In 1960s, Hartman and Grobman pointed out that if all eigenvalues of a matrix A have no zero real part and f(x) is small Lipchitzian, then x′=Ax+f(x) can be locally linearized on a neighborhood of the origin. Later, ...In 1960s, Hartman and Grobman pointed out that if all eigenvalues of a matrix A have no zero real part and f(x) is small Lipchitzian, then x′=Ax+f(x) can be locally linearized on a neighborhood of the origin. Later, the above result was generalized to global under the condition that f(x) is a bounded function. In this paper, we delete the condition that f(x) is a bounded function, and prove that if f(x) has suitable structure, then x′=Ax+f(x) can be linearized.展开更多
In this paper, we introduce the concept of fuzzifying topological linear space and discuss the structures and properties of the balanced neighborhood system of zero element. We also give the algebraic properties and t...In this paper, we introduce the concept of fuzzifying topological linear space and discuss the structures and properties of the balanced neighborhood system of zero element. We also give the algebraic properties and the topological properties of fuzzifying convex set in the fuzzifying topological linear space.展开更多
In this paper the linearly topological structure of Menger Probabilistic inner product space is discussed. In virtue of these, some more general convergence theorems, Pythagorean theorem, and the orthogonal projective...In this paper the linearly topological structure of Menger Probabilistic inner product space is discussed. In virtue of these, some more general convergence theorems, Pythagorean theorem, and the orthogonal projective theorem are established.展开更多
In this paper we define measures of semi noncompactness in a locally convex topological linear space with respect to a given seminorm. Then we get a fixed point theorem for a class of condensing set valued mappings...In this paper we define measures of semi noncompactness in a locally convex topological linear space with respect to a given seminorm. Then we get a fixed point theorem for a class of condensing set valued mappings and apply it to differential inclusions.展开更多
The aim of this paper is to give some properties of the linear topological invariant LB^-∞ Using these results we show that a nuclear Fréchet space F has the property LB∞ if and only if every separately holomor...The aim of this paper is to give some properties of the linear topological invariant LB^-∞ Using these results we show that a nuclear Fréchet space F has the property LB∞ if and only if every separately holomorphic function on an open subset U × V of E × F^* has a local Dirichlet representation,where E is a nuclear Fréchet space with the property LB^-∞ having a basis.展开更多
The functional dimension of countable Hilbert spaces has been discussed by some authors. They showed that every countable Hilbert space with finite functional dimension is nuclear. In this paper the authors do further...The functional dimension of countable Hilbert spaces has been discussed by some authors. They showed that every countable Hilbert space with finite functional dimension is nuclear. In this paper the authors do further research on the functional dimension, and obtain the following results: (1) They construct a countable Hilbert space, which is nuclear, but its functional dimension is infinite. (2) The functional dimension of a Banach space is finite if and only if this space is finite dimensional. (3)Let B be a Banach space, B* be its dual, and denote the weak * topology of B* by σ(B*, B). Then the functional dimension of (B*, σ(B*, B)) is 1. By the third result, a class of topological linear spaces with finite functional dimension is presented.展开更多
基金NSFC!( 1 9671 0 1 7) and NSF!( A970 1 2 ) of Fujian.
文摘In 1960s, Hartman and Grobman pointed out that if all eigenvalues of a matrix A have no zero real part and f(x) is small Lipchitzian, then x′=Ax+f(x) can be locally linearized on a neighborhood of the origin. Later, the above result was generalized to global under the condition that f(x) is a bounded function. In this paper, we delete the condition that f(x) is a bounded function, and prove that if f(x) has suitable structure, then x′=Ax+f(x) can be linearized.
基金the National Natural Science Foundation of China (60274016)the Project of Scientific Research in Hight Education Bureau Liaoning Province (2023901018).
文摘In this paper, we introduce the concept of fuzzifying topological linear space and discuss the structures and properties of the balanced neighborhood system of zero element. We also give the algebraic properties and the topological properties of fuzzifying convex set in the fuzzifying topological linear space.
基金Supported by the Natural Science Foundation of the Education Committee ofJiangsu Province
文摘In this paper the linearly topological structure of Menger Probabilistic inner product space is discussed. In virtue of these, some more general convergence theorems, Pythagorean theorem, and the orthogonal projective theorem are established.
文摘In this paper we define measures of semi noncompactness in a locally convex topological linear space with respect to a given seminorm. Then we get a fixed point theorem for a class of condensing set valued mappings and apply it to differential inclusions.
文摘The aim of this paper is to give some properties of the linear topological invariant LB^-∞ Using these results we show that a nuclear Fréchet space F has the property LB∞ if and only if every separately holomorphic function on an open subset U × V of E × F^* has a local Dirichlet representation,where E is a nuclear Fréchet space with the property LB^-∞ having a basis.
基金Project supported by the National Natural Science Foundation of China (No.10071088, No.10171098).
文摘The functional dimension of countable Hilbert spaces has been discussed by some authors. They showed that every countable Hilbert space with finite functional dimension is nuclear. In this paper the authors do further research on the functional dimension, and obtain the following results: (1) They construct a countable Hilbert space, which is nuclear, but its functional dimension is infinite. (2) The functional dimension of a Banach space is finite if and only if this space is finite dimensional. (3)Let B be a Banach space, B* be its dual, and denote the weak * topology of B* by σ(B*, B). Then the functional dimension of (B*, σ(B*, B)) is 1. By the third result, a class of topological linear spaces with finite functional dimension is presented.