Token protocol provides a new coherence framework for shared-memory multiprocessor systems. It avoids indirections of directory protocols for common cache-to-cache transfer misses, and achieves higher interconnect ban...Token protocol provides a new coherence framework for shared-memory multiprocessor systems. It avoids indirections of directory protocols for common cache-to-cache transfer misses, and achieves higher interconnect bandwidth and lower interconnect latency compared with snooping protocols. However, the broadcasting increases network traffic, limiting the scalability of token protocol. This paper describes an efficient technique to reduce the token protocol network traffic, called sharing relation cache. This cache provides destination set information for cache-to-cache miss requests by caching directory information for recent shared data. This paper introduces how to implement the technique in a token protocol. Simulations using SPLASH-2 benchmarks show that in a 16-core chip multiprocessor system, the cache reduced the network traffic by 15% on average.展开更多
基金Supported by the National Natural Science Foundation of China (No. 60673145)the Basic Research Foundation of Tsinghua Na-tional Laboratory for Information Science and Technology (TNList)+1 种基金the Intel/University Sponsored Research, the National Key Basic Research and Development (973) Program of China (No. 2006CB303100)and the IBM China Research Laboratory
文摘Token protocol provides a new coherence framework for shared-memory multiprocessor systems. It avoids indirections of directory protocols for common cache-to-cache transfer misses, and achieves higher interconnect bandwidth and lower interconnect latency compared with snooping protocols. However, the broadcasting increases network traffic, limiting the scalability of token protocol. This paper describes an efficient technique to reduce the token protocol network traffic, called sharing relation cache. This cache provides destination set information for cache-to-cache miss requests by caching directory information for recent shared data. This paper introduces how to implement the technique in a token protocol. Simulations using SPLASH-2 benchmarks show that in a 16-core chip multiprocessor system, the cache reduced the network traffic by 15% on average.