An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and sa...An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and samples from the model to obtain the next generation,avoiding the problem of building-blocks destruction caused by crossover and mutation.Neighboring search from artificial bee colony algorithm(ABCA)is introduced to enhance the local optimization ability and improved to raise the speed of convergence.The probability model is modified by boundary correction and loss correction to enhance the robustness of the algorithm.The proposed IEDA is compared with other intelligent algorithms in relevant references.The results show that the proposed IEDA has faster convergence speed and stronger optimization ability,proving the feasibility and effectiveness of the algorithm.展开更多
A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering a...A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering and vortex beam generation within a frequency range of 0.68 THz–0.72 THz.Firstly,the metasurface unit is topologically optimized using the non-dominant sequencing genetic algorithms(NSGA-II)multi-objective optimization algorithm.By applying the LC’s electrically tunable refractive index properties,the metasurface unit enables polarization-independent 2-bit coding within a frequency range of 0.68 THz–0.72 THz.Then,based on the designed metasurface unit,the array arrangement of the metasurface is reverse-designed to achieve beam steering and vortex beam generation.The results show that,for beam steering,not only can polarization-independent steering of both single-and multi-beam be achieved within the 35°elevation angle range,but also independent control of the target angle of each beam in the multi-beam steering.For vortex beam generation,the metasurfaces can achieve the generation of single-and multi-vortex beams with topological charges l=±1,±2 within the 35elevation angle range,and the generation angles of each vortex beam in the multi-vortex beam can be independently controlled.This provides flexibility and diversity in the generation of vortex beams.Therefore,the proposed terahertz LC metasurface can realize flexible control of reconfigurable functions and has certain application prospects in terahertz communication,phased array radar,and vortex radar.展开更多
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne...Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.展开更多
Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the m...Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the metasurface unit cellsand design a reflective linear polarization conversion metasurface with ultra-broadband and wide-angle characteristics.By partitioning the metallic pattern layer into quadrants,the encoding length is effectively reduced,resulting in a shorteroptimization time.The research results indicate that the converter possesses a polarization conversion efficiency ratio higherthan 90%and a relative bandwidth ratio of 125%in a range of 0.231-0.995 THz.Meanwhile,it can maintain excellentpolarization conversion properties when the incident angle of terahertz waves is less than 45°and the polarization angle isless than 15°,demonstrating excellent practicality.New insights are provided for the design of terahertz wide-angle ultrawidebandpolarization conversion devices,and the proposed metasurfce has potential applications in terahertz polarizationimaging,spectroscopy and communication fields.展开更多
Based on the Independent Continuous Mapping method (ICM), a topological optimization model with continuous topological variables is built by introducing three filter functions for element weight, element allowable s...Based on the Independent Continuous Mapping method (ICM), a topological optimization model with continuous topological variables is built by introducing three filter functions for element weight, element allowable stress and element stiffness, which transform the 0-1 type discrete topological variables into continuous topological variables between 0 and 1. Two methods for the filter functions are adopted to avoid the structural singularity and recover falsely deleted elements: the weak material element method and the tiny section element method. Three criteria (no structural singularity, no violated constraints and no change of structural weight) are introduced to judge iteration convergence. These criteria allow finding an appropriate threshold by adjusting a discount factor in the iteration procedure. To improve the efficiency, the original optimization model is transformed into a dual problem according to the dual theory and solved in its dual space. By using MSC/Nastran as the structural solver and MSC/Patran as the developing platform, a topological optimization software of frame structures is accomplished. Numerical examples show that the ICM method is very efficient for the topological optimization of frame structures.展开更多
In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topolo...In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multidisplacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.展开更多
A novel reconstructive prosthesis was designed with topological optimization(TO)and a lattice structure to enhance biomechanical and biological properties in the proximal tibia.The biomechanical performance was valida...A novel reconstructive prosthesis was designed with topological optimization(TO)and a lattice structure to enhance biomechanical and biological properties in the proximal tibia.The biomechanical performance was validated through finite element analysis(FEA)and biomechanical tests.The tibia with inhomogeneous material properties was reconstructed according to computed tomography images,and different components were designed to simulate the operation.Minimum compliance TO subject to a volume fraction constraint combined with a graded lattice structure was utilized to redesign the prosthesis.FEA was performed to evaluate the mechanical performances of the tibia and implants after optimization,including stress,micromotion,and strain energy.The results were analyzed by paired-samples t tests,and p<0.05 was considered significant.Biomechanical testing was used to verify the tibial stresses.Compared to the original group(OG),the TO group(TOG)exhibited lower stress on the stem,and the maximum von Mises stresses were 87.2 and 53.1 MPa,respectively,a 39.1%reduction(p<0.05).Conversely,the stress and strain energy on the tibia increased in the TOG.The maximum von Mises stress values were 16.4 MPa in the OG and 22.9 MPa in the TOG with a 39.6%increase(p<0.05),and the maximum SED value was 0.026 MPa in the OG and 0.042 MPa in the TOG,corresponding to an increase of 61.5%(p<0.05).The maximum micromotions in the distal end of the stem were 135μm in the OG and 68μm in the TOG,almost a 50%reduction.The stress curves of the biomechanical test coincided well with the FEA results.The TO approach can effectively reduce the whole weight of the prosthesis and improve the biomechanical environment of the tibia.It could also pave the way for next-generation applications in orthopedics surgery.展开更多
Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout...Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout to minimize the manufacturing deformation.Firstly,a topological optimization model that takes the stiffness of ATWC as the objective function and the volume of the locating structure as the constraint is established.Secondly,ATWC and the locating structure are regarded as an integrated entity,and the variable-density method based topological optimization approach is adopted for the optimization of the locating structure using ABAQUS topology optimization module(ATOM).Thirdly,through a subsequent model reconstruction referring to the obtained topological structure,the optimal fixture locating layout is achieved.Finally,a case study is conducted to verify the proposed method and the comparison results with firefly algorithm(FA)coupled with finite element analysis(FEA)indicate that the number and positions of the locators for ATWC can be optimized simultaneously and successfully by the proposed topological optimization model.展开更多
A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in...A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in conventional models and algorithms for the optimization of the structural topology. Its application to truss topological optimization with stress and displacement constraints is satisfactory, with convergence faster than that of sectional optimizations.展开更多
A method for topological optimization of structures with discrete variables subjected to dynamic stress and displacement constraints is presented. By using the quasistatic method, the structure optimization problem un...A method for topological optimization of structures with discrete variables subjected to dynamic stress and displacement constraints is presented. By using the quasistatic method, the structure optimization problem under dynamic stress and displacement constraints is converted into one subjected to static stress and displacement constraints. The comprehensive algorithm for topological optimization of structures with discrete variables is used to find the optimum solution.展开更多
A high percentage of failure in pump elements originates from fatigue.This study focuses on the discharge section behavior,made of ductile iron,under dynamic load.An experimental protocol is established to collect the...A high percentage of failure in pump elements originates from fatigue.This study focuses on the discharge section behavior,made of ductile iron,under dynamic load.An experimental protocol is established to collect the strain under pressurization and depressurization tests at specific locations.These experimental results are used to formulate the ultimate pressure expression function of the strain and the lateral surface of the discharge section and to validate finite element modeling.Fe-Safe is then used to assess the fatigue life cycle using different types of fatigue criteria(Coffin-Manson,Morrow,Goodman,and Soderberg).When the pressure is under 3000 PSI,pumps have an unlimited service life of 107 cycles,regardless of the criterion.However,for a pressure of 3555 PSI,only the Morrow criterion denotes a significant decrease in fatigue life cycles,as it considers the average stress.The topological optimization is then applied to the most critical pump model(with the lowest fatigue life cycle)to increase its fatigue life.Using the solid isotropic material with a penalization approach,the Abaqus Topology OptimizationModule is employed.The goal is to reduce the strain energy density while keeping the volume within bounds.According to the findings,a 5%volume reduction causes the strain energy density to decrease from 1.06 to 0.66106 J/m^(3).According to Morrow,the fatigue life cycle at 3,555 PSI is 782,425 longer than the initial 309,742 cycles.展开更多
Based on a level set model, a topology optimization method has been suggestedrecently. It uses a level set to express the moving structural boundary, which can flexibly handlecomplex topological changes. By combining ...Based on a level set model, a topology optimization method has been suggestedrecently. It uses a level set to express the moving structural boundary, which can flexibly handlecomplex topological changes. By combining vector level set models with gradient projectiontechnology, the level set method for topological optimization is extended to a topologicaloptimization problem with multi-constraints, multi-materials and multi-load cases. Meanwhile, anappropriate nonlinear speed, mapping is established in the tangential space of the activeconstraints for a fast convergence. Then the method is applied to structure designs, mechanism andmaterial designs by a number of benchmark examples. Finally, in order to further improvecomputational efficiency and overcome the difficulty that the level set method cannot generate newmaterial interfaces during the optimization process, the topological derivative analysis isincorporated into the level set method for topological optimization, and a topological derivativeand level set algorithm for topological optimization is proposed.展开更多
A new exist-null combined model is proposed for the structural topology optimization. The model is applied to the topology optimization of the truss with stress constraints. Satisfactory computational result can be ob...A new exist-null combined model is proposed for the structural topology optimization. The model is applied to the topology optimization of the truss with stress constraints. Satisfactory computational result can be obtained with more rapid and more stable convergence as compared with the cross-sectional optimization. This work also shows that the presence of independent and continuous topological variable motivates the research of structural topology optimization.展开更多
Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers...Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers use known solutions to only a single form of benchmark problem.This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms.A greyness measure is implemented to evaluate how far a solution is from the desired binary form.The well-known ZhouRozvany(ZR)problem is selected as the benchmarking problem here,making use of available global solutions for both its relaxed and binary forms.The recently developed non-penalization Smooth-edged Material Distribution for Optimizing Topology(SEMDOT),well-established Solid Isotropic Material with Penalization(SIMP),and continuation methods are studied on this platform.Interestingly,in most cases,the grayscale solutions obtained by SEMDOT demonstrate better performance in dealing with the ZR problem than SIMP.The reasons are investigated and attributed to the usage of two different regularization techniques,namely,the Heaviside smooth function in SEMDOT and the power-law penalty in SIMP.More importantly,a simple-to-use benchmarking graph is proposed for evaluating newly developed topology optimization methods.展开更多
Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading.While earlier studies mainly examined material properties and how str...Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading.While earlier studies mainly examined material properties and how stress affects lifespan,this review offers the first comprehensive,multiscale comparison of strategies that optimize geometry to improve fatigue performance.This includes everything from microscopic features like the shape of graphite nodules to large-scale design elements such as fillets,notches,and overall structural layouts.We analyze and combine various methods,including topology and shape optimization,the ability of additive manufacturing to finetune internal geometries,and reliability-based design approaches.A key new contribution is our proposal of a standard way to evaluate geometry-focused fatigue design,allowing for consistent comparison and encouraging validation across different fields.Furthermore,we highlight important areas for future research,such as incorporating manufacturing flaws,using multiscale models,and integrating machine learning techniques.This work is the first to provide a broad geometric viewpoint in fatigue engineering,laying the groundwork for future design methods that are driven by data and centered on reliability.展开更多
In this paper,a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints,utilizing the Solid Isotropic Material with Penalization approach.Element densities are reg...In this paper,a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints,utilizing the Solid Isotropic Material with Penalization approach.Element densities are regulated through sensitivity filtering tomitigate numerical instabilities associatedwith stress concentrations.Ap-norm aggregation function is employed to globalize local stress constraints,and a normalization technique linearly weights strain energy and stress,transforming the multi-objective problem into a single-objective formulation.The sensitivity of the objective function with respect to design variables is rigorously derived.Three numerical examples are presented,comparing the optimized structures in terms of strain energy,mass,and stress across five different mathematical models with varying combinations of optimization objectives.The results validate the effectiveness and feasibility of the proposed method for achieving a balanced design between structural stiffness and strength.This approach offers a new perspective for future research on stiffness-strength coordinated structural optimization.展开更多
This study presents an extension of multiscale topology optimization by integrating both yield stress and local/global buckling considerations into the design process.Building upon established multiscale methodologies...This study presents an extension of multiscale topology optimization by integrating both yield stress and local/global buckling considerations into the design process.Building upon established multiscale methodologies,we develop a new framework incorporating yield stress limits either as constraints or objectives alongside previously established local and global buckling constraints.This approach significantly refines the optimization process,ensuring that the resulting designs meet mechanical performance criteria and adhere to critical material yield constraints.First,we establish local density-dependent von Mises yield surfaces based on local yield estimates from homogenization-based analysis to predict the local yield limits of the homogenized materials.Then,these local yield-based load factors are combined with local and global buckling criteria to obtain topology optimized designs that consider yield and buckling failure on all levels.This integration is crucial for the practical application of optimized structures in real-world scenarios,where material yield and stability behavior critically influence structural integrity and durability.Numerical examples demonstrate how optimized designs depend on the stiffness to yield ratio of the considered building material.Despite the foundational assumption of the separation of scales,the de-homogenized structures,even at relatively coarse length scales,exhibit a remarkably high degree of agreement with the corresponding homogenized predictions.展开更多
A data-driven model ofmultiple variable cutting(M-VCUT)level set-based substructure is proposed for the topology optimization of lattice structures.TheM-VCUTlevel setmethod is used to represent substructures,enriching...A data-driven model ofmultiple variable cutting(M-VCUT)level set-based substructure is proposed for the topology optimization of lattice structures.TheM-VCUTlevel setmethod is used to represent substructures,enriching their diversity of configuration while ensuring connectivity.To construct the data-driven model of substructure,a database is prepared by sampling the space of substructures spanned by several substructure prototypes.Then,for each substructure in this database,the stiffness matrix is condensed so that its degrees of freedomare reduced.Thereafter,the data-drivenmodel of substructures is constructed through interpolationwith compactly supported radial basis function(CS-RBF).The inputs of the data-driven model are the design variables of topology optimization,and the outputs are the condensed stiffness matrix and volume of substructures.During the optimization,this data-driven model is used,thus avoiding repeated static condensation that would requiremuch computation time.Several numerical examples are provided to verify the proposed method.展开更多
Simultaneously,reducing an acoustic metamaterial’s weight and sound pressure level is an important but difficult topic.Considering the law of mass,traditional lightweight acoustic metamaterials make it difficult to c...Simultaneously,reducing an acoustic metamaterial’s weight and sound pressure level is an important but difficult topic.Considering the law of mass,traditional lightweight acoustic metamaterials make it difficult to control noise efficiently in real-life applications.In this study,a novel optimization-driven design scheme is developed to obtain lightweight acoustic metamaterials with a strong sound insulation capability for additive manufacturing.In the proposed design scheme,a topology optimization method for an acoustic metamaterial in the acoustic-solid interaction system is implemented to obtain an initial cross-sectional topology of the acoustic microstructure during the conceptual design phase.Then,in the detailed design phase,the parametric model for a higher-dimensional design is formulated based on the topology optimization result.An adaptive Kriging interpolation approach is proposed to accurately reformulate a much easier surrogate model from the original parameterization formulation to avoid repeating calls for nonlinear analyses in the 3D acoustic-structure interaction system.A surrogate model was used to optimize a ready-to-print acoustic metamaterial with improved noise reduction performance.Experimental verification based on an impedance tube is implemented.Results demonstrate characteristics of the devised metamaterial as well as the proposed method.展开更多
This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element couplin...This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element coupling stress resulting from the combination of mechanical and thermal loading,using geometric nonlinear finite element analysis.A topological model is then developed to minimize compliance while meeting displacement and frequency constraints to fulfill design requirements of structural members.Since the conventional Lagrange multiplier search method is unable to handle convergence instability arising from large deformation,a novel Lagrange multiplier search method is proposed.Additionally,the proposed method can be extended to multi-constrained geometrically nonlinear topology optimization,accommodating multiple physical field couplings.展开更多
基金supported by the National Key Research and Development Program(2021YFB3502500).
文摘An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and samples from the model to obtain the next generation,avoiding the problem of building-blocks destruction caused by crossover and mutation.Neighboring search from artificial bee colony algorithm(ABCA)is introduced to enhance the local optimization ability and improved to raise the speed of convergence.The probability model is modified by boundary correction and loss correction to enhance the robustness of the algorithm.The proposed IEDA is compared with other intelligent algorithms in relevant references.The results show that the proposed IEDA has faster convergence speed and stronger optimization ability,proving the feasibility and effectiveness of the algorithm.
基金Project supported by the Open Fund of Wuhan National Research Center for Optoelectronics(Grant No.2022WNLOKF012)the National College Students Innovation Innovation and Entrepreneurship Training Program(Grant No.2023102930147).
文摘A broadband polarization-independent terahertz multifunctional coding metasurface based on topological optimization using liquid crystal(LC)is proposed.The metasurface can achieve reconfigurability for beam steering and vortex beam generation within a frequency range of 0.68 THz–0.72 THz.Firstly,the metasurface unit is topologically optimized using the non-dominant sequencing genetic algorithms(NSGA-II)multi-objective optimization algorithm.By applying the LC’s electrically tunable refractive index properties,the metasurface unit enables polarization-independent 2-bit coding within a frequency range of 0.68 THz–0.72 THz.Then,based on the designed metasurface unit,the array arrangement of the metasurface is reverse-designed to achieve beam steering and vortex beam generation.The results show that,for beam steering,not only can polarization-independent steering of both single-and multi-beam be achieved within the 35°elevation angle range,but also independent control of the target angle of each beam in the multi-beam steering.For vortex beam generation,the metasurfaces can achieve the generation of single-and multi-vortex beams with topological charges l=±1,±2 within the 35elevation angle range,and the generation angles of each vortex beam in the multi-vortex beam can be independently controlled.This provides flexibility and diversity in the generation of vortex beams.Therefore,the proposed terahertz LC metasurface can realize flexible control of reconfigurable functions and has certain application prospects in terahertz communication,phased array radar,and vortex radar.
文摘Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from.
基金supported by the National Natural Science Foundation of China and the Open Project Program of Wuhan National Laboratory for Optoelectronics(Grant No.2022WNLOKF012).
文摘Terahertz polarization conversion devices have significant potential applications in various fields such as terahertzimaging and spectroscopy.In this paper,we utilize genetic algorithms to topologically optimize the metasurface unit cellsand design a reflective linear polarization conversion metasurface with ultra-broadband and wide-angle characteristics.By partitioning the metallic pattern layer into quadrants,the encoding length is effectively reduced,resulting in a shorteroptimization time.The research results indicate that the converter possesses a polarization conversion efficiency ratio higherthan 90%and a relative bandwidth ratio of 125%in a range of 0.231-0.995 THz.Meanwhile,it can maintain excellentpolarization conversion properties when the incident angle of terahertz waves is less than 45°and the polarization angle isless than 15°,demonstrating excellent practicality.New insights are provided for the design of terahertz wide-angle ultrawidebandpolarization conversion devices,and the proposed metasurfce has potential applications in terahertz polarizationimaging,spectroscopy and communication fields.
基金The project supported by the National Natural Science Foundation of China (10472003)Beijing Natural Science Foundation (3042002)
文摘Based on the Independent Continuous Mapping method (ICM), a topological optimization model with continuous topological variables is built by introducing three filter functions for element weight, element allowable stress and element stiffness, which transform the 0-1 type discrete topological variables into continuous topological variables between 0 and 1. Two methods for the filter functions are adopted to avoid the structural singularity and recover falsely deleted elements: the weak material element method and the tiny section element method. Three criteria (no structural singularity, no violated constraints and no change of structural weight) are introduced to judge iteration convergence. These criteria allow finding an appropriate threshold by adjusting a discount factor in the iteration procedure. To improve the efficiency, the original optimization model is transformed into a dual problem according to the dual theory and solved in its dual space. By using MSC/Nastran as the structural solver and MSC/Patran as the developing platform, a topological optimization software of frame structures is accomplished. Numerical examples show that the ICM method is very efficient for the topological optimization of frame structures.
基金supported by the National Natural Science Foundation of China (10872036)the High Technological Research and Development Program of China (2008AA04Z118)the Airspace Natural Science Foundation (2007ZA23007)
文摘In density-based topological design, one expects that the final result consists of elements either black (solid material) or white (void), without any grey areas. Moreover, one also expects that the optimal topology can be obtained by starting from any initial topology configuration. An improved structural topological optimization method for multidisplacement constraints is proposed in this paper. In the proposed method, the whole optimization process is divided into two optimization adjustment phases and a phase transferring step. Firstly, an optimization model is built to deal with the varied displacement limits, design space adjustments, and reasonable relations between the element stiffness matrix and mass and its element topology variable. Secondly, a procedure is proposed to solve the optimization problem formulated in the first optimization adjustment phase, by starting with a small design space and advancing to a larger deign space. The design space adjustments are automatic when the design domain needs expansions, in which the convergence of the proposed method will not be affected. The final topology obtained by the proposed procedure in the first optimization phase, can approach to the vicinity of the optimum topology. Then, a heuristic algorithm is given to improve the efficiency and make the designed structural topology black/white in both the phase transferring step and the second optimization adjustment phase. And the optimum topology can finally be obtained by the second phase optimization adjustments. Two examples are presented to show that the topologies obtained by the proposed method are of very good 0/1 design distribution property, and the computational efficiency is enhanced by reducing the element number of the design structural finite model during two optimization adjustment phases. And the examples also show that this method is robust and practicable.
基金National Natural Science Foundation of China[Grant Numbers 81802174,81900726&82072456]Department of Science and Technology of Jilin Province,P.R.C[Grant Numbers 20200404202YY,20200403086SF&20200201453JC]+8 种基金Jilin Province Development and Reform Commission,P.R.C[Grant Number 2018C010]Education Department of Jilin Province,P.R.C[GrantNumber JJKH20180106KJ]Administration of Traditional Chinese Medicine of Jilin Province P.R.C[Grant Number 2018115]10th Youth Project of the First Hospital of Jilin University[Grant Number JDYY102019025]Department of Finance in Jilin Province[Grant Number 2019SCZT046]Undergraduate Teaching Reform Research Project of Jilin University[Grant Number 4Z2000610852]Key training plan for outstanding young teachers of Jilin University[Grant Number 419080520253]Bethune plan of Jilin University[Grant Number 470110000692]The major participant is Qing Han.
文摘A novel reconstructive prosthesis was designed with topological optimization(TO)and a lattice structure to enhance biomechanical and biological properties in the proximal tibia.The biomechanical performance was validated through finite element analysis(FEA)and biomechanical tests.The tibia with inhomogeneous material properties was reconstructed according to computed tomography images,and different components were designed to simulate the operation.Minimum compliance TO subject to a volume fraction constraint combined with a graded lattice structure was utilized to redesign the prosthesis.FEA was performed to evaluate the mechanical performances of the tibia and implants after optimization,including stress,micromotion,and strain energy.The results were analyzed by paired-samples t tests,and p<0.05 was considered significant.Biomechanical testing was used to verify the tibial stresses.Compared to the original group(OG),the TO group(TOG)exhibited lower stress on the stem,and the maximum von Mises stresses were 87.2 and 53.1 MPa,respectively,a 39.1%reduction(p<0.05).Conversely,the stress and strain energy on the tibia increased in the TOG.The maximum von Mises stress values were 16.4 MPa in the OG and 22.9 MPa in the TOG with a 39.6%increase(p<0.05),and the maximum SED value was 0.026 MPa in the OG and 0.042 MPa in the TOG,corresponding to an increase of 61.5%(p<0.05).The maximum micromotions in the distal end of the stem were 135μm in the OG and 68μm in the TOG,almost a 50%reduction.The stress curves of the biomechanical test coincided well with the FEA results.The TO approach can effectively reduce the whole weight of the prosthesis and improve the biomechanical environment of the tibia.It could also pave the way for next-generation applications in orthopedics surgery.
基金supported by the National Natural Science Foundation of China(No.51375396)the Shaanxi Science and Technology Innovation Project Plan,China(No.2016KTCQ01-50)
文摘Fixture locating layout has a direct and influential impact on aeronautical thin-walled component(ATWC)manufacturing quality.The purpose is to develop a topological optimization method for ATWC fixture locating layout to minimize the manufacturing deformation.Firstly,a topological optimization model that takes the stiffness of ATWC as the objective function and the volume of the locating structure as the constraint is established.Secondly,ATWC and the locating structure are regarded as an integrated entity,and the variable-density method based topological optimization approach is adopted for the optimization of the locating structure using ABAQUS topology optimization module(ATOM).Thirdly,through a subsequent model reconstruction referring to the obtained topological structure,the optimal fixture locating layout is achieved.Finally,a case study is conducted to verify the proposed method and the comparison results with firefly algorithm(FA)coupled with finite element analysis(FEA)indicate that the number and positions of the locators for ATWC can be optimized simultaneously and successfully by the proposed topological optimization model.
基金The project supported by State Key Laboratory of Structural Analyses of Industrial Equipment
文摘A concept of the independent-continuous topological variable is proposed to establish its corresponding smooth model of structural topological optimization. The method can overcome difficulties that are encountered in conventional models and algorithms for the optimization of the structural topology. Its application to truss topological optimization with stress and displacement constraints is satisfactory, with convergence faster than that of sectional optimizations.
文摘A method for topological optimization of structures with discrete variables subjected to dynamic stress and displacement constraints is presented. By using the quasistatic method, the structure optimization problem under dynamic stress and displacement constraints is converted into one subjected to static stress and displacement constraints. The comprehensive algorithm for topological optimization of structures with discrete variables is used to find the optimum solution.
基金The authors extend their appreciation to the Researchers Supporting Project number(RSPD2023R698),King Saud University,Riyadh,Saudi Arabia for funding this research work.
文摘A high percentage of failure in pump elements originates from fatigue.This study focuses on the discharge section behavior,made of ductile iron,under dynamic load.An experimental protocol is established to collect the strain under pressurization and depressurization tests at specific locations.These experimental results are used to formulate the ultimate pressure expression function of the strain and the lateral surface of the discharge section and to validate finite element modeling.Fe-Safe is then used to assess the fatigue life cycle using different types of fatigue criteria(Coffin-Manson,Morrow,Goodman,and Soderberg).When the pressure is under 3000 PSI,pumps have an unlimited service life of 107 cycles,regardless of the criterion.However,for a pressure of 3555 PSI,only the Morrow criterion denotes a significant decrease in fatigue life cycles,as it considers the average stress.The topological optimization is then applied to the most critical pump model(with the lowest fatigue life cycle)to increase its fatigue life.Using the solid isotropic material with a penalization approach,the Abaqus Topology OptimizationModule is employed.The goal is to reduce the strain energy density while keeping the volume within bounds.According to the findings,a 5%volume reduction causes the strain energy density to decrease from 1.06 to 0.66106 J/m^(3).According to Morrow,the fatigue life cycle at 3,555 PSI is 782,425 longer than the initial 309,742 cycles.
基金This project is supported by National Natural Science Foundation of China(No.598005001, No.10332010) and Key Science and Technology Research Project of Ministry of Education (No.104060).
文摘Based on a level set model, a topology optimization method has been suggestedrecently. It uses a level set to express the moving structural boundary, which can flexibly handlecomplex topological changes. By combining vector level set models with gradient projectiontechnology, the level set method for topological optimization is extended to a topologicaloptimization problem with multi-constraints, multi-materials and multi-load cases. Meanwhile, anappropriate nonlinear speed, mapping is established in the tangential space of the activeconstraints for a fast convergence. Then the method is applied to structure designs, mechanism andmaterial designs by a number of benchmark examples. Finally, in order to further improvecomputational efficiency and overcome the difficulty that the level set method cannot generate newmaterial interfaces during the optimization process, the topological derivative analysis isincorporated into the level set method for topological optimization, and a topological derivativeand level set algorithm for topological optimization is proposed.
基金The project supported by the State Key Laboratory for Structural Analysis of Industrial Equipment,Dalian University of Technology.
文摘A new exist-null combined model is proposed for the structural topology optimization. The model is applied to the topology optimization of the truss with stress constraints. Satisfactory computational result can be obtained with more rapid and more stable convergence as compared with the cross-sectional optimization. This work also shows that the presence of independent and continuous topological variable motivates the research of structural topology optimization.
文摘Most material distribution-based topology optimization methods work on a relaxed form of the optimization problem and then push the solution toward the binary limits.However,when benchmarking these methods,researchers use known solutions to only a single form of benchmark problem.This paper proposes a comparison platform for systematic benchmarking of topology optimization methods using both binary and relaxed forms.A greyness measure is implemented to evaluate how far a solution is from the desired binary form.The well-known ZhouRozvany(ZR)problem is selected as the benchmarking problem here,making use of available global solutions for both its relaxed and binary forms.The recently developed non-penalization Smooth-edged Material Distribution for Optimizing Topology(SEMDOT),well-established Solid Isotropic Material with Penalization(SIMP),and continuation methods are studied on this platform.Interestingly,in most cases,the grayscale solutions obtained by SEMDOT demonstrate better performance in dealing with the ZR problem than SIMP.The reasons are investigated and attributed to the usage of two different regularization techniques,namely,the Heaviside smooth function in SEMDOT and the power-law penalty in SIMP.More importantly,a simple-to-use benchmarking graph is proposed for evaluating newly developed topology optimization methods.
文摘Fatigue failure continues to be a significant challenge in designing structural and mechanical components subjected to repeated and complex loading.While earlier studies mainly examined material properties and how stress affects lifespan,this review offers the first comprehensive,multiscale comparison of strategies that optimize geometry to improve fatigue performance.This includes everything from microscopic features like the shape of graphite nodules to large-scale design elements such as fillets,notches,and overall structural layouts.We analyze and combine various methods,including topology and shape optimization,the ability of additive manufacturing to finetune internal geometries,and reliability-based design approaches.A key new contribution is our proposal of a standard way to evaluate geometry-focused fatigue design,allowing for consistent comparison and encouraging validation across different fields.Furthermore,we highlight important areas for future research,such as incorporating manufacturing flaws,using multiscale models,and integrating machine learning techniques.This work is the first to provide a broad geometric viewpoint in fatigue engineering,laying the groundwork for future design methods that are driven by data and centered on reliability.
基金funded by National Nature Science Foundation of China(92266203)National Nature Science Foundation of China(52205278)+1 种基金Key Projects of Shijiazhuang Basic Research Program(241791077A)Central Guide Local Science and Technology Development Fund Project of Hebei Province(246Z1022G).
文摘In this paper,a topology optimization method for coordinated stiffness and strength design is proposed under mass constraints,utilizing the Solid Isotropic Material with Penalization approach.Element densities are regulated through sensitivity filtering tomitigate numerical instabilities associatedwith stress concentrations.Ap-norm aggregation function is employed to globalize local stress constraints,and a normalization technique linearly weights strain energy and stress,transforming the multi-objective problem into a single-objective formulation.The sensitivity of the objective function with respect to design variables is rigorously derived.Three numerical examples are presented,comparing the optimized structures in terms of strain energy,mass,and stress across five different mathematical models with varying combinations of optimization objectives.The results validate the effectiveness and feasibility of the proposed method for achieving a balanced design between structural stiffness and strength.This approach offers a new perspective for future research on stiffness-strength coordinated structural optimization.
基金supported by Villum Fonden through the Villum Investigator Project“AMSTRAD”(Grant No.VIL54487).
文摘This study presents an extension of multiscale topology optimization by integrating both yield stress and local/global buckling considerations into the design process.Building upon established multiscale methodologies,we develop a new framework incorporating yield stress limits either as constraints or objectives alongside previously established local and global buckling constraints.This approach significantly refines the optimization process,ensuring that the resulting designs meet mechanical performance criteria and adhere to critical material yield constraints.First,we establish local density-dependent von Mises yield surfaces based on local yield estimates from homogenization-based analysis to predict the local yield limits of the homogenized materials.Then,these local yield-based load factors are combined with local and global buckling criteria to obtain topology optimized designs that consider yield and buckling failure on all levels.This integration is crucial for the practical application of optimized structures in real-world scenarios,where material yield and stability behavior critically influence structural integrity and durability.Numerical examples demonstrate how optimized designs depend on the stiffness to yield ratio of the considered building material.Despite the foundational assumption of the separation of scales,the de-homogenized structures,even at relatively coarse length scales,exhibit a remarkably high degree of agreement with the corresponding homogenized predictions.
基金supported by the National Natural Science Foundation of China(Grant No.12272144).
文摘A data-driven model ofmultiple variable cutting(M-VCUT)level set-based substructure is proposed for the topology optimization of lattice structures.TheM-VCUTlevel setmethod is used to represent substructures,enriching their diversity of configuration while ensuring connectivity.To construct the data-driven model of substructure,a database is prepared by sampling the space of substructures spanned by several substructure prototypes.Then,for each substructure in this database,the stiffness matrix is condensed so that its degrees of freedomare reduced.Thereafter,the data-drivenmodel of substructures is constructed through interpolationwith compactly supported radial basis function(CS-RBF).The inputs of the data-driven model are the design variables of topology optimization,and the outputs are the condensed stiffness matrix and volume of substructures.During the optimization,this data-driven model is used,thus avoiding repeated static condensation that would requiremuch computation time.Several numerical examples are provided to verify the proposed method.
基金supported by the National Key Research and Development Program of China(No.2023YFB4604800)the National Natural Science Foundation of China(No.52075195)the Inelligent Manufacturing Equipment and Technology Open Foundation(No.IMETKF2023016).
文摘Simultaneously,reducing an acoustic metamaterial’s weight and sound pressure level is an important but difficult topic.Considering the law of mass,traditional lightweight acoustic metamaterials make it difficult to control noise efficiently in real-life applications.In this study,a novel optimization-driven design scheme is developed to obtain lightweight acoustic metamaterials with a strong sound insulation capability for additive manufacturing.In the proposed design scheme,a topology optimization method for an acoustic metamaterial in the acoustic-solid interaction system is implemented to obtain an initial cross-sectional topology of the acoustic microstructure during the conceptual design phase.Then,in the detailed design phase,the parametric model for a higher-dimensional design is formulated based on the topology optimization result.An adaptive Kriging interpolation approach is proposed to accurately reformulate a much easier surrogate model from the original parameterization formulation to avoid repeating calls for nonlinear analyses in the 3D acoustic-structure interaction system.A surrogate model was used to optimize a ready-to-print acoustic metamaterial with improved noise reduction performance.Experimental verification based on an impedance tube is implemented.Results demonstrate characteristics of the devised metamaterial as well as the proposed method.
基金supported by grants from the National Natural Science Foundation of China (51478130)the Guangzhou Municipal Education Bureau’s Scientific Research Project, China (2024312217)+1 种基金the China Scholarship Council (201808440070)the 111 Project of China (D21021).
文摘This paper presents an improved level set method for topology optimization of geometrically nonlinear structures accounting for the effect of thermo-mechanical couplings.It derives a new expression for element coupling stress resulting from the combination of mechanical and thermal loading,using geometric nonlinear finite element analysis.A topological model is then developed to minimize compliance while meeting displacement and frequency constraints to fulfill design requirements of structural members.Since the conventional Lagrange multiplier search method is unable to handle convergence instability arising from large deformation,a novel Lagrange multiplier search method is proposed.Additionally,the proposed method can be extended to multi-constrained geometrically nonlinear topology optimization,accommodating multiple physical field couplings.