量适应性增加与减少分段,以完整记录所有候选大流,并保持较高的存储空间利用率.进一步,通过理论分析给出了所提小流过滤器和大流记录表的误差界限.最后,借助真实网络流量样本,对所提大流识别方法RobustSketch进行实验评估.实验结果表明:所提方法的大流识别精确率明显高于现有方法,即使在网络流量抖动时仍能稳定保持在99%以上,而平均相对误差减少了86%以上,有效提升了大流识别的精确性和鲁棒性. 展开更多
关键词 网络流量抖动 大流弹性识别 Sketch循环链 可伸缩小流过滤器 可拓展大流记录表
在线阅读 下载PDF
基于HDNNF-CAF的短时交通流预测研究 被引量:1
14
作者 王庆荣 慕壮壮 +1 位作者 朱昌锋 何润田 《计算机工程与应用》 北大核心 2025年第15期318-328,共11页
短时交通流预测在智能交通系统中扮演重要的角色。针对交通流复杂多变的时空特征、非平稳性及外部因素引发的数据异常,提出考虑异常因素的混合深度神经网络预测模型(hybrid deep neural network forecasting model considering anomalou... 短时交通流预测在智能交通系统中扮演重要的角色。针对交通流复杂多变的时空特征、非平稳性及外部因素引发的数据异常,提出考虑异常因素的混合深度神经网络预测模型(hybrid deep neural network forecasting model considering anomalous factors,HDNNF-CAF)。该模型将邻接矩阵、交通流量矩阵及交通流其他参数矩阵结合异常数据处理理论,进行数据预处理和异常数据识别。建立异常数据时空特征提取理论,捕获异常数据时空信息;利用变分模态分解(VMD)降低交通流数据非平稳性,并提出图卷积网络(GCN)优化Informer理论分别对各个子序列进行特征提取,以组合生成交通流时空信息。最终结合异常数据与交通流数据的时空信息生成预测结果。在真实数据集PeMS04上进行验证,实验结果表明,HDNNF-CAF能够有效识别交通流异常数据,提高预测精度,优于一些现有方法。 展开更多
关键词 短时交通流 预测 深度学习 图卷积网络 时空信息
在线阅读 下载PDF
基于短期非线性扰动自适应图的路网交通预测
15
作者 曹倩霞 麦仟龙 +1 位作者 吕松涛 王大为 《中国公路学报》 北大核心 2025年第7期275-288,共14页
路网交通预测为交通管理和出行信息服务智能化提供了数据和服务保障,是为智能交通系统提供精准主动管控的核心关键。常态交通环境下的交通预测已经取得了良好的性能,而突发事件、天气突变等短期非线性扰动下的非常态交通预测面临诸多挑... 路网交通预测为交通管理和出行信息服务智能化提供了数据和服务保障,是为智能交通系统提供精准主动管控的核心关键。常态交通环境下的交通预测已经取得了良好的性能,而突发事件、天气突变等短期非线性扰动下的非常态交通预测面临诸多挑战。现有方法大多通过将路网预定义为固定图或简单参数图来捕捉空间关系,忽略了扰动因素影响下交通流在空间上表现出的显著动态变化,这导致预测出现偏差,难以实现精准管控。为此,提出了一种基于短期非线性扰动自适应图的神经网络(Ada-DTGNN),该网络从常态和短期非常态角度关注交通流的变化趋势来预测未来交通状态。首先开发一个新颖的自适应图学习模块,设计了2种参数化特征图,以全局特征图捕捉交通流的共同常态趋势,以独有特征图揭示短期非常态下的独有变化,最终通过加权融合的方式获取最优的路网图邻接矩阵并具备一定可解释性。此外,受门控循环网络(GRU)启发,将GCN以记忆单元的形式嵌入GRU内部结构中,构建新颖的时空卷积预测模块,实现同步捕获时空依赖关系,提升了预测精度。试验结果表明:Ada-DTGNN在真实交通流数据集上整体优于现有竞争模型,尤其在应对短期非线性扰动和突发事件等复杂交通场景时,展现出更高的预测准确性与更强的自适应能力;同时,通过消融试验和效果分析进一步验证了其结构在提升模型性能方面的重要作用,体现出良好的自适应性与一定程度的可解释性。 展开更多
关键词 交通工程 交通流预测 深度学习 图神经网络 自适应图
原文传递
特殊路网拓扑解构下的时空异质化交通流预测 被引量:1
16
作者 侯越 张鑫 +2 位作者 袭著涛 王甜甜 马宝君 《铁道科学与工程学报》 北大核心 2025年第7期2932-2945,共14页
在城市路网中,整体一般路网交通流通常具有早、中、晚的时间异质性和路网关联差异的空间异质性,但局部特殊路网大多呈现Y形或环形拓扑结构,其交通流打破了整体路网的常规时空异质性模式,表现为非典型的时间规律和空间关联分布。然而,现... 在城市路网中,整体一般路网交通流通常具有早、中、晚的时间异质性和路网关联差异的空间异质性,但局部特殊路网大多呈现Y形或环形拓扑结构,其交通流打破了整体路网的常规时空异质性模式,表现为非典型的时间规律和空间关联分布。然而,现有研究大多将路网作为整体进行建模,忽略了局部特殊路网的影响。鉴于此,为解决现有研究中Y形、环形路网影响考虑不充分及各类路网节点空间关联关系存在时变问题,提出特殊路网拓扑解构下的时空异质化交通流预测模型,该模型利用时滞影响下的动态图生成模块,构建反映当前时间步路网空间关联关系的图结构。在此基础上,利用特殊路网解构及动态映射模块,分离出Y形、环形路网时序特征及其时滞动态图。继而利用特殊路网影响下的空间特征提取模块,对整体路网、Y形、环形路网独立建模。实验基于公开高速路网数据集,研究结果表明,与当前先进的模型相比,所提模型的E_(mae)、E_(rmse)在PEMSD4、PEMSD8、成都-滴滴数据集上性能分别提升了4.9074%、4.3404%、3.2295%、0.1667%、1.2677%、1.1861%。同时相较于将路网视为整体进行建模,所提模型的E_(mae)、E_(rmse)在PEMSD8数据集上性能分别提升了8.6514%、6.5366%,进一步证明考虑局部特殊路网的有效性。综上所述,所提模型能充分考虑局部特殊路网对整体交通路网的影响,为时空异质化交通流预测提供一种新的思路。 展开更多
关键词 交通流预测 图卷积网络 门控循环单元 特殊路网 时空异质性
在线阅读 下载PDF
固定OD路径分配下的路网通行能力信号优化模型
17
作者 卢凯 周凌霄 +2 位作者 张晓春 何淑霖 林科 《东南大学学报(自然科学版)》 北大核心 2025年第2期544-552,共9页
为测算与优化路网通行能力,针对断面、路段、路网3个层级,根据交叉口信号相位结构与配时参数,分别给出各层级通行能力的计算方法。通过建立路网通行能力优化模型与信号交叉口总延误优化模型,在保证路网通行能力最大的基础上,实现路网信... 为测算与优化路网通行能力,针对断面、路段、路网3个层级,根据交叉口信号相位结构与配时参数,分别给出各层级通行能力的计算方法。通过建立路网通行能力优化模型与信号交叉口总延误优化模型,在保证路网通行能力最大的基础上,实现路网信号交叉口总延误最小化,以兼顾路网通行能力与运行效率整体最优。案例仿真结果表明,所提模型能够较为准确地计算路网通行能力,模型计算结果与仿真实验数据偏差为1.60%。与Synchro优化方案相比,所提模型优化方案可使路网通行能力提高5.11%,车均延误时间减少12.28%,车均停车次数下降19.10%,取得了较为明显的优化效果。 展开更多
关键词 交通工程 城市路网 通行能力 OD流量 信号优化 延误
在线阅读 下载PDF
基于复杂网络的机场交通流量波动范围特征:以北京大兴机场为例
18
作者 张勰 张鑫宇 张钧 《科学技术与工程》 北大核心 2025年第17期7405-7416,共12页
研究机场交通流量的波动范围特征是进行高效流量管理及控制的基础,理解并掌握机场交通流量波动范围特征对维持整个机场交通运行的稳定性和有效性起着重要作用。通过考虑时间的不可逆性及在一定时段内机场流量大于设施容量所产生的拥堵... 研究机场交通流量的波动范围特征是进行高效流量管理及控制的基础,理解并掌握机场交通流量波动范围特征对维持整个机场交通运行的稳定性和有效性起着重要作用。通过考虑时间的不可逆性及在一定时段内机场流量大于设施容量所产生的拥堵量会累加影响在后续时间点上,提出自适应跨越网络的构建方法。从复杂网络拓扑特性角度出发,对网络的整体特征以及节点中心性进行分析,并应用独立性权系数法分别计算节点的综合中心度,识别网络中的强波动核心枢纽时间节点。结果表明:根据北京大兴机场流量数据映射得到的自适应跨越网络呈现复杂有序的特点,具有无标度特征,网络是同配的且有明显的社团结构;21:20—22:25(节点257~269)中在各中心度的排名均靠前,波动影响范围较大,属于网络中的核心枢纽节点;综合中心度归纳了网络的各种拓扑中心性特征,并对其进行定量分析后有效刻画了网络中的强波动节点。该方法为机场交通流量的优化管理和异常波动研究提供了理论依据和实践参考,为提升机场运行效率和安全性提供了新的视角。 展开更多
关键词 航空运输 网络特征 复杂网络 机场交通流 非线性时间序列分析
在线阅读 下载PDF
基于多维注意力机制的高速公路交通流量预测方法
19
作者 虞安军 励英迪 +5 位作者 杨哲懿 付崇宇 童蔚苹 余佳 刘云海 刘志远 《汽车安全与节能学报》 北大核心 2025年第3期463-469,共7页
为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(T... 为了实现精准的交通流量预测,提高高速公路智慧管理水平,该文构建了一种基于多维注意力机制的交通流量预测模型,并在樟吉高速公路真实交通数据集上开展对比实验,以验证模型的准确性及预测精度。模型基于图神经网络(GNN)和时间卷积网络(TCN)提取交通流空间和时间维度的特征,结合多维注意力机制挖掘时空数据中的关键信息,同时引入多任务学习架构,通过基于同方差不确定性的损失函数来平衡不同任务共同学习,以提高模型的泛化能力和鲁棒性。结果表明:该模型在测试集上的均方根误差(RMSE)和平均绝对误差(MAE)分别为7.467和5.133,相较基准模型有更好的预测精度;提出的该交通流量预测方法可有效地挖掘交通流的时空特性,描述真实交通运行状态,对高速公路交通流量做出精准预测。 展开更多
关键词 交通流预测 图神经网络(GNN) 时间卷积网络(TCN) 多维注意力机制
在线阅读 下载PDF
基于时空多视野注意残差网络的城市区域交通流量预测
20
作者 陈静 杨国威 +1 位作者 张昭冲 王伟 《系统仿真学报》 北大核心 2025年第3期607-622,共16页
为高效、全面提取城市中复杂的时空相关性,提出一种新的端到端的深度学习框架—时空多视野注意残差网络(spatiotemporal multi-view attention residual network, ST-MVAR),用于城市区域交通流量预测。整合交通流量的临近性、周期性、... 为高效、全面提取城市中复杂的时空相关性,提出一种新的端到端的深度学习框架—时空多视野注意残差网络(spatiotemporal multi-view attention residual network, ST-MVAR),用于城市区域交通流量预测。整合交通流量的临近性、周期性、趋势性和外部因素作为网络输入,该网络通过跳跃连接,形成多层嵌套残差网络结构;设计多视野扩展模块,用于捕获交通流量对不同距离的空间依赖;引入坐标注意力机制,有效建立交通流量的时空相关性;通过K-Means聚类方法获取各时段交通流量所属模式,作为额外特征,进一步提高模型的预测精度。实验结果表明:ST-MVAR使用更少的参数获得更高的性能,相比之前的方法 RMSE降低14.2%。 展开更多
关键词 交通流量预测 残差网络 视野扩展 坐标注意力 K-MEANS聚类
原文传递
上一页 1 2 60 下一页 到第
使用帮助 返回顶部