Aim To characterize the odontogenic capability of apical bud and phenotypical change of apical bud cells (ABCs) in different microenvironment.Methodology Incisor apical bud tissues from neonatal SD rat were dissecte...Aim To characterize the odontogenic capability of apical bud and phenotypical change of apical bud cells (ABCs) in different microenvironment.Methodology Incisor apical bud tissues from neonatal SD rat were dissected and transplanted into the renal capsules to determine their odontogenic capability. Meanwhile ABCs were cultured and purified by repeated differential trypsinization. Then ABCs were cultured with conditioned medium from developing apical complex cells (DAC-CM). Immunocytochemistry, reverse transcriptase polymerase chain reaction (RT-PCR) and scanning electron microscope (SEM) were performed to compare the biolo- gical change of ABC treated with or without DAC-CM. Results First we confirmed the ability of apical bud to form crown-like structure ectopically. Equally important, by using the developing apical complex (DAC) condi- tioned medium, we found the microenvironment created by root could abrogate the "crown" features of ABCs and promote their proliferation and differentiation. Conclusion ABCs possess odontogenic capability to form crown-like tissues and this property can be affected by root-produced microenvironment.展开更多
基金supported by National Nature Science Foundation of China(Project No.3057 2046,30725042)
文摘Aim To characterize the odontogenic capability of apical bud and phenotypical change of apical bud cells (ABCs) in different microenvironment.Methodology Incisor apical bud tissues from neonatal SD rat were dissected and transplanted into the renal capsules to determine their odontogenic capability. Meanwhile ABCs were cultured and purified by repeated differential trypsinization. Then ABCs were cultured with conditioned medium from developing apical complex cells (DAC-CM). Immunocytochemistry, reverse transcriptase polymerase chain reaction (RT-PCR) and scanning electron microscope (SEM) were performed to compare the biolo- gical change of ABC treated with or without DAC-CM. Results First we confirmed the ability of apical bud to form crown-like structure ectopically. Equally important, by using the developing apical complex (DAC) condi- tioned medium, we found the microenvironment created by root could abrogate the "crown" features of ABCs and promote their proliferation and differentiation. Conclusion ABCs possess odontogenic capability to form crown-like tissues and this property can be affected by root-produced microenvironment.