With the rapid popularization of social applications, various kinds of social media have developed into an important platform for publishing information and expressing opinion. Detecting hidden topics from the huge am...With the rapid popularization of social applications, various kinds of social media have developed into an important platform for publishing information and expressing opinion. Detecting hidden topics from the huge amount of user-generated contents is of great commerce value and social significance. However traditional text analysis approachesonly focus on the statistical correlation between words, but ignore the sentiment tendency and the temporal properties which may have great effects on topic detection results. This paper proposed a Dynamic Sentiment-Topic(DST) model which can not only detect and track the dynamic topics but also analyze the shift of public's sentiment tendency towards certain topic.Expectation-Maximization algorithm was used in DST model to estimate the latent distribution, and we used Gibbs sampling method to sample new document set and update the hyper parameters and distributions.Experiments are conducted on a real dataset and the results show that DST model outperforms the existing algorithms in terms of topic detection and sentiment accuracy.展开更多
基金supported by National Natural Science Foundation of China with granted No.61402045,61370197the Specialized Research Fund for the Doctoral Program of Higher Education with granted No.20130005110011the National High Technology Research and Development Program with granted No.2013AA013301
文摘With the rapid popularization of social applications, various kinds of social media have developed into an important platform for publishing information and expressing opinion. Detecting hidden topics from the huge amount of user-generated contents is of great commerce value and social significance. However traditional text analysis approachesonly focus on the statistical correlation between words, but ignore the sentiment tendency and the temporal properties which may have great effects on topic detection results. This paper proposed a Dynamic Sentiment-Topic(DST) model which can not only detect and track the dynamic topics but also analyze the shift of public's sentiment tendency towards certain topic.Expectation-Maximization algorithm was used in DST model to estimate the latent distribution, and we used Gibbs sampling method to sample new document set and update the hyper parameters and distributions.Experiments are conducted on a real dataset and the results show that DST model outperforms the existing algorithms in terms of topic detection and sentiment accuracy.