期刊文献+
共找到241篇文章
< 1 2 13 >
每页显示 20 50 100
Tokenization技术剖析和展望
1
作者 李庆艳 张文安 《广东通信技术》 2016年第6期19-21,共3页
从大热的Apple Pay、SAMSUNG Pay及银联云闪付背后的令牌谈起,自令牌的来源说起,分析令牌化抢占移动支付的缘由,分析令牌化的主要特征,并对其未来进行展望。
关键词 令牌 令牌化 TOKEN tokenization PAN
在线阅读 下载PDF
Language-Independent Text Tokenization Using Unsupervised Deep Learning
2
作者 Hanan A.Hosni Mahmoud Alaaeldin M.Hafez Eatedal Alabdulkreem 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期321-334,共14页
Languages–independent text tokenization can aid in classification of languages with few sources.There is a global research effort to generate text classification for any language.Human text classification is a slow p... Languages–independent text tokenization can aid in classification of languages with few sources.There is a global research effort to generate text classification for any language.Human text classification is a slow procedure.Conse-quently,the text summary generation of different languages,using machine text classification,has been considered in recent years.There is no research on the machine text classification for many languages such as Czech,Rome,Urdu.This research proposes a cross-language text tokenization model using a Transformer technique.The proposed Transformer employs an encoder that has ten layers with self-attention encoding and a feedforward sublayer.This model improves the efficiency of text classification by providing a draft text classification for a number of documents.We also propose a novel Sub-Word tokenization model with frequent vocabulary usage in the documents.The Sub-Word Byte-Pair Tokenization technique(SBPT)utilizes the sharing of the vocabulary of one sentence with other sentences.The Sub-Word tokenization model enhances the performance of other Sub-Word tokenization models such pair encoding model by+10%using precision metric. 展开更多
关键词 Text classification language-independent tokenization sub word tokenization
在线阅读 下载PDF
Increasing Efficiency through Tokenization of Digital Assets in an Exporting Company 4.0
3
作者 JoséAntonio Trigueros Pina Napoleón B.Alegre Poma 《Journal of Sustainable Business and Economics》 2022年第1期29-42,共14页
Digital assets have been introduced to the global market as one of the innovations with the potential.Even though their impact on the traditional economy is impossible to measure.Security tokens(ST)are the ones that s... Digital assets have been introduced to the global market as one of the innovations with the potential.Even though their impact on the traditional economy is impossible to measure.Security tokens(ST)are the ones that stand out due to the preference they have from producers and consumers.The former obtains financial resources efficiently for their specific projects.While the latter look for STs in global digital platforms of trust and security.Which are regulated by public securities sales offices.The research proposes a method under the fuzzy logic theory and its applied models.It highlights the use of the triangular fuzzy numbers,the Fuzzy Delfi,Expertons,Hamming Distance,and the fuzzy inference system(FIS).The benefits and limitations of the proposal were highlighted when the proposal was used in an agro-export company.The route or algorithm of the value system to be followed in the execution of the investments stands out.Therefore,the research fulfills its objective and is very useful for small and medium export 4.0 companies.Since they are eager to obtain cash flow to improve their technical efficiency and to be able to export their artifacts to global markets.That is to say,the producer of goods can obtain an unprecedented benefit in an agile and efficient way in the context of Industry 4.0. 展开更多
关键词 STO ST SME Industry 4.0 Asset tokenization
在线阅读 下载PDF
基于Tokenization技术的移动支付安全架构模型研究 被引量:1
4
作者 欧志亮 《太原师范学院学报(自然科学版)》 2021年第4期55-59,共5页
传统的支付方式需要支付账号在移动设备中或商户POS机中流通,无形中加大了敏感信息暴露的风险.基于Tokenization技术将支付账号等交易信息替换为唯一的Token,支付过程中均使用Token进行,可以让用户的支付账号、有效期、交易次数、交易... 传统的支付方式需要支付账号在移动设备中或商户POS机中流通,无形中加大了敏感信息暴露的风险.基于Tokenization技术将支付账号等交易信息替换为唯一的Token,支付过程中均使用Token进行,可以让用户的支付账号、有效期、交易次数、交易渠道等各方面信息安全得到充分保障,有效防范信息泄露被盗的风险.文章分析了Tokenization技术生态链实现过程,设计架构Tokenization系统的核心架构模型,阐述各个核心模块实现功能. 展开更多
关键词 TOKEN 支付标记化 标记服务提供方 身份验证识别 架构模型
在线阅读 下载PDF
A Transformer-Based Deep Learning Framework with Semantic Encoding and Syntax-Aware LSTM for Fake Electronic News Detection
5
作者 Hamza Murad Khan Shakila Basheer +3 位作者 Mohammad Tabrez Quasim Raja`a Al-Naimi Vijaykumar Varadarajan Anwar Khan 《Computers, Materials & Continua》 2026年第1期1024-1048,共25页
With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contex... With the increasing growth of online news,fake electronic news detection has become one of the most important paradigms of modern research.Traditional electronic news detection techniques are generally based on contextual understanding,sequential dependencies,and/or data imbalance.This makes distinction between genuine and fabricated news a challenging task.To address this problem,we propose a novel hybrid architecture,T5-SA-LSTM,which synergistically integrates the T5 Transformer for semantically rich contextual embedding with the Self-Attentionenhanced(SA)Long Short-Term Memory(LSTM).The LSTM is trained using the Adam optimizer,which provides faster and more stable convergence compared to the Stochastic Gradient Descend(SGD)and Root Mean Square Propagation(RMSProp).The WELFake and FakeNewsPrediction datasets are used,which consist of labeled news articles having fake and real news samples.Tokenization and Synthetic Minority Over-sampling Technique(SMOTE)methods are used for data preprocessing to ensure linguistic normalization and class imbalance.The incorporation of the Self-Attention(SA)mechanism enables the model to highlight critical words and phrases,thereby enhancing predictive accuracy.The proposed model is evaluated using accuracy,precision,recall(sensitivity),and F1-score as performance metrics.The model achieved 99%accuracy on the WELFake dataset and 96.5%accuracy on the FakeNewsPrediction dataset.It outperformed the competitive schemes such as T5-SA-LSTM(RMSProp),T5-SA-LSTM(SGD)and some other models. 展开更多
关键词 Fake news detection tokenization SMOTE text-to-text transfer transformer(T5) long short-term memory(LSTM) self-attention mechanism(SA) T5-SA-LSTM WELFake dataset FakeNewsPrediction dataset
在线阅读 下载PDF
Finance infrastructure through blockchain-based tokenization 被引量:1
6
作者 Yifeng TIAN Zheng LU +3 位作者 Peter ADRIAENS R.Edward MINCHIN Alastair CAITHNESS Junghoon WOO 《Frontiers of Engineering Management》 2020年第4期485-499,共15页
The infrastructure finance gap has long-standing implications for economic and social development.Owing to low efficiency,high transaction costs,and long transaction time,conventional infrastructure financing instrume... The infrastructure finance gap has long-standing implications for economic and social development.Owing to low efficiency,high transaction costs,and long transaction time,conventional infrastructure financing instruments are considered to be major contributors to the increasing mismatch between the need for infrastructure development and available financing.Implemented through smart contracts,blockchain tokenization has shown characteristics that are poised to change the capital stack of infrastructure investment.This study analyzed the first SEC-compliant energy asset security token,Ziyen-Coin,from the perspective of the key participants,relevant regulations,and token offering procedures.Results show that tokenization can improve infrastructure assets liquidity,transaction efficiency,and transparency across intermediaries.Conventional infrastructure financing instruments were compared with blockchain tokenization by reviewing the literature on infrastructure finance.The benefits and barriers of tokenizing infrastructure assets were thoroughly discussed to devise ways of improving infrastructure financing.The study also found that the potential of tokenization has not yet been fully realized because of the limited technical infrastructures,regulation uncertainties,volatilities in the token market,and absence of the public sector.This study contributes to the present understanding of how blockchain technology can be implemented in infrastructure finance and the role of tokenization in the structure of public-private partnership and project finance. 展开更多
关键词 infrastructure asset blockchain tokenization security token offering smart contract public private partnership project finance
原文传递
DeepSeek-R1是怎样炼成的? 被引量:67
7
作者 张慧敏 《深圳大学学报(理工版)》 北大核心 2025年第2期226-232,共7页
简述DeepSeek系列模型在大模型训练中的创新和优化.DeepSeek系列模型的突破主要体现在模型架构、算法创新、软硬件协同优化及整体训练效率的提升.DeepSeek-V3模型采用混合专家(mixture of experts,MoE)模型架构,通过细粒度设计和共享专... 简述DeepSeek系列模型在大模型训练中的创新和优化.DeepSeek系列模型的突破主要体现在模型架构、算法创新、软硬件协同优化及整体训练效率的提升.DeepSeek-V3模型采用混合专家(mixture of experts,MoE)模型架构,通过细粒度设计和共享专家策略,实现计算资源的高效利用;MoE模型架构中的稀疏激活机制和无损负载均衡策略显著提高了模型训练的效率和性能;多头潜在注意力(multi-head latent attention,MLA)机制通过减少内存使用和加速推理过程,降低了模型训练和推理成本;通过引入多token预测(multi-token prediction,MTP)和8位浮点数(floating point 8-bit,FP8)混合精度训练技术,提升了模型的上下文理解能力和训练效率;采用优化并行线程执行(parallel thread execution,PTX)代码显著提高了图形处理器(graphics processing unit,GPU)的计算效率;所提群体相对策略优化(group relative policy optimization,GRPO)对DeepSeek-R1-Zero模型进行纯强化学习训练,跳过了传统的监督微调和人类反馈阶段,显著提升了模型的推理能力.总体而言,DeepSeek系列模型通过多项创新,在人工智能领域取得了显著优势,树立了行业新标杆. 展开更多
关键词 人工智能 DeepSeek 大语言模型 混合专家模型 多头潜在注意力机制 多token预测 混合精度训练 群体相对策略优化
在线阅读 下载PDF
抑制非目标干扰的单流纯Transformer跟踪算法
8
作者 顾龙雨 张伟 高赟 《计算机应用》 北大核心 2025年第S1期60-66,共7页
针对单流纯Transformer跟踪算法搜索区域中的相似信息或混乱背景等非目标信息的干扰会影响相关性计算的问题,提出一种抑制非目标干扰的单流纯Transformer跟踪算法。首先,构建抑制非目标干扰模块,该模块采用高相似token合并策略,当高相似... 针对单流纯Transformer跟踪算法搜索区域中的相似信息或混乱背景等非目标信息的干扰会影响相关性计算的问题,提出一种抑制非目标干扰的单流纯Transformer跟踪算法。首先,构建抑制非目标干扰模块,该模块采用高相似token合并策略,当高相似token包含目标信息时,合并操作将保留目标信息,当高相似token包含混乱背景或相似目标干扰信息时,合并操作将降低这些干扰信息的注意力权重;其次,将该模块添加到单流纯Transformer骨干网络中,以抑制干扰多头注意力的计算结果;最后,将抑制干扰后的特征送进跟踪头,从而完成对目标的跟踪。在5个基准数据集上的测试结果表明:与OSTrack(One Stream Tracking)算法相比,在GOT-10k基准数据集AO指标提升1.1个百分点,在NFS、UAV123、TNL2K基准数据集AUC指标分别提升1.6、1.0、1.1个百分点,同时所提算法的跟踪推理速度即每秒帧数(FPS)可达166,证明所提算法成功抑制了非目标的干扰,提升了单流纯Transformer跟踪算法的鲁棒性并且能够保证跟踪的实时性。 展开更多
关键词 目标跟踪 视觉Transformer 干扰抑制 逐层合并的高相似token 多头注意力
在线阅读 下载PDF
应用动态Token的融合特征的持续图像字幕生成 被引量:1
9
作者 晋嘉利 余璐 《计算机工程与应用》 北大核心 2025年第4期176-191,共16页
基于自注意力的结构(如Transformer)在图像字幕生成任务中有着突出的性能优势。但在大多数方法中模型只在静态、同分布数据集上进行训练,而真实世界中的数据分布大多是非独立同分布的数据流,这种设置下的持续图像字幕生成任务更具有挑... 基于自注意力的结构(如Transformer)在图像字幕生成任务中有着突出的性能优势。但在大多数方法中模型只在静态、同分布数据集上进行训练,而真实世界中的数据分布大多是非独立同分布的数据流,这种设置下的持续图像字幕生成任务更具有挑战性。目前针对图像字幕生成的多模态任务的持续学习研究较少,缺乏更适用于基于自注意力模型的持续图像字幕生成方法。针对以上挑战提出了一种应用动态Token的融合特征的持续图像字幕生成方法。在Transformer中对图像字幕生成任务所涉及的不同模态的数据特征进行融合,并对融合特征进行正则化计算;为每一个子任务定义一个Token,Token将随着子任务的切换而变化,这种Token即为动态Token,相比于整个训练阶段只定义一个且被所有子任务共用的静态Token而言,动态Token更能保存每个子任务特有的信息和特点。利用这些动态任务Token和任务标识融合特征注意力模块进一步获得具有任务标识信息的融合特征,并在每个子任务训练结束后保存其对应的Token,以保持模型对旧任务的记忆和表达能力,减少模型对旧任务的灾难性遗忘。在MS-COCO和Flickr30k数据集上的实验结果表明,应用动态Token的融合特征的持续图像字幕生成方法在Transformer架构上优于所有基线方法。以CIDEr指标为例,所有训练任务结束后CIDEr指标的平均分数相较于微调和所有基线方法中的最优方法分别提高了31.06%和13.94%。 展开更多
关键词 图像字幕生成 持续学习 TRANSFORMER 融合特征 动态Token 正则化
在线阅读 下载PDF
基于情感引导-扩散模型的藏族音乐生成网络
10
作者 宋子牛 彭春燕 +1 位作者 王龙辉 郑钰辉 《计算机应用研究》 北大核心 2025年第8期2283-2289,共7页
人工智能技术在音乐创作领域取得了显著进展,但针对藏族音乐自动生成的研究相对匮乏。现有研究在藏族音乐生成中主要面临三个挑战:缺乏特定情感的表达能力、高维特征处理效率低下,以及音乐上下文一致性不足。为解决上述问题,提出一种基... 人工智能技术在音乐创作领域取得了显著进展,但针对藏族音乐自动生成的研究相对匮乏。现有研究在藏族音乐生成中主要面临三个挑战:缺乏特定情感的表达能力、高维特征处理效率低下,以及音乐上下文一致性不足。为解决上述问题,提出一种基于情感引导的扩散模型(emotion-driven diffusion model,EDDM)。该模型基于VAE-diffusion框架,利用变分自编码器提取音源数据关键潜在特征,并在扩散过程中对其进行建模。首先,设计情感特征编码器以提取音乐情感特征,并通过交叉注意力机制将情感特征嵌入到扩散模型中,实现藏族音乐特定情感和风格的精准表达;其次,引入token drop策略过滤冗余特征,提高音乐生成的鲁棒性和多样化;最后,提出self-conditioning机制增强上下文关联,利用上一步信息来指导下一步结果生成,确保音乐生成的一致性。实验结果表明,EDDM在藏族音乐生成任务上效果突出,在客观评价方面,模型在FAD(2.35↓)、JSD(0.08↓)、NDB(18↑)等指标上均优于现有方法;主观评价中,生成的音乐展现出良好的情感表达能力和音乐特征一致性。EDDM在民族音乐自动生成领域具有一定的创新性和应用价值。所生成的部分情感引导的藏族音乐公开在https://szn1998.github.io/。 展开更多
关键词 藏族音乐生成 扩散模型 情感引导 token drop self-conditioning
在线阅读 下载PDF
自然语言处理技术下文本信息语义抽取方法
11
作者 李小松 《现代电子技术》 北大核心 2025年第23期176-180,共5页
在多任务变换和扩充下,对文本信息理解和分析能力要求较高,存在复杂文本结构可扩展性差、标注数据稀缺的问题,对此,文中提出自然语言处理技术下文本信息语义抽取方法。对原始文本进行严格的清洗与净化、实体位置定位、实体邻近词截取、... 在多任务变换和扩充下,对文本信息理解和分析能力要求较高,存在复杂文本结构可扩展性差、标注数据稀缺的问题,对此,文中提出自然语言处理技术下文本信息语义抽取方法。对原始文本进行严格的清洗与净化、实体位置定位、实体邻近词截取、序列长度标准化、Token(分词)化以及特殊标记添加等预处理后,利用BERT模型的多层双向Transformer结构映射为语义词向量序列,有效提取和表示文本中的语义信息和实体关系,扩展复杂文本结构。采用BiGRU(双向门控循环单元)模型对BERT输出的向量序列进行处理后,引入多头注意力机制,并行计算多个注意力权重集合,捕捉句子内部词与词之间的复杂依赖关系,通过Softmax分类器对多头注意力机制的输出进行分类,反复标注实体之间的关系类型,实现下文本信息的语义抽取。实现结果表明:经文中方法处理后的文本数据质量显著提升,对于文本信息的语义抽取F1高达0.99;且更细致地刻画了输入与输出之间的多种相关性,从而有效捕捉句子内部词与词之间的复杂依赖关系,文本信息语义抽取效果较优。 展开更多
关键词 NLP 文本信息 Token化 BERT模型 向量表示 BiGRU模型 多头注意力机制 语义抽取
在线阅读 下载PDF
融合IPFS+区块链技术的执法办案数据访问控制方案 被引量:1
12
作者 刘卓娴 《智能计算机与应用》 2025年第1期103-109,共7页
针对执法办案数据电子化存储可能出现的被篡改、被伪造以及泄露问题,提出了一种融合IPFS+区块链技术的数据访问控制方案。该方案以DPOS共识机制为基础,结合hash算法和非对称加密算法,在半分布式网络使用Merkle树,验证数据传输的完整性;... 针对执法办案数据电子化存储可能出现的被篡改、被伪造以及泄露问题,提出了一种融合IPFS+区块链技术的数据访问控制方案。该方案以DPOS共识机制为基础,结合hash算法和非对称加密算法,在半分布式网络使用Merkle树,验证数据传输的完整性;激励层使用Token和智能合约奖惩机制,提升了公安传送档案的准确性。应用结果表明,该方案可以保证档案内容的保密性及不可篡改性,对于防止徇私枉法、档案泄露具有重大意义。 展开更多
关键词 执法办案数据 区块链 Token机制 共识机制 访问控制
在线阅读 下载PDF
基于OpenResty的在线地理信息服务访问控制研究
13
作者 肖志华 《测绘与空间地理信息》 2025年第11期108-111,共4页
针对目前“天地图·福建”因非正常访问造成计算资源和带宽被占用,导致在线地理信息服务能力下降的问题,本文提出了一种基于Token的服务访问控制的方法,并在OpenResty环境下利用Lua脚本语言扩展开发,将现有的负载均衡子系统升级为... 针对目前“天地图·福建”因非正常访问造成计算资源和带宽被占用,导致在线地理信息服务能力下降的问题,本文提出了一种基于Token的服务访问控制的方法,并在OpenResty环境下利用Lua脚本语言扩展开发,将现有的负载均衡子系统升级为安全网关,实现在线地理信息服务的访问权限的验证;扩展门户网站,增加应用管理模块,用于应用许可的申请和管理,最终实现对应用许可的申请、分发、权限验证整个控制闭环。同时,为尽量减少权限验证对服务性能的影响,利用Redis内存数据库缓存权限信息,提高访问权限的验证速度。经验证,95%的请求响应时间仅增加1 ms,4%的请求响应时间增加在13 ms以内,该结果能够很好地满足“天地图·福建”的应用需求。 展开更多
关键词 访问控制 TOKEN OpenResty LUA
在线阅读 下载PDF
Profit-driven distributed trading mechanism for IoT data
14
作者 Chang Liu Zhili Wang +2 位作者 Qun Zhang Shaoyong Guo Xuesong Qiu 《Digital Communications and Networks》 2025年第4期1066-1078,共13页
Data trading is a crucial means of unlocking the value of Internet of Things(IoT)data.However,IoT data differs from traditional material goods due to its intangible and replicable nature.This difference leads to ambig... Data trading is a crucial means of unlocking the value of Internet of Things(IoT)data.However,IoT data differs from traditional material goods due to its intangible and replicable nature.This difference leads to ambiguous data rights,confusing pricing,and challenges in matching.Additionally,centralized IoT data trading platforms pose risks such as privacy leakage.To address these issues,we propose a profit-driven distributed trading mechanism for IoT data.First,a blockchain-based trading architecture for IoT data,leveraging the transparent and tamper-proof features of blockchain technology,is proposed to establish trust between data owners and data requesters.Second,an IoT data registration method that encompasses both rights confirmation and pricing is designed.The data right confirmation method uses non-fungible token to record ownership and authenticate IoT data.For pricing,we develop an IoT data value assessment index system and introduce a pricing model based on a combination of the sparrow search algorithm and the back propagation neural network.Finally,an IoT data matching method is designed based on the Stackelberg game.This establishes a Stackelberg game model involving multiple data owners and requesters,employing a hierarchical optimization method to determine the optimal purchase strategy.The security of the mechanism is analyzed and the performance of both the pricing method and matching method is evaluated.Experiments demonstrate that both methods outperform traditional approaches in terms of error rates and profit maximization. 展开更多
关键词 Data trading Blockchain Non-fungible token Data pricing Stackelberg game
在线阅读 下载PDF
Detection using mask adaptive transformers in unmanned aerial vehicle imagery
15
作者 YE Huibiao FAN Weiming +2 位作者 GUO Yuping WANG Xuna ZHOU Dalin 《Optoelectronics Letters》 2025年第2期113-120,共8页
Drone photography is an essential building block of intelligent transportation,enabling wide-ranging monitoring,precise positioning,and rapid transmission.However,the high computational cost of transformer-based metho... Drone photography is an essential building block of intelligent transportation,enabling wide-ranging monitoring,precise positioning,and rapid transmission.However,the high computational cost of transformer-based methods in object detection tasks hinders real-time result transmission in drone target detection applications.Therefore,we propose mask adaptive transformer (MAT) tailored for such scenarios.Specifically,we introduce a structure that supports collaborative token sparsification in support windows,enhancing fault tolerance and reducing computational overhead.This structure comprises two modules:a binary mask strategy and adaptive window self-attention (A-WSA).The binary mask strategy focuses on significant objects in various complex scenes.The A-WSA mechanism is employed to self-attend for balance perfomance and computational cost to select objects and isolate all contextual leakage.Extensive experiments on the challenging CarPK and VisDrone datasets demonstrate the effectiveness and superiority of the proposed method.Specifically,it achieves a mean average precision (mAP@0.5) improvement of 1.25%over car detector based on you only look once version 5 (CD-YOLOv5) on the CarPK dataset and a 3.75%average precision(AP@0.5) improvement over cascaded zoom-in detector (CZ Det) on the VisDrone dataset. 展开更多
关键词 TOKEN MASK IMAGERY
原文传递
Creating non-fungible token(NFT)-backed emoji art from user conversations on blockchain
16
作者 Maedeh Mosharraf Mohammad Hossein Khorrami 《Data Science and Management》 2025年第1期40-47,共8页
In the metaverse,digital assets are essential to define identity,shape the virtual environment,and facilitate economic transactions.This study introduces a novel feature to the metaverse by capturing a fundamental asp... In the metaverse,digital assets are essential to define identity,shape the virtual environment,and facilitate economic transactions.This study introduces a novel feature to the metaverse by capturing a fundamental aspect of individuals–their conversations–and transforming them into digital assets.It utilizes natural language processing and machine learning methods to extract key sentences from user conversations and match them with emojis that reflect their sentiments.The selected sentence,which encapsulates the essence of the user’s statements,is then transformed into digital art through a generative visual model.This digital artwork is transformed into a non-fungible token,becoming a valuable digital asset within the blockchain ecosystem that is ideal for integration into metaverse applications.Our aim is to manage personality traits as digital assets to foster individual uniqueness,enrich user experiences,and facilitate more personalized services and interactions with both like-minded users and non-player characters,thereby enhancing the overall user journey. 展开更多
关键词 Chat analysis Persian language Non-fungible token(NFT) Metaverse Digital asset Emoji matching
在线阅读 下载PDF
AI重塑IT基础架构的思考与探索
17
作者 梁泉 陈洋 +1 位作者 王荣 董林强 《通信企业管理》 2025年第9期70-75,共6页
当前人工智能(AI)技术正从辅助工具转向核心生产力,电信行业进入AI原生实践的关键转折期。2023年至2024年间电信行业生成式AI解决方案的商用部署激增4倍,大模型日均Token调用量增长近10倍。这一爆发式增长既源于对技术信任程度的提升,... 当前人工智能(AI)技术正从辅助工具转向核心生产力,电信行业进入AI原生实践的关键转折期。2023年至2024年间电信行业生成式AI解决方案的商用部署激增4倍,大模型日均Token调用量增长近10倍。这一爆发式增长既源于对技术信任程度的提升,更源于运营商面临的三重战略压力,即用户体验升级需求、收入多元化探索需求、网络价值重构需求。 展开更多
关键词 商用部署 大模型 Token调用量 生成式AI 电信行业
原文传递
AI通识教育走进西安中小学
18
《格言(校园版)》 2025年第32期5-5,共1页
通过“Token接龙游戏”理解大语言模型奥秘,在与AI对话中感受科技魅力,在情境体验中触摸未来脉搏……从人机对话到算法解密,从智能助教到创意编程,在西安市部分中小学,人工智能通识课已成为最受学生欢迎的课程。
关键词 Token接龙游戏 AI通识教育 中小学
在线阅读 下载PDF
基于Token编辑距离检测克隆代码 被引量:13
19
作者 张久杰 王春晖 +2 位作者 张丽萍 侯敏 刘东升 《计算机应用》 CSCD 北大核心 2015年第12期3536-3543,共8页
针对当前Type-3克隆代码检测工具较少、效率偏低等问题,提出了一种基于Token的能有效检测Type-3克隆代码的检测方法。该方法同时能有效检测Type-1和Type-2克隆代码。首先将源代码Token化得到特定代码粒度的Token串,其次将所有Token串的... 针对当前Type-3克隆代码检测工具较少、效率偏低等问题,提出了一种基于Token的能有效检测Type-3克隆代码的检测方法。该方法同时能有效检测Type-1和Type-2克隆代码。首先将源代码Token化得到特定代码粒度的Token串,其次将所有Token串的定长子串进行映射,在对映射信息进行查询的基础上,利用编辑距离算法确定克隆对,然后通过并查集算法快速构建克隆群,最终反馈克隆代码信息。实现了原型工具FClones,利用基于代码突变的框架对工具进行了评价,并与领域内较优秀的两款工具Ni Cad及Sim Cad进行了对比。实验结果表明,FClones在检测三类克隆代码时查全率均不低于95%,查准率均不低于98%,能更好地检测Type-3克隆代码。 展开更多
关键词 克隆代码 克隆检测 编辑距离 Type-3 TOKEN
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部