Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to t...Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to the emergence of the thermal contact resistance effect.In this paper,four thermal contact models were developed to predict the thermal contact resistance at the interface of multilayered saturated soils.Based on the theory of thermal-hydro-mechanical coupling,semi-analytical solutions of thermal consolidation subjected to time-dependent heating and loading were obtained by employing Laplace transform and its inverse transformation.Thermal consolidation characteristics of multilayered saturated soils under four different thermal contact models were discussed,and the effects of thermal resistance coefficient,partition thermal contact coefficient,and temperature amplitude on the thermal consolidation process were investigated.The outcomes indicate that the general thermal contact model results in the most pronounced thermal gradient at the interface,which can be degenerated to the other three thermal contact models.The perfect thermal contact model overestimates the deformation of the saturated soil during the thermal consolidation.Moreover,the effect of temperature on consolidation properties decreases gradually with increasing interfacial contact thermal resistance.展开更多
Increasingly,attention is being directed towards time-dependent diffusion magnetic resonance imaging(TDDMRI),a method that reveals time-related changes in the diffusional behavior of water molecules in biological tiss...Increasingly,attention is being directed towards time-dependent diffusion magnetic resonance imaging(TDDMRI),a method that reveals time-related changes in the diffusional behavior of water molecules in biological tissues,thereby enabling us to probe related microstructure events.With ongoing improvements in hardware and advanced pulse sequences,significant progress has been made in applying TDDMRI to clinical research.The development of accurate mathematical models and computational methods has bolstered theoretical support for TDDMRI and elevated our understanding of molecular diffusion.In this review,we introduce the concept and basic physics of TDDMRI,and then focus on the measurement strategies and modeling approaches in short-and long-diffusion-time domains.Finally,we discuss the challenges in this field,including the requirement for efficient scanning and data processing technologies,the development of more precise models depicting time-dependent molecular diffusion,and critical clinical applications.展开更多
To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,...Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.展开更多
With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic...With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.展开更多
Catastrophic failure in engineering structures of island reefs would occur when the tertiary creep initiates in coral reef limestone with a transition from short-to long-term load.Due to the complexity of biological s...Catastrophic failure in engineering structures of island reefs would occur when the tertiary creep initiates in coral reef limestone with a transition from short-to long-term load.Due to the complexity of biological structures,the underlying micro-behaviors involving time-dependent deformation are poorly understood.For this,an abnormal phenomenon was observed where the axial and lateral creep deformations were mutually independent by a series of triaxial tests under constant stress and strain rate conditions.The significantly large lateral creep deformation implies that the creep process cannot be described in continuum mechanics regime.Herein,it is hypothesized that sliding mechanism of crystal cleavages dominates the lateral creep deformation in coral reef limestone.Then,approaches of polarizing microscope(PM)and scanning electronic microscope(SEM)are utilized to validate the hypothesis.It shows that the sliding behavior of crystal cleavages combats with conventional creep micro-mechanisms at certain condition.The former is sensitive to time and strain rate,and is merely activated in the creep regime.展开更多
The Zagros Basin in southwestern Iran is a significant source of coal,with numerous coal mines operating in the region.Ensuring the stability of coal mines is crucial for safe and efficient mining operations.This stud...The Zagros Basin in southwestern Iran is a significant source of coal,with numerous coal mines operating in the region.Ensuring the stability of coal mines is crucial for safe and efficient mining operations.This study investigates the time-varying response of rocks and roof resistance in coal mines in the Zagros Mountains using a novel approach that combines numerical simulation,relaxation testing,and rock displacement studies.The results show that rocks exhibit significant time-dependent behavior,with changes in rock mechanical properties over time.A comprehensive viscoelastic-plastic model is devel-oped to accurately describe the time-varying strain-softening response of rocks and simulate laboratory tests.The model integrates the Burgers and strain-softening models,simulating stress relaxation curves and rock displacement over time.The study reveals that the rock mass displays significant nonlinear behavior,with changes in rock mechanical properties over time.The findings of this study highlight the importance of considering the time-varying response of rocks and roof resistance in coal mine stability analysis.The results provide valuable insights into the time-dependent behavior of rock mass in coal mines in Iran,which can inform mining practices and mitigate potential hazards.Results in this study can contribute to developing strategies for improving roof stability and reducing the likelihood of roof collapses.展开更多
A brittle creep and time-dependent fracturing process model of rock is established by incorporating the stress corrosion model into discrete element method to analyze the creep behavior and microcrack evolution in bri...A brittle creep and time-dependent fracturing process model of rock is established by incorporating the stress corrosion model into discrete element method to analyze the creep behavior and microcrack evolution in brittle rocks at a micro-scale level.Experimental validation of the model is performed,followed by numerical simu-lations to investigate the creep properties and microcrack evolution in rocks under single-stage loading,multi-stage loading,and confining pressure,at various constant stress levels.The results demonstrate that as the stress level increases in single-stage creep simulations,the time-to-failure progressively decreases.The growth of microcracks during uniaxial creep occurs in three stages,with tensile microcracks being predominant and the spatial distribution of microcracks becoming more dispersed at higher stress levels.In multi-stage loadingunloading simulations,microcracks continue to form during the unloading stage,indicating cumulative damage resulting from increased axial stress.Additionally,the creep behaviour of rocks under confining pressure is not solely determined by the magnitude of the confining pressure,but is also influenced by the magnitude of the axial stress.The findings contribute to a better understanding of rock deformation and failure processes under different loading conditions,and they can be valuable for applications in rock mechanics and rock engineering.展开更多
Our study introduces scITDG,a tool designed for the analysis of time-dependent gene expression in single-cell transcriptomic sequencing data,effectively filling a gap in current analytical resources.A key advantage of...Our study introduces scITDG,a tool designed for the analysis of time-dependent gene expression in single-cell transcriptomic sequencing data,effectively filling a gap in current analytical resources.A key advantage of scITDG is its ability to identify dynamic gene expression patterns across multiple time points at single-cell resolution,which is pivotal for deciphering com-plex biological processes such as aging and tissue regeneration.The tool is compatible with widely used single-cell analysis platforms such as Seurat and Scanpy.By integrating natural cubic splines regression with bootstrapping resampling,scITDG enhances the functionality of these platforms and broadens their applicability.In this study,based on scITDG,we revealed intricate gene expression modules in mice aging and axolotl limb regeneration,providing valuable insights into cellular function and response mechanisms.The versatility of scITDG makes it applicable to a wide range of biological contexts,including development,circadian rhythms,disease progression,and therapeutic responses.展开更多
The field of diffusion micro structural magnetic resonance(MR)aims to probe timedependent diffusion,i.e.,an ensemble-averaged mean-squared displacement that is not linear in time.This time-dependence contains rich inf...The field of diffusion micro structural magnetic resonance(MR)aims to probe timedependent diffusion,i.e.,an ensemble-averaged mean-squared displacement that is not linear in time.This time-dependence contains rich information about the surrounding microenvironment.MR methods to measure time-dependent diffusion quantitatively,however,require either non-standard pulse sequences,such as oscillating gradients,or make non-physical assumptions,such as infinitely narrow gradient pulses.Here,we argue that standard spin echo and stimulated echo MR sequences can be used to probe directly.In particular,we propose a framework in which the log-signal ratio obtained from a pair of measurements with different inter-pulse spacingΔis proportional to the MSD between these twoΔvalues along the gradient direction x:-.The framework is quantitative for short,finite-duration gradient pulses and under the Gaussian phase approximation(GPA).To validate the framework,we consider onedimensional diffusion between impermeable,parallel planes,as well as periodicallyspaced,permeable planes.Excellent agreement is obtained between the estimation and the ground truth in the regime where the GPA is expected to hold.Importantly,the GPA can be made to hold for any underlying microstructure,making the proposed framework widely applicable.展开更多
To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general...To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed.展开更多
We present a fully time-dependent quantum wave packet evolution method for investigating molecular dynamics in intense laser fields.This approach enables the simultaneous treatment of interactions among multiple elect...We present a fully time-dependent quantum wave packet evolution method for investigating molecular dynamics in intense laser fields.This approach enables the simultaneous treatment of interactions among multiple electronic states while simultaneously tracking their time-dependent electronic,vibrational,and rotational dynamics.As an illustrative example,we consider neutral H_(2)molecules and simulate the laser-induced excitation dynamics of electronic and rotational states in strong laser fields,quantitatively distinguishing the respective contributions of electronic dipole transitions(within the classical-field approximation)and non-resonant Raman processes to the overall molecular dynamics.Furthermore,we precisely evaluate the relative contributions of direct tunneling ionization from the ground state and ionization following electronic excitation in the strong-field ionization of H_(2).The developed methodology shows strong potential for performing high-precision theoretical simulations of electronic-vibrational-rotational state excitations,ionization,and dissociation dynamics in molecules and their ions under intense laser fields.展开更多
Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gate...Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gateroads and intervening pillars which helps to raise the safety and productivity of longwall mining operations. This study presents a novel time-dependent analytical model for determination of the longwall mining-induced stress and investigates the coefficient of stress concentration over adjacent gates and pillars. The model is developed based on the strain energy balance in longwall mining incorporated to a rheological constitutive model of caved materials with time-varying parameters. The study site is the Tabas coal mine of Iran. In the proposed model, height of destressed zone above the mined panel, total longwall mining-induced stress, abutment angle, induced vertical stress, and coefficient of stress concentration over neighboring gates and intervening pillars are calculated. To evaluate the effect of proposed model parameters on the coefficient of stress concentration due to longwall mining, sensitivity analysis is performed based on the field data and experimental constants. Also, the results of the proposed model are compared with those of existing models. The comparative results confirm a good agreement between the proposed model and the in situ measurements. According to the obtained results, it is concluded that the proposed model can be successfully used to calculate the longwall mining-induced stress. Therefore, the optimum design of gate supports and pillar dimensions would be attainable which helps to increase the mining efficiency.展开更多
We present a forward-modeling investigation of time-dependent ground magnetometric resistivity (MMR) anomalies associated with transient leachate transport in groundwater systems. Numerical geo-electrical models are...We present a forward-modeling investigation of time-dependent ground magnetometric resistivity (MMR) anomalies associated with transient leachate transport in groundwater systems. Numerical geo-electrical models are constructed based on the hydrological simulation results of leachate plumes from a highly conceptualized landfill system and the resultant MMR responses are computed using a modified finite difference software MMR2DFD. Three transmitter configurations (i.e., single source, MMR-TE, and MMR-TM modes) and two hydrological models (i.e., uniform and faulted porous media) are considered. Our forward modeling results for the uniform porous medium indicates that the magnetic field components perpendicular to the dominant current flow contain the most information of the underground targets and the MMR-TE mode is an appropriate configuration for detecting contaminant plumes. The modeling experiments for the faulted porous medium also confirm that the MMR method is capable of mapping and monitoring the extent of contaminant plumes in aroundwater systems.展开更多
Geomorphological features are commonly used to identify potential landslides.Nevertheless,overemphasis on these features could lead to misjudgment.This research proposes a process-oriented approach for potential lands...Geomorphological features are commonly used to identify potential landslides.Nevertheless,overemphasis on these features could lead to misjudgment.This research proposes a process-oriented approach for potential landslide identification that considers time-dependent behaviors.The method integrates comprehensive remote sensing and geological analysis to qualitatively assess slope stability,and employs numerical analysis to quantitatively calculate aging stability.Specifically,a time-dependent stability calculation method for anticlinal slopes is developed and implemented in discrete element software,incorporating time-dependent mechanical and strength reduction calculations.By considering the time-dependent evolution of slopes,this method highlights the importance of both geomorphological features and time-dependent behaviors in landslide identification.This method has been applied to the Jiarishan slope(JRS)on the Qinghai-Tibet Plateau as a case study.The results show that the JRS,despite having landslide geomorphology,is a stable slope,highlighting the risk of misjudgment when relying solely on geomorphological features.This work provides insights into the geomorphological characterization and evolution history of the JRS and offers valuable guidance for studying slopes with similar landslide geomorphology.Furthermore,the process-oriented method incorporating timedependent evolution provides a means to evaluate potential landslides,reducing misjudgment due to excessive reliance on geomorphological features.展开更多
The planning, design and operational management of motorway toll booths are of great interest in traffic engineering, as these facilities directly influence the quality of the service offered to users. This paper focu...The planning, design and operational management of motorway toll booths are of great interest in traffic engineering, as these facilities directly influence the quality of the service offered to users. This paper focuses on a time-dependent queue model based on the coordinates transformation criterion for operations assessment at a motorway tollgate. This model allows to face the whole spectrum of situations that may characterize a toll booth,some of which often fall outside the boundaries of the probabilistic theory for stationary queues.The paper proposes an M=G=1 multi-class queue model for the evaluation of evolutionary profiles of waiting times and queue lengths by closed-form equations. The results obtained for three numerical test cases show a good approximation level, compared with the mean values of queue parameters obtained reiterating a discrete-state simulation model.The proposed time-dependent equations will be useful in technical cases, allowing to operate quickly and compactly even when probabilistic queue theory is not applicable or produce unrealistic results, and the burden of complexity of the simulation approach is not conveniently absorbable. The discussion highlights a significant flexibility of the model proposed in addressing situations with conventional vehicles, i.e., with total human control and proposes some considerations for application in future scenarios with the presence of connected vehicles(CVs).展开更多
A new simple thixotropy model was proposed in the present paper to characterize the thixotropy-loop experiments and the start-up experiment of an LDPE (PE-FSB23D0221Q200) melt. The thixotropy model is a combination ...A new simple thixotropy model was proposed in the present paper to characterize the thixotropy-loop experiments and the start-up experiment of an LDPE (PE-FSB23D0221Q200) melt. The thixotropy model is a combination of a viscoelastic-component and a postulated kinetics process of structure change, which is constituted in terms of the indirect microstructural approach usually adopted in the characterization of thixotropy. The descriptions of the thixotropy model on both the thixotropy-loop tests and the startup test show good agreement with the experimental values, indicating the good capability of the model in characterizing the time-dependent nonlinear viscoelastic. The stress overshoot phenomenon and the stress relaxation after cessation of the thixotropy loop test can be described well by the model, whereas both of the typical viscoelastic phenomena could not be described in our previous work with a variant Huang model.展开更多
Rock rebound relaxation deformation,or even rock burst,caused by the excavation of dam base and abutment or high rock slope affects their stability and results in the fall of mechanical properties of the rock.So an in...Rock rebound relaxation deformation,or even rock burst,caused by the excavation of dam base and abutment or high rock slope affects their stability and results in the fall of mechanical properties of the rock.So an inverse analysis method was proposed in this paper to establish the time-dependent model of deformation modulus caused by excavation rebound.The basic principle is based on the combination of observed data of the excavation rebound deformation of dam abutment or rock slope,and the calculated rebound deformation by FEM under ground stress at the corresponding time in the excavation process.The norm of the residuals of observed data and calculated data are taken as the objective function.Accordingly,the time-dependent model of bedrock deformation modulus can be established.The method displays its significance in the design of excavation,construction and operation management of dam base and high slope.展开更多
基金Projects(U24B20113,42477162) supported by the National Natural Science Foundation of ChinaProject(2025C02228) supported by the Primary Research and Development Plan of Zhejiang Province,China。
文摘Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to the emergence of the thermal contact resistance effect.In this paper,four thermal contact models were developed to predict the thermal contact resistance at the interface of multilayered saturated soils.Based on the theory of thermal-hydro-mechanical coupling,semi-analytical solutions of thermal consolidation subjected to time-dependent heating and loading were obtained by employing Laplace transform and its inverse transformation.Thermal consolidation characteristics of multilayered saturated soils under four different thermal contact models were discussed,and the effects of thermal resistance coefficient,partition thermal contact coefficient,and temperature amplitude on the thermal consolidation process were investigated.The outcomes indicate that the general thermal contact model results in the most pronounced thermal gradient at the interface,which can be degenerated to the other three thermal contact models.The perfect thermal contact model overestimates the deformation of the saturated soil during the thermal consolidation.Moreover,the effect of temperature on consolidation properties decreases gradually with increasing interfacial contact thermal resistance.
基金supported by the Ministry of Science and Technology of the People’s Republic of China(No.2021ZD0200202)the National Natural Science Foundation of China(No.82122032)the Science and Technology Department of Zhejiang Province(Nos.202006140 and 2022C03057).
文摘Increasingly,attention is being directed towards time-dependent diffusion magnetic resonance imaging(TDDMRI),a method that reveals time-related changes in the diffusional behavior of water molecules in biological tissues,thereby enabling us to probe related microstructure events.With ongoing improvements in hardware and advanced pulse sequences,significant progress has been made in applying TDDMRI to clinical research.The development of accurate mathematical models and computational methods has bolstered theoretical support for TDDMRI and elevated our understanding of molecular diffusion.In this review,we introduce the concept and basic physics of TDDMRI,and then focus on the measurement strategies and modeling approaches in short-and long-diffusion-time domains.Finally,we discuss the challenges in this field,including the requirement for efficient scanning and data processing technologies,the development of more precise models depicting time-dependent molecular diffusion,and critical clinical applications.
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)+1 种基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)。
文摘Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.
基金financially supported by the Scientific Research Foundation of North China University of Technology(Grant Nos.11005136024XN147-87 and 110051360024XN151-86).
文摘With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.
基金supported by the National Natural Science Foundation of China(Grant Nos.41877267,41877260)the Priority Research Program of the Chinese Academy of Science(Grant No.XDA13010201).
文摘Catastrophic failure in engineering structures of island reefs would occur when the tertiary creep initiates in coral reef limestone with a transition from short-to long-term load.Due to the complexity of biological structures,the underlying micro-behaviors involving time-dependent deformation are poorly understood.For this,an abnormal phenomenon was observed where the axial and lateral creep deformations were mutually independent by a series of triaxial tests under constant stress and strain rate conditions.The significantly large lateral creep deformation implies that the creep process cannot be described in continuum mechanics regime.Herein,it is hypothesized that sliding mechanism of crystal cleavages dominates the lateral creep deformation in coral reef limestone.Then,approaches of polarizing microscope(PM)and scanning electronic microscope(SEM)are utilized to validate the hypothesis.It shows that the sliding behavior of crystal cleavages combats with conventional creep micro-mechanisms at certain condition.The former is sensitive to time and strain rate,and is merely activated in the creep regime.
文摘The Zagros Basin in southwestern Iran is a significant source of coal,with numerous coal mines operating in the region.Ensuring the stability of coal mines is crucial for safe and efficient mining operations.This study investigates the time-varying response of rocks and roof resistance in coal mines in the Zagros Mountains using a novel approach that combines numerical simulation,relaxation testing,and rock displacement studies.The results show that rocks exhibit significant time-dependent behavior,with changes in rock mechanical properties over time.A comprehensive viscoelastic-plastic model is devel-oped to accurately describe the time-varying strain-softening response of rocks and simulate laboratory tests.The model integrates the Burgers and strain-softening models,simulating stress relaxation curves and rock displacement over time.The study reveals that the rock mass displays significant nonlinear behavior,with changes in rock mechanical properties over time.The findings of this study highlight the importance of considering the time-varying response of rocks and roof resistance in coal mine stability analysis.The results provide valuable insights into the time-dependent behavior of rock mass in coal mines in Iran,which can inform mining practices and mitigate potential hazards.Results in this study can contribute to developing strategies for improving roof stability and reducing the likelihood of roof collapses.
基金supported by the National Natural Science Foundation of China(grant numbers 42172312,52211540395)support from the Institut Universitaire de France(IUF).
文摘A brittle creep and time-dependent fracturing process model of rock is established by incorporating the stress corrosion model into discrete element method to analyze the creep behavior and microcrack evolution in brittle rocks at a micro-scale level.Experimental validation of the model is performed,followed by numerical simu-lations to investigate the creep properties and microcrack evolution in rocks under single-stage loading,multi-stage loading,and confining pressure,at various constant stress levels.The results demonstrate that as the stress level increases in single-stage creep simulations,the time-to-failure progressively decreases.The growth of microcracks during uniaxial creep occurs in three stages,with tensile microcracks being predominant and the spatial distribution of microcracks becoming more dispersed at higher stress levels.In multi-stage loadingunloading simulations,microcracks continue to form during the unloading stage,indicating cumulative damage resulting from increased axial stress.Additionally,the creep behaviour of rocks under confining pressure is not solely determined by the magnitude of the confining pressure,but is also influenced by the magnitude of the axial stress.The findings contribute to a better understanding of rock deformation and failure processes under different loading conditions,and they can be valuable for applications in rock mechanics and rock engineering.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDC0200000)the National Natural Science Foundation of China(82322025,82488301,82125011,82271600,82361148131)+15 种基金the National Key Research and Development Pro-gram of China(2022YFA1103700,2020YFA0804000)the Stra-tegic Priority Research Program of the Chinese Academy of Sci-ences(XDA0460403)the National Natural Science Foundation of China(92168201,82330044,32341001,32121001,82192863,82361148130,8231101626)Non-Communicable Chronic Diseases-National Science and Technology Major Project(2024ZD0530400)Youth Innovation Promotion Association of CAS(2022083)Young Elite Scientists Sponsorship Program by CAST(2021QNRC001)International Partnership Program of Chinese Academy of Sciences(073GJHZ2023019FN)he Program of the Beijing Natural Science Foundation(JQ24044,Z240018,F251011,Z230011)Shenzhen Medi-cal Research Fund(C2406001)CAS Project for Young Scientists in Basic Research(YSBR-076,YSBR-012)the Informatization Plan of Chinese Academy of Sciences(CAS-WX2022SDC-XK14)New Cor-nerstone Science Foundation through the XPLORER PRIZE(2021-1045)Beijing Municipal Public Welfare Development and Reform Pilot Project for Medical Research Institutes(JYY2023-13)CAS Youth Interdisciplinary Team,Key Laboratory of Alzheimer's Disease of Zhejiang Province(ZJAD-2024001)Initiative Scientific Research Program,Institute of Zoology,CAS(2023IOZ0102,2023IOZ0202,2024IOZ0103)Beijing Anzhen Hospital High Level Research Funding(2024AZB3002).
文摘Our study introduces scITDG,a tool designed for the analysis of time-dependent gene expression in single-cell transcriptomic sequencing data,effectively filling a gap in current analytical resources.A key advantage of scITDG is its ability to identify dynamic gene expression patterns across multiple time points at single-cell resolution,which is pivotal for deciphering com-plex biological processes such as aging and tissue regeneration.The tool is compatible with widely used single-cell analysis platforms such as Seurat and Scanpy.By integrating natural cubic splines regression with bootstrapping resampling,scITDG enhances the functionality of these platforms and broadens their applicability.In this study,based on scITDG,we revealed intricate gene expression modules in mice aging and axolotl limb regeneration,providing valuable insights into cellular function and response mechanisms.The versatility of scITDG makes it applicable to a wide range of biological contexts,including development,circadian rhythms,disease progression,and therapeutic responses.
基金supported by the intramural research program(IRP)of the Eunice Kennedy Shriver National Institute of Child Health and Human Development。
文摘The field of diffusion micro structural magnetic resonance(MR)aims to probe timedependent diffusion,i.e.,an ensemble-averaged mean-squared displacement that is not linear in time.This time-dependence contains rich information about the surrounding microenvironment.MR methods to measure time-dependent diffusion quantitatively,however,require either non-standard pulse sequences,such as oscillating gradients,or make non-physical assumptions,such as infinitely narrow gradient pulses.Here,we argue that standard spin echo and stimulated echo MR sequences can be used to probe directly.In particular,we propose a framework in which the log-signal ratio obtained from a pair of measurements with different inter-pulse spacingΔis proportional to the MSD between these twoΔvalues along the gradient direction x:-.The framework is quantitative for short,finite-duration gradient pulses and under the Gaussian phase approximation(GPA).To validate the framework,we consider onedimensional diffusion between impermeable,parallel planes,as well as periodicallyspaced,permeable planes.Excellent agreement is obtained between the estimation and the ground truth in the regime where the GPA is expected to hold.Importantly,the GPA can be made to hold for any underlying microstructure,making the proposed framework widely applicable.
基金This research work was financially supported by the National Natural Science Foundation of China(Grant Nos.52078182 and 41877255)the Tianjin Municipal Natural Science Foundation(Grant No.20JCYBJC00630).Their financial support is gratefully acknowledged.
文摘To date,few models are available in the literature to consider the creep behavior of geosynthetics when predicting the lateral deformation(d)of geosynthetics-reinforced soil(GRS)retaining walls.In this study,a general hyperbolic creep model was first introduced to describe the long-term deformation of geosynthetics,which is a function of elapsed time and two empirical parameters a and b.The conventional creep tests with three different tensile loads(Pr)were conducted on two uniaxial geogrids to determine their creep behavior,as well as the a-Pr and b-Pr relationships.The test results show that increasing Pr accelerates the development of creep deformation for both geogrids.Meanwhile,a and b respectively show exponential and negatively linear relationships with Pr,which were confirmed by abundant experimental data available in other studies.Based on the above creep model and relationships,an accurate and reliable analytical model was then proposed for predicting the time-dependent d of GRS walls with modular block facing,which was further validated using a relevant numerical investigation from the previous literature.Performance evaluation and comparison of the proposed model with six available prediction models were performed.Then a parametric study was carried out to evaluate the effects of wall height,vertical spacing of geogrids,unit weight and internal friction angle of backfills,and factor of safety against pullout on d at the end of construction and 5 years afterwards.The findings show that the creep effect not only promotes d but also raises the elevation of the maximum d along the wall height.Finally,the limitations and application prospects of the proposed model were discussed and analyzed.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1602502)the National Natural Science Foundation of China(Grant No.12450404)。
文摘We present a fully time-dependent quantum wave packet evolution method for investigating molecular dynamics in intense laser fields.This approach enables the simultaneous treatment of interactions among multiple electronic states while simultaneously tracking their time-dependent electronic,vibrational,and rotational dynamics.As an illustrative example,we consider neutral H_(2)molecules and simulate the laser-induced excitation dynamics of electronic and rotational states in strong laser fields,quantitatively distinguishing the respective contributions of electronic dipole transitions(within the classical-field approximation)and non-resonant Raman processes to the overall molecular dynamics.Furthermore,we precisely evaluate the relative contributions of direct tunneling ionization from the ground state and ionization following electronic excitation in the strong-field ionization of H_(2).The developed methodology shows strong potential for performing high-precision theoretical simulations of electronic-vibrational-rotational state excitations,ionization,and dissociation dynamics in molecules and their ions under intense laser fields.
文摘Generally, longwall mining-induced stress results from the stress relaxation due to destressed zone that occurs above the mined panel. Knowledge of induced stress is very important for accurate design of adjacent gateroads and intervening pillars which helps to raise the safety and productivity of longwall mining operations. This study presents a novel time-dependent analytical model for determination of the longwall mining-induced stress and investigates the coefficient of stress concentration over adjacent gates and pillars. The model is developed based on the strain energy balance in longwall mining incorporated to a rheological constitutive model of caved materials with time-varying parameters. The study site is the Tabas coal mine of Iran. In the proposed model, height of destressed zone above the mined panel, total longwall mining-induced stress, abutment angle, induced vertical stress, and coefficient of stress concentration over neighboring gates and intervening pillars are calculated. To evaluate the effect of proposed model parameters on the coefficient of stress concentration due to longwall mining, sensitivity analysis is performed based on the field data and experimental constants. Also, the results of the proposed model are compared with those of existing models. The comparative results confirm a good agreement between the proposed model and the in situ measurements. According to the obtained results, it is concluded that the proposed model can be successfully used to calculate the longwall mining-induced stress. Therefore, the optimum design of gate supports and pillar dimensions would be attainable which helps to increase the mining efficiency.
基金Supported by the Program to Sponsor Teams for Innovation in the Construction of Talent Highlands in Guangxi Institutions of Higher Learning (Grant No. 200508)Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (Grant No. 200889016).
文摘We present a forward-modeling investigation of time-dependent ground magnetometric resistivity (MMR) anomalies associated with transient leachate transport in groundwater systems. Numerical geo-electrical models are constructed based on the hydrological simulation results of leachate plumes from a highly conceptualized landfill system and the resultant MMR responses are computed using a modified finite difference software MMR2DFD. Three transmitter configurations (i.e., single source, MMR-TE, and MMR-TM modes) and two hydrological models (i.e., uniform and faulted porous media) are considered. Our forward modeling results for the uniform porous medium indicates that the magnetic field components perpendicular to the dominant current flow contain the most information of the underground targets and the MMR-TE mode is an appropriate configuration for detecting contaminant plumes. The modeling experiments for the faulted porous medium also confirm that the MMR method is capable of mapping and monitoring the extent of contaminant plumes in aroundwater systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.41972284 and 42090054)This work was also supported by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(Grant No.SKLGP2020Z005).
文摘Geomorphological features are commonly used to identify potential landslides.Nevertheless,overemphasis on these features could lead to misjudgment.This research proposes a process-oriented approach for potential landslide identification that considers time-dependent behaviors.The method integrates comprehensive remote sensing and geological analysis to qualitatively assess slope stability,and employs numerical analysis to quantitatively calculate aging stability.Specifically,a time-dependent stability calculation method for anticlinal slopes is developed and implemented in discrete element software,incorporating time-dependent mechanical and strength reduction calculations.By considering the time-dependent evolution of slopes,this method highlights the importance of both geomorphological features and time-dependent behaviors in landslide identification.This method has been applied to the Jiarishan slope(JRS)on the Qinghai-Tibet Plateau as a case study.The results show that the JRS,despite having landslide geomorphology,is a stable slope,highlighting the risk of misjudgment when relying solely on geomorphological features.This work provides insights into the geomorphological characterization and evolution history of the JRS and offers valuable guidance for studying slopes with similar landslide geomorphology.Furthermore,the process-oriented method incorporating timedependent evolution provides a means to evaluate potential landslides,reducing misjudgment due to excessive reliance on geomorphological features.
文摘The planning, design and operational management of motorway toll booths are of great interest in traffic engineering, as these facilities directly influence the quality of the service offered to users. This paper focuses on a time-dependent queue model based on the coordinates transformation criterion for operations assessment at a motorway tollgate. This model allows to face the whole spectrum of situations that may characterize a toll booth,some of which often fall outside the boundaries of the probabilistic theory for stationary queues.The paper proposes an M=G=1 multi-class queue model for the evaluation of evolutionary profiles of waiting times and queue lengths by closed-form equations. The results obtained for three numerical test cases show a good approximation level, compared with the mean values of queue parameters obtained reiterating a discrete-state simulation model.The proposed time-dependent equations will be useful in technical cases, allowing to operate quickly and compactly even when probabilistic queue theory is not applicable or produce unrealistic results, and the burden of complexity of the simulation approach is not conveniently absorbable. The discussion highlights a significant flexibility of the model proposed in addressing situations with conventional vehicles, i.e., with total human control and proposes some considerations for application in future scenarios with the presence of connected vehicles(CVs).
基金The project supported by the National Natural Science Foundation of China(10402024)the Experiment Foundation for Precise Instrument of Shanghai Jiao Tong University(200207)
文摘A new simple thixotropy model was proposed in the present paper to characterize the thixotropy-loop experiments and the start-up experiment of an LDPE (PE-FSB23D0221Q200) melt. The thixotropy model is a combination of a viscoelastic-component and a postulated kinetics process of structure change, which is constituted in terms of the indirect microstructural approach usually adopted in the characterization of thixotropy. The descriptions of the thixotropy model on both the thixotropy-loop tests and the startup test show good agreement with the experimental values, indicating the good capability of the model in characterizing the time-dependent nonlinear viscoelastic. The stress overshoot phenomenon and the stress relaxation after cessation of the thixotropy loop test can be described well by the model, whereas both of the typical viscoelastic phenomena could not be described in our previous work with a variant Huang model.
基金Supported by the National Natural Science Foundation of China (Grant Nos.50539110, 50809025,50539010,50579010,50539030)the National Science and Technology Supporting Plan (Grant Nos.20006BAC14B03,2008BAB29B06,2008BAB29B03)
文摘Rock rebound relaxation deformation,or even rock burst,caused by the excavation of dam base and abutment or high rock slope affects their stability and results in the fall of mechanical properties of the rock.So an inverse analysis method was proposed in this paper to establish the time-dependent model of deformation modulus caused by excavation rebound.The basic principle is based on the combination of observed data of the excavation rebound deformation of dam abutment or rock slope,and the calculated rebound deformation by FEM under ground stress at the corresponding time in the excavation process.The norm of the residuals of observed data and calculated data are taken as the objective function.Accordingly,the time-dependent model of bedrock deformation modulus can be established.The method displays its significance in the design of excavation,construction and operation management of dam base and high slope.