The field of diffusion micro structural magnetic resonance(MR)aims to probe timedependent diffusion,i.e.,an ensemble-averaged mean-squared displacement that is not linear in time.This time-dependence contains rich inf...The field of diffusion micro structural magnetic resonance(MR)aims to probe timedependent diffusion,i.e.,an ensemble-averaged mean-squared displacement that is not linear in time.This time-dependence contains rich information about the surrounding microenvironment.MR methods to measure time-dependent diffusion quantitatively,however,require either non-standard pulse sequences,such as oscillating gradients,or make non-physical assumptions,such as infinitely narrow gradient pulses.Here,we argue that standard spin echo and stimulated echo MR sequences can be used to probe directly.In particular,we propose a framework in which the log-signal ratio obtained from a pair of measurements with different inter-pulse spacingΔis proportional to the MSD between these twoΔvalues along the gradient direction x:-.The framework is quantitative for short,finite-duration gradient pulses and under the Gaussian phase approximation(GPA).To validate the framework,we consider onedimensional diffusion between impermeable,parallel planes,as well as periodicallyspaced,permeable planes.Excellent agreement is obtained between the estimation and the ground truth in the regime where the GPA is expected to hold.Importantly,the GPA can be made to hold for any underlying microstructure,making the proposed framework widely applicable.展开更多
Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instr...Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instrument function,is measured in X-ray Thom-son scattering(XRTS)experiments,which allow the study of electronic structure properties at the microscopic level.Among the various ab initio methods,linear-response time-dependent density-functional theory(LR-TDDFT)is a key framework for simulating the DSF.The standard approach in LR-TDDFT for computing the DSF relies on the orbital representation.A significant drawback of this method is the unfavorable scaling of the number of required empty bands as the wavenumber increases,making LR-TDDFT impractical for modeling XRTS measurements over large energy scales,such as in backward scattering geometry.In this work,we consider and test an alternative approach to LR-TDDFT that employs the Liouville–Lanczos(LL)method for simulating the DSF of WDM.This approach does not require empty states and allows the DSF at large momentum transfer values and over a broad frequency range to be accessed.We compare the results obtained from the LL method with those from the solution of Dyson’s equation using the standard LR-TDDFT within the projector augmented-wave formalism for isochorically heated aluminum and warm dense hydrogen.Additionally,we utilize exact path integral Monte Carlo results for the imaginary-time density-density correlation function(ITCF)of warm dense hydrogen to rigorously benchmark the LL approach.We discuss the application of the LL method for calculating DSFs and ITCFs at different wavenumbers,the effects of pseudopotentials,and the role of Lorentzian smearing.The successful validation of the LL method under WDM conditions makes it a valuable addition to the ab initio simulation landscape,supporting experimental efforts and advancing WDM theory.展开更多
In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for c...In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for considered schemes are derived in the norm stronger than L^2-norm.展开更多
In this paper a meshless method of lines is proposed for the numerical solution of time-dependent nonlinear coupled partial differential equations. Contrary to mesh oriented methods of lines using the finite-differenc...In this paper a meshless method of lines is proposed for the numerical solution of time-dependent nonlinear coupled partial differential equations. Contrary to mesh oriented methods of lines using the finite-difference and finite element methods to approximate spatial derivatives, this new technique does not require a mesh in the problem domain, and a set of scattered nodes provided by initial data is required for the solution of the problem using some radial basis functions. Accuracy of the method is assessed in terms of the error norms L2, L∞ and the three invariants C1, C2, C3. Numerical experiments are performed to demonstrate the accuracy and easy implementation of this method for the three classes of time-dependent nonlinear coupled partial differential equations.展开更多
A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretizatio...A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.展开更多
In practical engineering, many uncertain factors in loading or degradation of material properties may vary with time. Stochastic process modeling constitutes a suitable approach for describing these time-dependent unc...In practical engineering, many uncertain factors in loading or degradation of material properties may vary with time. Stochastic process modeling constitutes a suitable approach for describing these time-dependent uncertainties. By adopting this approach, however, the timedependent reliability calculation is a great challenge owing to the complexity and the huge computational burden. This paper presents a new instantaneous response surface method t-IRS for time-dependent reliability analysis. Different from the adaptive extreme response surface approach, the proposed method does not need to build and update surrogate models separately at each time node. It first uses the expansion optimal linear estimation method to discretize the stochastic processes into a set of independent standard normal variables together with some deterministic functions of time. Time is then treated as an independent one-dimensional variable. Next, initial samples are generated by Latin hypercube sampling, and the corresponding response values are calculated and utilized to construct an instantaneous response surrogate model of the Kriging type. The active learning method is applied to update the Kriging surrogate model until satisfactory accuracy is achieved. Finally, the instantaneous response surrogate model is used to compute the time-dependent reliability via Monte Carlo simulation. Four case studies are utilized to demonstrate the effectiveness of the ^-IRS method for time-dependent reliability analysis.展开更多
Catastrophic failure in engineering structures of island reefs would occur when the tertiary creep initiates in coral reef limestone with a transition from short-to long-term load.Due to the complexity of biological s...Catastrophic failure in engineering structures of island reefs would occur when the tertiary creep initiates in coral reef limestone with a transition from short-to long-term load.Due to the complexity of biological structures,the underlying micro-behaviors involving time-dependent deformation are poorly understood.For this,an abnormal phenomenon was observed where the axial and lateral creep deformations were mutually independent by a series of triaxial tests under constant stress and strain rate conditions.The significantly large lateral creep deformation implies that the creep process cannot be described in continuum mechanics regime.Herein,it is hypothesized that sliding mechanism of crystal cleavages dominates the lateral creep deformation in coral reef limestone.Then,approaches of polarizing microscope(PM)and scanning electronic microscope(SEM)are utilized to validate the hypothesis.It shows that the sliding behavior of crystal cleavages combats with conventional creep micro-mechanisms at certain condition.The former is sensitive to time and strain rate,and is merely activated in the creep regime.展开更多
In this paper, a novel model is proposed to investigate the neutron transport in scattering and absorbing medium. This solution to the linear Boltzmann equation is expanded from the idea of lattice Boltzmann method(LB...In this paper, a novel model is proposed to investigate the neutron transport in scattering and absorbing medium. This solution to the linear Boltzmann equation is expanded from the idea of lattice Boltzmann method(LBM) with the collision and streaming process. The theoretical derivation of lattice Boltzmann model for transient neutron transport problem is proposed for the first time.The fully implicit backward difference scheme is used to ensure the numerical stability, and relaxation time and equilibrium particle distribution function are obtained. To validate the new lattice Boltzmann model, the LBM formulation is tested for a homogenous media with different sources, and both transient and steady-state LBM results get a good agreement with the benchmark solutions.展开更多
We present a fully time-dependent quantum wave packet evolution method for investigating molecular dynamics in intense laser fields.This approach enables the simultaneous treatment of interactions among multiple elect...We present a fully time-dependent quantum wave packet evolution method for investigating molecular dynamics in intense laser fields.This approach enables the simultaneous treatment of interactions among multiple electronic states while simultaneously tracking their time-dependent electronic,vibrational,and rotational dynamics.As an illustrative example,we consider neutral H_(2)molecules and simulate the laser-induced excitation dynamics of electronic and rotational states in strong laser fields,quantitatively distinguishing the respective contributions of electronic dipole transitions(within the classical-field approximation)and non-resonant Raman processes to the overall molecular dynamics.Furthermore,we precisely evaluate the relative contributions of direct tunneling ionization from the ground state and ionization following electronic excitation in the strong-field ionization of H_(2).The developed methodology shows strong potential for performing high-precision theoretical simulations of electronic-vibrational-rotational state excitations,ionization,and dissociation dynamics in molecules and their ions under intense laser fields.展开更多
A pseudospectral method with symplectic algorithm for the solution of time-dependent Schrodinger equations (TDSE) is introduced. The spatial part of the wavefunction is discretized into sparse grid by pseudospectral...A pseudospectral method with symplectic algorithm for the solution of time-dependent Schrodinger equations (TDSE) is introduced. The spatial part of the wavefunction is discretized into sparse grid by pseudospectral method and the time evolution is given in symplectic scheme. This method allows us to obtain a highly accurate and stable solution of TDSE. The effectiveness and efficiency of this method is demonstrated by the high-order harmonic spectra of one-dimensional atom in strong laser field as compared with previously published work. The influence of the additional static electric field is also investigated.展开更多
In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial f...In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.展开更多
With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic...With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.展开更多
A wide range of quantum systems are time-invariant and the corresponding dynamics is dic- tated by linear differential equations with constant coefficients. Although simple in math- ematical concept, the integration o...A wide range of quantum systems are time-invariant and the corresponding dynamics is dic- tated by linear differential equations with constant coefficients. Although simple in math- ematical concept, the integration of these equations is usually complicated in practice for complex systems, where both the computational time and the memory storage become limit- ing factors. For this reason, low-storage Runge-Kutta methods become increasingly popular for the time integration. This work suggests a series of s-stage sth-order explicit Runge- Kutta methods specific for autonomous linear equations, which only requires two times of the memory storage for the state vector. We also introduce a 13-stage eighth-order scheme for autonomous linear equations, which has optimized stability region and is reduced to a fifth-order method for general equations. These methods exhibit significant performance improvements over the previous general-purpose low-stage schemes. As an example, we ap- ply the integrator to simulate the non-Markovian exciton dynamics in a 15-site linear chain consisting of perylene-bisimide derivatives.展开更多
State-to-state time-dependent quantum dynamics calculations have been carried out to study H+DH'→HH'+D/HD+H'reactions on BKMP2 surface.The total integral cross sections of both reactions are in good agree...State-to-state time-dependent quantum dynamics calculations have been carried out to study H+DH'→HH'+D/HD+H'reactions on BKMP2 surface.The total integral cross sections of both reactions are in good agreement with earlier theoretical and experimental results,moreover the rotational state-resolved reaction cross sections of H+DH'→HH‘+D at collision energy Ec=0.5 eV are closer to the experimental values than the ones calculated by Chao et al[J.Chem.Phys.1178341(2002)],which proves the higher precision of the quantum calculation in this work.In addition,the state-to-state dynamics of H+DH'→HD'+H reaction channel have been discussed in detail,and the differences of the micro-mechanism of the two reaction channels have been revealed and analyzed clearly.展开更多
The Finite-Difference Time-Domain (FDTD) method is a well-known technique for the analysis of quantum devices. It solves a discretized Schrodinger equation in an iterative process. However, the method provides only a ...The Finite-Difference Time-Domain (FDTD) method is a well-known technique for the analysis of quantum devices. It solves a discretized Schrodinger equation in an iterative process. However, the method provides only a second-order accurate numerical solution and requires that the spatial grid size and time step should satisfy a very restricted condition in order to prevent the numerical solution from diverging. In this article, we present a generalized FDTD method with absorbing boundary condition for solving the one-dimensional (1D) time-dependent Schr?dinger equation and obtain a more relaxed condition for stability. The generalized FDTD scheme is tested by simulating a particle moving in free space and then hitting an energy potential. Numerical results coincide with those obtained based on the theoretical analysis.展开更多
This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and th...This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and the Crouzeix-Raviart (CR) element combined with the P0 element in space are used. The result shows that this scheme has good stabilities and error estimates independent of the viscosity coefficient.展开更多
The time-dependent density functional-based tight-bind (TD-DFTB) method is implemented on the multi-core and the graphical processing unit (GPU) system for excited state calcu-lations of large system with hundreds...The time-dependent density functional-based tight-bind (TD-DFTB) method is implemented on the multi-core and the graphical processing unit (GPU) system for excited state calcu-lations of large system with hundreds or thousands of atoms. Sparse matrix and OpenMP multithreaded are used for building the Hamiltonian matrix. The diagonal of the eigenvalue problem in the ground state is implemented on the GPUs with double precision. The GPU- based acceleration fully preserves all the properties, and a considerable total speedup of 8.73 can be achieved. A Krylov-space-based algorithm with the OpenMP parallel and CPU acceleration is used for finding the lowest eigenvalue and eigenvector of the large TDDFT matrix, which greatly reduces the iterations taken and the time spent on the excited states eigenvalue problem. The Krylov solver with the GPU acceleration of matrix-vector product can converge quickly to obtain the final result and a notable speed-up of 206 times can be observed for system size of 812 atoms. The calculations on serials of small and large systems show that the fast TD-DFTB code can obtain reasonable result with a much cheaper computational requirement compared with the first-principle results of CIS and full TDDFT calculation.展开更多
Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to t...Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to the emergence of the thermal contact resistance effect.In this paper,four thermal contact models were developed to predict the thermal contact resistance at the interface of multilayered saturated soils.Based on the theory of thermal-hydro-mechanical coupling,semi-analytical solutions of thermal consolidation subjected to time-dependent heating and loading were obtained by employing Laplace transform and its inverse transformation.Thermal consolidation characteristics of multilayered saturated soils under four different thermal contact models were discussed,and the effects of thermal resistance coefficient,partition thermal contact coefficient,and temperature amplitude on the thermal consolidation process were investigated.The outcomes indicate that the general thermal contact model results in the most pronounced thermal gradient at the interface,which can be degenerated to the other three thermal contact models.The perfect thermal contact model overestimates the deformation of the saturated soil during the thermal consolidation.Moreover,the effect of temperature on consolidation properties decreases gradually with increasing interfacial contact thermal resistance.展开更多
The Zagros Basin in southwestern Iran is a significant source of coal,with numerous coal mines operating in the region.Ensuring the stability of coal mines is crucial for safe and efficient mining operations.This stud...The Zagros Basin in southwestern Iran is a significant source of coal,with numerous coal mines operating in the region.Ensuring the stability of coal mines is crucial for safe and efficient mining operations.This study investigates the time-varying response of rocks and roof resistance in coal mines in the Zagros Mountains using a novel approach that combines numerical simulation,relaxation testing,and rock displacement studies.The results show that rocks exhibit significant time-dependent behavior,with changes in rock mechanical properties over time.A comprehensive viscoelastic-plastic model is devel-oped to accurately describe the time-varying strain-softening response of rocks and simulate laboratory tests.The model integrates the Burgers and strain-softening models,simulating stress relaxation curves and rock displacement over time.The study reveals that the rock mass displays significant nonlinear behavior,with changes in rock mechanical properties over time.The findings of this study highlight the importance of considering the time-varying response of rocks and roof resistance in coal mine stability analysis.The results provide valuable insights into the time-dependent behavior of rock mass in coal mines in Iran,which can inform mining practices and mitigate potential hazards.Results in this study can contribute to developing strategies for improving roof stability and reducing the likelihood of roof collapses.展开更多
It is important to determine the safety lifetime of Multi-mode Time-Dependent Structural System(MTDSS). However, there is still a lack of corresponding analysis methods.Therefore, this paper establishes MTDSS safety l...It is important to determine the safety lifetime of Multi-mode Time-Dependent Structural System(MTDSS). However, there is still a lack of corresponding analysis methods.Therefore, this paper establishes MTDSS safety lifetime model firstly, and then proposes a Kriging surrogate model based method to estimate safety lifetime. The first step of proposed method is to construct the Kriging model of MTDSS performance function by using extremum learning function. By identifying possible extremum mode of MTDSS, the performance function of MTDSS can be equivalently transformed into the one of Single-mode Time-Dependent Structure(STDS).The second step is to use the Advanced First Failure Instant Learning Function(AFFILF) to train the Kriging model constructed in the first step, so that the convergent Kriging model can identify the possible First Failure Instant(FFI) of STDS. Then safety lifetime can be searched quickly by dichotomy search. By using AFFILF, the minimum instant that the state is not accurately identified by the current Kriging model is selected as the training point, which avoids the unnecessary calculation which may be introduced into the existing First Failure Instant Learning Function(FFILF).In addition, the Candidate Sample Pool(CSP) reduction strategy is also adopted. By adaptively deleting the random candidate sample points whose FFI have been accurately identified by the current Kriging model, the training efficiency is further improved. Three cases show that the proposed method is accurate and efficient.展开更多
基金supported by the intramural research program(IRP)of the Eunice Kennedy Shriver National Institute of Child Health and Human Development。
文摘The field of diffusion micro structural magnetic resonance(MR)aims to probe timedependent diffusion,i.e.,an ensemble-averaged mean-squared displacement that is not linear in time.This time-dependence contains rich information about the surrounding microenvironment.MR methods to measure time-dependent diffusion quantitatively,however,require either non-standard pulse sequences,such as oscillating gradients,or make non-physical assumptions,such as infinitely narrow gradient pulses.Here,we argue that standard spin echo and stimulated echo MR sequences can be used to probe directly.In particular,we propose a framework in which the log-signal ratio obtained from a pair of measurements with different inter-pulse spacingΔis proportional to the MSD between these twoΔvalues along the gradient direction x:-.The framework is quantitative for short,finite-duration gradient pulses and under the Gaussian phase approximation(GPA).To validate the framework,we consider onedimensional diffusion between impermeable,parallel planes,as well as periodicallyspaced,permeable planes.Excellent agreement is obtained between the estimation and the ground truth in the regime where the GPA is expected to hold.Importantly,the GPA can be made to hold for any underlying microstructure,making the proposed framework widely applicable.
基金supported by the Center for Advanced Systems Understanding(CASUS),financed by Germany’s Federal Ministry of Education and Research(BMBF)and the Saxon State Government out of the State Budget approved by the Saxon State Parliamentfunding from the European Research Council(ERC)under the European Union’s Horizon 2022 research and innovation programme(Grant Agreement No.101076233,“PREXTREME”)funding from the European Union’s Just Transition Fund(JTF)within the project Röntgenlaser-Optimierung der Laserfusion(ROLF),Contract No.5086999001,co-financed by the Saxon State Government out of the State Budget approved by the Saxon State Parliament.
文摘Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instrument function,is measured in X-ray Thom-son scattering(XRTS)experiments,which allow the study of electronic structure properties at the microscopic level.Among the various ab initio methods,linear-response time-dependent density-functional theory(LR-TDDFT)is a key framework for simulating the DSF.The standard approach in LR-TDDFT for computing the DSF relies on the orbital representation.A significant drawback of this method is the unfavorable scaling of the number of required empty bands as the wavenumber increases,making LR-TDDFT impractical for modeling XRTS measurements over large energy scales,such as in backward scattering geometry.In this work,we consider and test an alternative approach to LR-TDDFT that employs the Liouville–Lanczos(LL)method for simulating the DSF of WDM.This approach does not require empty states and allows the DSF at large momentum transfer values and over a broad frequency range to be accessed.We compare the results obtained from the LL method with those from the solution of Dyson’s equation using the standard LR-TDDFT within the projector augmented-wave formalism for isochorically heated aluminum and warm dense hydrogen.Additionally,we utilize exact path integral Monte Carlo results for the imaginary-time density-density correlation function(ITCF)of warm dense hydrogen to rigorously benchmark the LL approach.We discuss the application of the LL method for calculating DSFs and ITCFs at different wavenumbers,the effects of pseudopotentials,and the role of Lorentzian smearing.The successful validation of the LL method under WDM conditions makes it a valuable addition to the ab initio simulation landscape,supporting experimental efforts and advancing WDM theory.
基金Project supported by National Natural Science Foundation of China and China State Key project for Basic Researchcs.
文摘In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for considered schemes are derived in the norm stronger than L^2-norm.
文摘In this paper a meshless method of lines is proposed for the numerical solution of time-dependent nonlinear coupled partial differential equations. Contrary to mesh oriented methods of lines using the finite-difference and finite element methods to approximate spatial derivatives, this new technique does not require a mesh in the problem domain, and a set of scattered nodes provided by initial data is required for the solution of the problem using some radial basis functions. Accuracy of the method is assessed in terms of the error norms L2, L∞ and the three invariants C1, C2, C3. Numerical experiments are performed to demonstrate the accuracy and easy implementation of this method for the three classes of time-dependent nonlinear coupled partial differential equations.
基金supported by the National Natural Science Foundation of China(No.10771150)the National Basic Research Program of China(No.2005CB321701)+1 种基金the Program for New Century Excellent Talents in University(No.NCET-07-0584)the Natural Science Foundation of Sichuan Province(No.07ZB087)
文摘A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.
基金supported by the National Natural Science Foundation of China (Nos.11572134 and 11832013).
文摘In practical engineering, many uncertain factors in loading or degradation of material properties may vary with time. Stochastic process modeling constitutes a suitable approach for describing these time-dependent uncertainties. By adopting this approach, however, the timedependent reliability calculation is a great challenge owing to the complexity and the huge computational burden. This paper presents a new instantaneous response surface method t-IRS for time-dependent reliability analysis. Different from the adaptive extreme response surface approach, the proposed method does not need to build and update surrogate models separately at each time node. It first uses the expansion optimal linear estimation method to discretize the stochastic processes into a set of independent standard normal variables together with some deterministic functions of time. Time is then treated as an independent one-dimensional variable. Next, initial samples are generated by Latin hypercube sampling, and the corresponding response values are calculated and utilized to construct an instantaneous response surrogate model of the Kriging type. The active learning method is applied to update the Kriging surrogate model until satisfactory accuracy is achieved. Finally, the instantaneous response surrogate model is used to compute the time-dependent reliability via Monte Carlo simulation. Four case studies are utilized to demonstrate the effectiveness of the ^-IRS method for time-dependent reliability analysis.
基金supported by the National Natural Science Foundation of China(Grant Nos.41877267,41877260)the Priority Research Program of the Chinese Academy of Science(Grant No.XDA13010201).
文摘Catastrophic failure in engineering structures of island reefs would occur when the tertiary creep initiates in coral reef limestone with a transition from short-to long-term load.Due to the complexity of biological structures,the underlying micro-behaviors involving time-dependent deformation are poorly understood.For this,an abnormal phenomenon was observed where the axial and lateral creep deformations were mutually independent by a series of triaxial tests under constant stress and strain rate conditions.The significantly large lateral creep deformation implies that the creep process cannot be described in continuum mechanics regime.Herein,it is hypothesized that sliding mechanism of crystal cleavages dominates the lateral creep deformation in coral reef limestone.Then,approaches of polarizing microscope(PM)and scanning electronic microscope(SEM)are utilized to validate the hypothesis.It shows that the sliding behavior of crystal cleavages combats with conventional creep micro-mechanisms at certain condition.The former is sensitive to time and strain rate,and is merely activated in the creep regime.
基金supported by the Foundation of National Key Laboratory of Reactor System Design Technology(No.HT-LW-02-2014003)the State Key Program of National Natural Science of China(No.51436009)
文摘In this paper, a novel model is proposed to investigate the neutron transport in scattering and absorbing medium. This solution to the linear Boltzmann equation is expanded from the idea of lattice Boltzmann method(LBM) with the collision and streaming process. The theoretical derivation of lattice Boltzmann model for transient neutron transport problem is proposed for the first time.The fully implicit backward difference scheme is used to ensure the numerical stability, and relaxation time and equilibrium particle distribution function are obtained. To validate the new lattice Boltzmann model, the LBM formulation is tested for a homogenous media with different sources, and both transient and steady-state LBM results get a good agreement with the benchmark solutions.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFA1602502)the National Natural Science Foundation of China(Grant No.12450404)。
文摘We present a fully time-dependent quantum wave packet evolution method for investigating molecular dynamics in intense laser fields.This approach enables the simultaneous treatment of interactions among multiple electronic states while simultaneously tracking their time-dependent electronic,vibrational,and rotational dynamics.As an illustrative example,we consider neutral H_(2)molecules and simulate the laser-induced excitation dynamics of electronic and rotational states in strong laser fields,quantitatively distinguishing the respective contributions of electronic dipole transitions(within the classical-field approximation)and non-resonant Raman processes to the overall molecular dynamics.Furthermore,we precisely evaluate the relative contributions of direct tunneling ionization from the ground state and ionization following electronic excitation in the strong-field ionization of H_(2).The developed methodology shows strong potential for performing high-precision theoretical simulations of electronic-vibrational-rotational state excitations,ionization,and dissociation dynamics in molecules and their ions under intense laser fields.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10374119 and 10674154), and The 0ne- Hundred-Talents Project of Chinese Academy of Science.Acknowledgments We gratefully acknowledge Professor Ding P Z and Professor Liu X S for their hospitality and help in symplectic algorithm.
文摘A pseudospectral method with symplectic algorithm for the solution of time-dependent Schrodinger equations (TDSE) is introduced. The spatial part of the wavefunction is discretized into sparse grid by pseudospectral method and the time evolution is given in symplectic scheme. This method allows us to obtain a highly accurate and stable solution of TDSE. The effectiveness and efficiency of this method is demonstrated by the high-order harmonic spectra of one-dimensional atom in strong laser field as compared with previously published work. The influence of the additional static electric field is also investigated.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.11071177)
文摘In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.
基金financially supported by the Scientific Research Foundation of North China University of Technology(Grant Nos.11005136024XN147-87 and 110051360024XN151-86).
文摘With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.
基金This work is supported by the National Natural Science Foundation of China (No.21373064), the Program for Innovative Research Team of Guizhou Province (No.QKTD[2014]4021), and the Natural Sci- entific Foundation from Guizhou Provincial Department of Education (No.ZDXK[2014]IS). All the calculations were performed at Guizhou Provincial High- Performance Computing Center of Condensed Mate- rials and Molecular Simulation in Guizhou Education University.
文摘A wide range of quantum systems are time-invariant and the corresponding dynamics is dic- tated by linear differential equations with constant coefficients. Although simple in math- ematical concept, the integration of these equations is usually complicated in practice for complex systems, where both the computational time and the memory storage become limit- ing factors. For this reason, low-storage Runge-Kutta methods become increasingly popular for the time integration. This work suggests a series of s-stage sth-order explicit Runge- Kutta methods specific for autonomous linear equations, which only requires two times of the memory storage for the state vector. We also introduce a 13-stage eighth-order scheme for autonomous linear equations, which has optimized stability region and is reduced to a fifth-order method for general equations. These methods exhibit significant performance improvements over the previous general-purpose low-stage schemes. As an example, we ap- ply the integrator to simulate the non-Markovian exciton dynamics in a 15-site linear chain consisting of perylene-bisimide derivatives.
基金the National Natural Science Foundation of China(Grant Nos.11504206 and 12004216)the Ph.D.Research Start-up Fund of Shandong Jiaotong University(Grant No.BS2020025)the Shandong Natural Science Foundation,China(Grant Nos.ZR2020MF102 and ZR2020QA064)。
文摘State-to-state time-dependent quantum dynamics calculations have been carried out to study H+DH'→HH'+D/HD+H'reactions on BKMP2 surface.The total integral cross sections of both reactions are in good agreement with earlier theoretical and experimental results,moreover the rotational state-resolved reaction cross sections of H+DH'→HH‘+D at collision energy Ec=0.5 eV are closer to the experimental values than the ones calculated by Chao et al[J.Chem.Phys.1178341(2002)],which proves the higher precision of the quantum calculation in this work.In addition,the state-to-state dynamics of H+DH'→HD'+H reaction channel have been discussed in detail,and the differences of the micro-mechanism of the two reaction channels have been revealed and analyzed clearly.
文摘The Finite-Difference Time-Domain (FDTD) method is a well-known technique for the analysis of quantum devices. It solves a discretized Schrodinger equation in an iterative process. However, the method provides only a second-order accurate numerical solution and requires that the spatial grid size and time step should satisfy a very restricted condition in order to prevent the numerical solution from diverging. In this article, we present a generalized FDTD method with absorbing boundary condition for solving the one-dimensional (1D) time-dependent Schr?dinger equation and obtain a more relaxed condition for stability. The generalized FDTD scheme is tested by simulating a particle moving in free space and then hitting an energy potential. Numerical results coincide with those obtained based on the theoretical analysis.
基金supported by the National Natural Science Foundation of China(Nos.11271273 and 11271298)
文摘This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and the Crouzeix-Raviart (CR) element combined with the P0 element in space are used. The result shows that this scheme has good stabilities and error estimates independent of the viscosity coefficient.
文摘The time-dependent density functional-based tight-bind (TD-DFTB) method is implemented on the multi-core and the graphical processing unit (GPU) system for excited state calcu-lations of large system with hundreds or thousands of atoms. Sparse matrix and OpenMP multithreaded are used for building the Hamiltonian matrix. The diagonal of the eigenvalue problem in the ground state is implemented on the GPUs with double precision. The GPU- based acceleration fully preserves all the properties, and a considerable total speedup of 8.73 can be achieved. A Krylov-space-based algorithm with the OpenMP parallel and CPU acceleration is used for finding the lowest eigenvalue and eigenvector of the large TDDFT matrix, which greatly reduces the iterations taken and the time spent on the excited states eigenvalue problem. The Krylov solver with the GPU acceleration of matrix-vector product can converge quickly to obtain the final result and a notable speed-up of 206 times can be observed for system size of 812 atoms. The calculations on serials of small and large systems show that the fast TD-DFTB code can obtain reasonable result with a much cheaper computational requirement compared with the first-principle results of CIS and full TDDFT calculation.
基金Projects(U24B20113,42477162) supported by the National Natural Science Foundation of ChinaProject(2025C02228) supported by the Primary Research and Development Plan of Zhejiang Province,China。
文摘Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to the emergence of the thermal contact resistance effect.In this paper,four thermal contact models were developed to predict the thermal contact resistance at the interface of multilayered saturated soils.Based on the theory of thermal-hydro-mechanical coupling,semi-analytical solutions of thermal consolidation subjected to time-dependent heating and loading were obtained by employing Laplace transform and its inverse transformation.Thermal consolidation characteristics of multilayered saturated soils under four different thermal contact models were discussed,and the effects of thermal resistance coefficient,partition thermal contact coefficient,and temperature amplitude on the thermal consolidation process were investigated.The outcomes indicate that the general thermal contact model results in the most pronounced thermal gradient at the interface,which can be degenerated to the other three thermal contact models.The perfect thermal contact model overestimates the deformation of the saturated soil during the thermal consolidation.Moreover,the effect of temperature on consolidation properties decreases gradually with increasing interfacial contact thermal resistance.
文摘The Zagros Basin in southwestern Iran is a significant source of coal,with numerous coal mines operating in the region.Ensuring the stability of coal mines is crucial for safe and efficient mining operations.This study investigates the time-varying response of rocks and roof resistance in coal mines in the Zagros Mountains using a novel approach that combines numerical simulation,relaxation testing,and rock displacement studies.The results show that rocks exhibit significant time-dependent behavior,with changes in rock mechanical properties over time.A comprehensive viscoelastic-plastic model is devel-oped to accurately describe the time-varying strain-softening response of rocks and simulate laboratory tests.The model integrates the Burgers and strain-softening models,simulating stress relaxation curves and rock displacement over time.The study reveals that the rock mass displays significant nonlinear behavior,with changes in rock mechanical properties over time.The findings of this study highlight the importance of considering the time-varying response of rocks and roof resistance in coal mine stability analysis.The results provide valuable insights into the time-dependent behavior of rock mass in coal mines in Iran,which can inform mining practices and mitigate potential hazards.Results in this study can contribute to developing strategies for improving roof stability and reducing the likelihood of roof collapses.
基金supported by the National Natural Science Foundation of China(No.52075442)the National Science and Technology Major Project(2017-Ⅳ-0009-0046)the National Natural Science Foundation of China(No.51975476)。
文摘It is important to determine the safety lifetime of Multi-mode Time-Dependent Structural System(MTDSS). However, there is still a lack of corresponding analysis methods.Therefore, this paper establishes MTDSS safety lifetime model firstly, and then proposes a Kriging surrogate model based method to estimate safety lifetime. The first step of proposed method is to construct the Kriging model of MTDSS performance function by using extremum learning function. By identifying possible extremum mode of MTDSS, the performance function of MTDSS can be equivalently transformed into the one of Single-mode Time-Dependent Structure(STDS).The second step is to use the Advanced First Failure Instant Learning Function(AFFILF) to train the Kriging model constructed in the first step, so that the convergent Kriging model can identify the possible First Failure Instant(FFI) of STDS. Then safety lifetime can be searched quickly by dichotomy search. By using AFFILF, the minimum instant that the state is not accurately identified by the current Kriging model is selected as the training point, which avoids the unnecessary calculation which may be introduced into the existing First Failure Instant Learning Function(FFILF).In addition, the Candidate Sample Pool(CSP) reduction strategy is also adopted. By adaptively deleting the random candidate sample points whose FFI have been accurately identified by the current Kriging model, the training efficiency is further improved. Three cases show that the proposed method is accurate and efficient.