Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks(WSNs),especially in security-critical,time-sensitive applications.However,most existing protocols degrade...Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks(WSNs),especially in security-critical,time-sensitive applications.However,most existing protocols degrade substantially under malicious interference.We introduce iSTSP,an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust,precise synchronization even in hostile environments:(1)trust preprocessing that filters node participation using behavioral trust scoring;(2)anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time;(3)reliability-weighted consensus that prioritizes high-trust nodes during time aggregation;and(4)convergence-optimized synchronization that dynamically adjusts parameters using theoretical stability bounds.We provide rigorous convergence analysis including a closed-form expression for convergence time,and validate the protocol through both simulations and realworld experiments on a controlled 16-node testbed.Under Sybil attacks with five malicious nodes within this testbed,iSTSP maintains synchronization error increases under 12%and achieves a rapid convergence.Compared to state-ofthe-art protocols like TPSN,SE-FTSP,and MMAR-CTS,iSTSP offers 60%faster detection,broader threat coverage,and more than 7 times lower synchronization error,with a modest 9.3%energy overhead over 8 h.We argue this is an acceptable trade-off for mission-critical deployments requiring guaranteed security.These findings demonstrate iSTSP’s potential as a reliable solution for secure WSN synchronization and motivate future work on large-scale IoT deployments and integration with energy-efficient communication protocols.展开更多
The contract net protocol has developed to specify problem solving communication for nodes in a distributed problem solving. Task distribution is affected by a negotiation process,a discussion carried on between node...The contract net protocol has developed to specify problem solving communication for nodes in a distributed problem solving. Task distribution is affected by a negotiation process,a discussion carried on between nodes with tasks to he executed and nodes that may be able to execute those tasks. In contract net protocol,once negotiation successes,tbe task execution is assumed to success. However,in real world,even though a task is awarded to successfully bidding nodes,it may be delayed. Such delay may badly propagate in whole system. Here,we introduce real-time constraints into contract net protocol to manage task execution for avoiding the, task's delay,or even though being delayed,the railure cannot propagate to whole system. In this paper,we first present a real-time contract net protocol which is an extension of contract net protocol with real-time constraints for distributed computing. Our proposition extends the basic negotiation protocol to negotiation and controlling execution or task. The controlling process is based on task deadline time,we also present an extension of the internode language of contract net protocol specification with real-time constraints.展开更多
随着计算机性能的不断提高和计算机网络技术的进步,广播电视专业视音频节目的制作、播出逐渐具备了在虚拟化系统中部署的条件,可以在虚拟化平台上构建基于SMPTE ST2110系列标准的播出系统。而精确时间协议(Precision Time Protocol,PTP...随着计算机性能的不断提高和计算机网络技术的进步,广播电视专业视音频节目的制作、播出逐渐具备了在虚拟化系统中部署的条件,可以在虚拟化平台上构建基于SMPTE ST2110系列标准的播出系统。而精确时间协议(Precision Time Protocol,PTP)时间同步在基于ST 2110系列标准的播出系统中非常关键。为此,讨论在虚拟化平台上为播出系统各虚拟机实现PTP高精度同步的工具和方法。展开更多
With the widespread use of streaming media application on the Internet, a significant change in Internet workload will be provoked. Caching is one of the applied techniques for enhancing the scalability of streaming s...With the widespread use of streaming media application on the Internet, a significant change in Internet workload will be provoked. Caching is one of the applied techniques for enhancing the scalability of streaming system and reducing the workload of server/network. Aiming at the characteristics of broadband network in community, we propose a popularity-based server-proxy caching strategy for streaming medias, and implement the prototype of streaming proxy caching based on this strategy, using RTSP as control protocol and RTP for content transport. This system can play a role in decreasing server load, reducing the traffic from streaming server to proxy, and improving the start-up latency of the client. Key words streaming server - proxy - cache - streaming media - real time streaming protocol CLC number TP 302 - TP 333 Foundation item: Supported by the National High Technology Development 863 Program of China (2001AA111011).Biography: Tan Jin (1962-), male, Ph. D candidate, research direction: network communications, multimedia technologies, and web caching.展开更多
Time Sensitive Networking(TSN)will be an integral component of industrial networking.Time synchronization in TSN is provided by the IEEE-1588,Precision Time Protocol(PTP)protocol.The standard,dating back to 2008,margi...Time Sensitive Networking(TSN)will be an integral component of industrial networking.Time synchronization in TSN is provided by the IEEE-1588,Precision Time Protocol(PTP)protocol.The standard,dating back to 2008,marginally addresses security aspects,notably not encompassing the frames designed for management purposes(Type Length Values or TLVs).In this work we show that the TLVs can be abused by an attacker to reconfigure,manipulate,or shut down time synchronization.The effects of such an attack can be serious,ranging from interruption of operations to actual unintended behavior of industrial devices,possibly resulting in physical damages or even harm to operators.The paper analyzes the root causes of this vulnerability,and provides concrete examples of attacks leveraging it to de-synchronize the clocks,showing that they can succeed with limited resources,realistically available to a malicious actor.展开更多
The IEEE 1588 precision time protocol(PTP)is very important for many industrial sectors and applications that require time synchronization accuracy between computers down to microsecond and even nanosecond levels.Neve...The IEEE 1588 precision time protocol(PTP)is very important for many industrial sectors and applications that require time synchronization accuracy between computers down to microsecond and even nanosecond levels.Nevertheless,PTP and its underlying network infrastructure are vulnerable to cyber-attacks,which can stealthily reduce the time synchronization accuracy to unacceptable and even damage-causing levels for individual clocks or an entire network,leading to financial loss or even physical destruction.Existing security protocol extensions only partially address this problem.This paper provides a comprehensive analysis of strategies for advanced persistent threats to PTP infrastructure,possible attacker locations,and the impact on clock and network synchronization in the presence of security protocol extensions,infrastructure redundancy,and protocol redundancy.It distinguishes between attack strategies and attacker types as described in RFC7384,but further distinguishes between the spoofing and time source attack,the simple internal attack,and the advanced internal attack.Some experiments were conducted to demonstrate the impact of PTP attacks.Our analysis shows that a sophisticated attacker has a range of methodologies to compromise a PTP network.Moreover,all PTP infrastructure components can host an attacker,making the comprehensive protection of a PTP network against a malware infiltration,as for example exercised by Stuxnet,a very tedious task.展开更多
This paper analyzes the necessity of the measurement of one-way delay, and it also points out the errors caused by the time offset between measurement devices. Then we propose an algorithm to estimate time offset betw...This paper analyzes the necessity of the measurement of one-way delay, and it also points out the errors caused by the time offset between measurement devices. Then we propose an algorithm to estimate time offset between measurement devices in network. With the estimated time offset, we can correct our measuring results. Simulation shows the effectiveness of our algorithm.展开更多
We consider the extrema estimation problem in large-scale radio-frequency identification(RFID)systems,where there are thousands of tags and each tag contains a finite value.The objective is to design an extrema estima...We consider the extrema estimation problem in large-scale radio-frequency identification(RFID)systems,where there are thousands of tags and each tag contains a finite value.The objective is to design an extrema estimation protocol with the minimum execution time.Because the standard binary search protocol wastes much time due to inter-frame overhead,we propose a parameterized protocol and treat the number of slots in a frame as an unknown parameter.We formulate the problem and show how to find the best parameter to minimize the worst-case execution time.Finally,we propose two rules to further reduce the execution time.The first is to find and remove redundant frames.The second is to concatenate a frame from minimum value estimation with a frame from maximum value estimation to reduce the total number of frames.Simulations show that,in a typical scenario,the proposed protocol reduces execution time by 79%compared with the standard binary search protocol.展开更多
基金this project under Geran Putra Inisiatif(GPI)with reference of GP-GPI/2023/976210。
文摘Accurate time synchronization is fundamental to the correct and efficient operation of Wireless Sensor Networks(WSNs),especially in security-critical,time-sensitive applications.However,most existing protocols degrade substantially under malicious interference.We introduce iSTSP,an Intelligent and Secure Time Synchronization Protocol that implements a four-stage defense pipeline to ensure robust,precise synchronization even in hostile environments:(1)trust preprocessing that filters node participation using behavioral trust scoring;(2)anomaly isolation employing a lightweight autoencoder to detect and excise malicious nodes in real time;(3)reliability-weighted consensus that prioritizes high-trust nodes during time aggregation;and(4)convergence-optimized synchronization that dynamically adjusts parameters using theoretical stability bounds.We provide rigorous convergence analysis including a closed-form expression for convergence time,and validate the protocol through both simulations and realworld experiments on a controlled 16-node testbed.Under Sybil attacks with five malicious nodes within this testbed,iSTSP maintains synchronization error increases under 12%and achieves a rapid convergence.Compared to state-ofthe-art protocols like TPSN,SE-FTSP,and MMAR-CTS,iSTSP offers 60%faster detection,broader threat coverage,and more than 7 times lower synchronization error,with a modest 9.3%energy overhead over 8 h.We argue this is an acceptable trade-off for mission-critical deployments requiring guaranteed security.These findings demonstrate iSTSP’s potential as a reliable solution for secure WSN synchronization and motivate future work on large-scale IoT deployments and integration with energy-efficient communication protocols.
文摘The contract net protocol has developed to specify problem solving communication for nodes in a distributed problem solving. Task distribution is affected by a negotiation process,a discussion carried on between nodes with tasks to he executed and nodes that may be able to execute those tasks. In contract net protocol,once negotiation successes,tbe task execution is assumed to success. However,in real world,even though a task is awarded to successfully bidding nodes,it may be delayed. Such delay may badly propagate in whole system. Here,we introduce real-time constraints into contract net protocol to manage task execution for avoiding the, task's delay,or even though being delayed,the railure cannot propagate to whole system. In this paper,we first present a real-time contract net protocol which is an extension of contract net protocol with real-time constraints for distributed computing. Our proposition extends the basic negotiation protocol to negotiation and controlling execution or task. The controlling process is based on task deadline time,we also present an extension of the internode language of contract net protocol specification with real-time constraints.
文摘随着计算机性能的不断提高和计算机网络技术的进步,广播电视专业视音频节目的制作、播出逐渐具备了在虚拟化系统中部署的条件,可以在虚拟化平台上构建基于SMPTE ST2110系列标准的播出系统。而精确时间协议(Precision Time Protocol,PTP)时间同步在基于ST 2110系列标准的播出系统中非常关键。为此,讨论在虚拟化平台上为播出系统各虚拟机实现PTP高精度同步的工具和方法。
文摘With the widespread use of streaming media application on the Internet, a significant change in Internet workload will be provoked. Caching is one of the applied techniques for enhancing the scalability of streaming system and reducing the workload of server/network. Aiming at the characteristics of broadband network in community, we propose a popularity-based server-proxy caching strategy for streaming medias, and implement the prototype of streaming proxy caching based on this strategy, using RTSP as control protocol and RTP for content transport. This system can play a role in decreasing server load, reducing the traffic from streaming server to proxy, and improving the start-up latency of the client. Key words streaming server - proxy - cache - streaming media - real time streaming protocol CLC number TP 302 - TP 333 Foundation item: Supported by the National High Technology Development 863 Program of China (2001AA111011).Biography: Tan Jin (1962-), male, Ph. D candidate, research direction: network communications, multimedia technologies, and web caching.
文摘Time Sensitive Networking(TSN)will be an integral component of industrial networking.Time synchronization in TSN is provided by the IEEE-1588,Precision Time Protocol(PTP)protocol.The standard,dating back to 2008,marginally addresses security aspects,notably not encompassing the frames designed for management purposes(Type Length Values or TLVs).In this work we show that the TLVs can be abused by an attacker to reconfigure,manipulate,or shut down time synchronization.The effects of such an attack can be serious,ranging from interruption of operations to actual unintended behavior of industrial devices,possibly resulting in physical damages or even harm to operators.The paper analyzes the root causes of this vulnerability,and provides concrete examples of attacks leveraging it to de-synchronize the clocks,showing that they can succeed with limited resources,realistically available to a malicious actor.
基金the Technical and Vocational Training Corporation, Saudi Arabia.
文摘The IEEE 1588 precision time protocol(PTP)is very important for many industrial sectors and applications that require time synchronization accuracy between computers down to microsecond and even nanosecond levels.Nevertheless,PTP and its underlying network infrastructure are vulnerable to cyber-attacks,which can stealthily reduce the time synchronization accuracy to unacceptable and even damage-causing levels for individual clocks or an entire network,leading to financial loss or even physical destruction.Existing security protocol extensions only partially address this problem.This paper provides a comprehensive analysis of strategies for advanced persistent threats to PTP infrastructure,possible attacker locations,and the impact on clock and network synchronization in the presence of security protocol extensions,infrastructure redundancy,and protocol redundancy.It distinguishes between attack strategies and attacker types as described in RFC7384,but further distinguishes between the spoofing and time source attack,the simple internal attack,and the advanced internal attack.Some experiments were conducted to demonstrate the impact of PTP attacks.Our analysis shows that a sophisticated attacker has a range of methodologies to compromise a PTP network.Moreover,all PTP infrastructure components can host an attacker,making the comprehensive protection of a PTP network against a malware infiltration,as for example exercised by Stuxnet,a very tedious task.
文摘This paper analyzes the necessity of the measurement of one-way delay, and it also points out the errors caused by the time offset between measurement devices. Then we propose an algorithm to estimate time offset between measurement devices in network. With the estimated time offset, we can correct our measuring results. Simulation shows the effectiveness of our algorithm.
基金supported by the National Natural Science Foundation of China under Grant Nos.61972199,61672283,61502232,and 61502251the Jiangsu Key Laboratory of Big Data Security Intelligent Processing,Nanjing University of Posts and Telecommunications under Grant No.BDSIP1907,China Postdoctoral Science Foundation under Grant No.2016M601859the Post-Doctoral Fund of Jiangsu Province of China under Grant No.1701047A.
文摘We consider the extrema estimation problem in large-scale radio-frequency identification(RFID)systems,where there are thousands of tags and each tag contains a finite value.The objective is to design an extrema estimation protocol with the minimum execution time.Because the standard binary search protocol wastes much time due to inter-frame overhead,we propose a parameterized protocol and treat the number of slots in a frame as an unknown parameter.We formulate the problem and show how to find the best parameter to minimize the worst-case execution time.Finally,we propose two rules to further reduce the execution time.The first is to find and remove redundant frames.The second is to concatenate a frame from minimum value estimation with a frame from maximum value estimation to reduce the total number of frames.Simulations show that,in a typical scenario,the proposed protocol reduces execution time by 79%compared with the standard binary search protocol.