The field of diffusion micro structural magnetic resonance(MR)aims to probe timedependent diffusion,i.e.,an ensemble-averaged mean-squared displacement that is not linear in time.This time-dependence contains rich inf...The field of diffusion micro structural magnetic resonance(MR)aims to probe timedependent diffusion,i.e.,an ensemble-averaged mean-squared displacement that is not linear in time.This time-dependence contains rich information about the surrounding microenvironment.MR methods to measure time-dependent diffusion quantitatively,however,require either non-standard pulse sequences,such as oscillating gradients,or make non-physical assumptions,such as infinitely narrow gradient pulses.Here,we argue that standard spin echo and stimulated echo MR sequences can be used to probe directly.In particular,we propose a framework in which the log-signal ratio obtained from a pair of measurements with different inter-pulse spacingΔis proportional to the MSD between these twoΔvalues along the gradient direction x:-.The framework is quantitative for short,finite-duration gradient pulses and under the Gaussian phase approximation(GPA).To validate the framework,we consider onedimensional diffusion between impermeable,parallel planes,as well as periodicallyspaced,permeable planes.Excellent agreement is obtained between the estimation and the ground truth in the regime where the GPA is expected to hold.Importantly,the GPA can be made to hold for any underlying microstructure,making the proposed framework widely applicable.展开更多
Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instr...Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instrument function,is measured in X-ray Thom-son scattering(XRTS)experiments,which allow the study of electronic structure properties at the microscopic level.Among the various ab initio methods,linear-response time-dependent density-functional theory(LR-TDDFT)is a key framework for simulating the DSF.The standard approach in LR-TDDFT for computing the DSF relies on the orbital representation.A significant drawback of this method is the unfavorable scaling of the number of required empty bands as the wavenumber increases,making LR-TDDFT impractical for modeling XRTS measurements over large energy scales,such as in backward scattering geometry.In this work,we consider and test an alternative approach to LR-TDDFT that employs the Liouville–Lanczos(LL)method for simulating the DSF of WDM.This approach does not require empty states and allows the DSF at large momentum transfer values and over a broad frequency range to be accessed.We compare the results obtained from the LL method with those from the solution of Dyson’s equation using the standard LR-TDDFT within the projector augmented-wave formalism for isochorically heated aluminum and warm dense hydrogen.Additionally,we utilize exact path integral Monte Carlo results for the imaginary-time density-density correlation function(ITCF)of warm dense hydrogen to rigorously benchmark the LL approach.We discuss the application of the LL method for calculating DSFs and ITCFs at different wavenumbers,the effects of pseudopotentials,and the role of Lorentzian smearing.The successful validation of the LL method under WDM conditions makes it a valuable addition to the ab initio simulation landscape,supporting experimental efforts and advancing WDM theory.展开更多
With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic...With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.展开更多
Catastrophic failure in engineering structures of island reefs would occur when the tertiary creep initiates in coral reef limestone with a transition from short-to long-term load.Due to the complexity of biological s...Catastrophic failure in engineering structures of island reefs would occur when the tertiary creep initiates in coral reef limestone with a transition from short-to long-term load.Due to the complexity of biological structures,the underlying micro-behaviors involving time-dependent deformation are poorly understood.For this,an abnormal phenomenon was observed where the axial and lateral creep deformations were mutually independent by a series of triaxial tests under constant stress and strain rate conditions.The significantly large lateral creep deformation implies that the creep process cannot be described in continuum mechanics regime.Herein,it is hypothesized that sliding mechanism of crystal cleavages dominates the lateral creep deformation in coral reef limestone.Then,approaches of polarizing microscope(PM)and scanning electronic microscope(SEM)are utilized to validate the hypothesis.It shows that the sliding behavior of crystal cleavages combats with conventional creep micro-mechanisms at certain condition.The former is sensitive to time and strain rate,and is merely activated in the creep regime.展开更多
Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to t...Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to the emergence of the thermal contact resistance effect.In this paper,four thermal contact models were developed to predict the thermal contact resistance at the interface of multilayered saturated soils.Based on the theory of thermal-hydro-mechanical coupling,semi-analytical solutions of thermal consolidation subjected to time-dependent heating and loading were obtained by employing Laplace transform and its inverse transformation.Thermal consolidation characteristics of multilayered saturated soils under four different thermal contact models were discussed,and the effects of thermal resistance coefficient,partition thermal contact coefficient,and temperature amplitude on the thermal consolidation process were investigated.The outcomes indicate that the general thermal contact model results in the most pronounced thermal gradient at the interface,which can be degenerated to the other three thermal contact models.The perfect thermal contact model overestimates the deformation of the saturated soil during the thermal consolidation.Moreover,the effect of temperature on consolidation properties decreases gradually with increasing interfacial contact thermal resistance.展开更多
The Zagros Basin in southwestern Iran is a significant source of coal,with numerous coal mines operating in the region.Ensuring the stability of coal mines is crucial for safe and efficient mining operations.This stud...The Zagros Basin in southwestern Iran is a significant source of coal,with numerous coal mines operating in the region.Ensuring the stability of coal mines is crucial for safe and efficient mining operations.This study investigates the time-varying response of rocks and roof resistance in coal mines in the Zagros Mountains using a novel approach that combines numerical simulation,relaxation testing,and rock displacement studies.The results show that rocks exhibit significant time-dependent behavior,with changes in rock mechanical properties over time.A comprehensive viscoelastic-plastic model is devel-oped to accurately describe the time-varying strain-softening response of rocks and simulate laboratory tests.The model integrates the Burgers and strain-softening models,simulating stress relaxation curves and rock displacement over time.The study reveals that the rock mass displays significant nonlinear behavior,with changes in rock mechanical properties over time.The findings of this study highlight the importance of considering the time-varying response of rocks and roof resistance in coal mine stability analysis.The results provide valuable insights into the time-dependent behavior of rock mass in coal mines in Iran,which can inform mining practices and mitigate potential hazards.Results in this study can contribute to developing strategies for improving roof stability and reducing the likelihood of roof collapses.展开更多
This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ...This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.展开更多
The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent ...The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method.展开更多
Increasingly,attention is being directed towards time-dependent diffusion magnetic resonance imaging(TDDMRI),a method that reveals time-related changes in the diffusional behavior of water molecules in biological tiss...Increasingly,attention is being directed towards time-dependent diffusion magnetic resonance imaging(TDDMRI),a method that reveals time-related changes in the diffusional behavior of water molecules in biological tissues,thereby enabling us to probe related microstructure events.With ongoing improvements in hardware and advanced pulse sequences,significant progress has been made in applying TDDMRI to clinical research.The development of accurate mathematical models and computational methods has bolstered theoretical support for TDDMRI and elevated our understanding of molecular diffusion.In this review,we introduce the concept and basic physics of TDDMRI,and then focus on the measurement strategies and modeling approaches in short-and long-diffusion-time domains.Finally,we discuss the challenges in this field,including the requirement for efficient scanning and data processing technologies,the development of more precise models depicting time-dependent molecular diffusion,and critical clinical applications.展开更多
Geomorphological features are commonly used to identify potential landslides.Nevertheless,overemphasis on these features could lead to misjudgment.This research proposes a process-oriented approach for potential lands...Geomorphological features are commonly used to identify potential landslides.Nevertheless,overemphasis on these features could lead to misjudgment.This research proposes a process-oriented approach for potential landslide identification that considers time-dependent behaviors.The method integrates comprehensive remote sensing and geological analysis to qualitatively assess slope stability,and employs numerical analysis to quantitatively calculate aging stability.Specifically,a time-dependent stability calculation method for anticlinal slopes is developed and implemented in discrete element software,incorporating time-dependent mechanical and strength reduction calculations.By considering the time-dependent evolution of slopes,this method highlights the importance of both geomorphological features and time-dependent behaviors in landslide identification.This method has been applied to the Jiarishan slope(JRS)on the Qinghai-Tibet Plateau as a case study.The results show that the JRS,despite having landslide geomorphology,is a stable slope,highlighting the risk of misjudgment when relying solely on geomorphological features.This work provides insights into the geomorphological characterization and evolution history of the JRS and offers valuable guidance for studying slopes with similar landslide geomorphology.Furthermore,the process-oriented method incorporating timedependent evolution provides a means to evaluate potential landslides,reducing misjudgment due to excessive reliance on geomorphological features.展开更多
To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for c...In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for considered schemes are derived in the norm stronger than L^2-norm.展开更多
In this paper a meshless method of lines is proposed for the numerical solution of time-dependent nonlinear coupled partial differential equations. Contrary to mesh oriented methods of lines using the finite-differenc...In this paper a meshless method of lines is proposed for the numerical solution of time-dependent nonlinear coupled partial differential equations. Contrary to mesh oriented methods of lines using the finite-difference and finite element methods to approximate spatial derivatives, this new technique does not require a mesh in the problem domain, and a set of scattered nodes provided by initial data is required for the solution of the problem using some radial basis functions. Accuracy of the method is assessed in terms of the error norms L2, L∞ and the three invariants C1, C2, C3. Numerical experiments are performed to demonstrate the accuracy and easy implementation of this method for the three classes of time-dependent nonlinear coupled partial differential equations.展开更多
A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretizatio...A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.展开更多
A brittle creep and time-dependent fracturing process model of rock is established by incorporating the stress corrosion model into discrete element method to analyze the creep behavior and microcrack evolution in bri...A brittle creep and time-dependent fracturing process model of rock is established by incorporating the stress corrosion model into discrete element method to analyze the creep behavior and microcrack evolution in brittle rocks at a micro-scale level.Experimental validation of the model is performed,followed by numerical simu-lations to investigate the creep properties and microcrack evolution in rocks under single-stage loading,multi-stage loading,and confining pressure,at various constant stress levels.The results demonstrate that as the stress level increases in single-stage creep simulations,the time-to-failure progressively decreases.The growth of microcracks during uniaxial creep occurs in three stages,with tensile microcracks being predominant and the spatial distribution of microcracks becoming more dispersed at higher stress levels.In multi-stage loadingunloading simulations,microcracks continue to form during the unloading stage,indicating cumulative damage resulting from increased axial stress.Additionally,the creep behaviour of rocks under confining pressure is not solely determined by the magnitude of the confining pressure,but is also influenced by the magnitude of the axial stress.The findings contribute to a better understanding of rock deformation and failure processes under different loading conditions,and they can be valuable for applications in rock mechanics and rock engineering.展开更多
In practical engineering, many uncertain factors in loading or degradation of material properties may vary with time. Stochastic process modeling constitutes a suitable approach for describing these time-dependent unc...In practical engineering, many uncertain factors in loading or degradation of material properties may vary with time. Stochastic process modeling constitutes a suitable approach for describing these time-dependent uncertainties. By adopting this approach, however, the timedependent reliability calculation is a great challenge owing to the complexity and the huge computational burden. This paper presents a new instantaneous response surface method t-IRS for time-dependent reliability analysis. Different from the adaptive extreme response surface approach, the proposed method does not need to build and update surrogate models separately at each time node. It first uses the expansion optimal linear estimation method to discretize the stochastic processes into a set of independent standard normal variables together with some deterministic functions of time. Time is then treated as an independent one-dimensional variable. Next, initial samples are generated by Latin hypercube sampling, and the corresponding response values are calculated and utilized to construct an instantaneous response surrogate model of the Kriging type. The active learning method is applied to update the Kriging surrogate model until satisfactory accuracy is achieved. Finally, the instantaneous response surrogate model is used to compute the time-dependent reliability via Monte Carlo simulation. Four case studies are utilized to demonstrate the effectiveness of the ^-IRS method for time-dependent reliability analysis.展开更多
We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwi...We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwise/group interaction intensity are explored by extensive simulation and theoretical analysis.It is demonstrated that altering the group interaction proportion can either hinder or enhance the spread of epidemics,depending on the relative social intensity of group and pairwise interactions.As the group interaction proportion decreases,the impact of reducing group social intensity diminishes.The ratio of group and pairwise social intensity can affect the effect of group interaction proportion on the scale of infection.A weak heterogeneous activity distribution can raise the epidemic threshold,and reduce the scale of infection.These results benefit the design of epidemic control strategy.展开更多
It remains a big challenge to develop solid-state stimuli-responsive materials for time-dependent information encryption and inkless erasable printing with long retention times.Herein,a 2D Cu_(2)I_(2)-based MOF with p...It remains a big challenge to develop solid-state stimuli-responsive materials for time-dependent information encryption and inkless erasable printing with long retention times.Herein,a 2D Cu_(2)I_(2)-based MOF with photoresponsive spiropyran(SP)groups orderly installed on its skeleton is developed.The structural isomerization from SP to colored merocyanine(MC)form can be triggered by removing the CH_(3)CN vips.Besides,the degree of structural isomerization and the retention time can be adjusted by controlling the amount of CH_(3)CN vips,exhibiting dynamic photochromic behavior with multicolor states and tunable retention time.Based on these advantages,time-dependent information encryption is successfully achieved.Furthermore,the long retention time(>72 h)of the MC form under daylight conditions in the CH_(3)CN-removed Cu_(2)I_(2)-based MOF and good repeatability make it promising in various applications,such as temporary calendars,price-cards,billboards,and reusable identity cards.This work provides a novel design strategy to fabricate multi-functional MOF-based smart materials for challenging applications of time-dependent information encryption and inkless erasable printing.展开更多
In this paper, a novel model is proposed to investigate the neutron transport in scattering and absorbing medium. This solution to the linear Boltzmann equation is expanded from the idea of lattice Boltzmann method(LB...In this paper, a novel model is proposed to investigate the neutron transport in scattering and absorbing medium. This solution to the linear Boltzmann equation is expanded from the idea of lattice Boltzmann method(LBM) with the collision and streaming process. The theoretical derivation of lattice Boltzmann model for transient neutron transport problem is proposed for the first time.The fully implicit backward difference scheme is used to ensure the numerical stability, and relaxation time and equilibrium particle distribution function are obtained. To validate the new lattice Boltzmann model, the LBM formulation is tested for a homogenous media with different sources, and both transient and steady-state LBM results get a good agreement with the benchmark solutions.展开更多
Dynamic assembly on time scale is common in biological systems but rare for artificial materials,especially for smart luminescent materials.Programming molecular assembly in a spatio-temporal manner and resulting in w...Dynamic assembly on time scale is common in biological systems but rare for artificial materials,especially for smart luminescent materials.Programming molecular assembly in a spatio-temporal manner and resulting in white-light-including multicolor fluorescence with time-dynamic features remains challenging.Herein,controlling molecular assembly on time scale is achieved by integrating a pH-responsive motif to a transient alkaline solution which is fabricated by activators(NaOH)and deactivators(esters),leading to automatic assembly on time scale and time-dependent multicolor fluorescence changing from blue to white and yellow.The kinetics of the assembly process is dependent on the ester hydrolysis process,which can be controlled by varying ester concentrations,temperature,initial pH,stirring rate and ester structures.This dynamic fluorescent system can be further developed for intelligent fluorescent materials such as fluorescent ink,three-dimension(3D)codes and even four-dimension(4D)codes,exhibiting a promising potential for information encryption.展开更多
基金supported by the intramural research program(IRP)of the Eunice Kennedy Shriver National Institute of Child Health and Human Development。
文摘The field of diffusion micro structural magnetic resonance(MR)aims to probe timedependent diffusion,i.e.,an ensemble-averaged mean-squared displacement that is not linear in time.This time-dependence contains rich information about the surrounding microenvironment.MR methods to measure time-dependent diffusion quantitatively,however,require either non-standard pulse sequences,such as oscillating gradients,or make non-physical assumptions,such as infinitely narrow gradient pulses.Here,we argue that standard spin echo and stimulated echo MR sequences can be used to probe directly.In particular,we propose a framework in which the log-signal ratio obtained from a pair of measurements with different inter-pulse spacingΔis proportional to the MSD between these twoΔvalues along the gradient direction x:-.The framework is quantitative for short,finite-duration gradient pulses and under the Gaussian phase approximation(GPA).To validate the framework,we consider onedimensional diffusion between impermeable,parallel planes,as well as periodicallyspaced,permeable planes.Excellent agreement is obtained between the estimation and the ground truth in the regime where the GPA is expected to hold.Importantly,the GPA can be made to hold for any underlying microstructure,making the proposed framework widely applicable.
基金supported by the Center for Advanced Systems Understanding(CASUS),financed by Germany’s Federal Ministry of Education and Research(BMBF)and the Saxon State Government out of the State Budget approved by the Saxon State Parliamentfunding from the European Research Council(ERC)under the European Union’s Horizon 2022 research and innovation programme(Grant Agreement No.101076233,“PREXTREME”)funding from the European Union’s Just Transition Fund(JTF)within the project Röntgenlaser-Optimierung der Laserfusion(ROLF),Contract No.5086999001,co-financed by the Saxon State Government out of the State Budget approved by the Saxon State Parliament.
文摘Ab initio modeling of dynamic structure factors(DSF)and related density response properties in the warm dense matter(WDM)regime is a challenging computational task.The DSF,convolved with a probing X-ray beam and instrument function,is measured in X-ray Thom-son scattering(XRTS)experiments,which allow the study of electronic structure properties at the microscopic level.Among the various ab initio methods,linear-response time-dependent density-functional theory(LR-TDDFT)is a key framework for simulating the DSF.The standard approach in LR-TDDFT for computing the DSF relies on the orbital representation.A significant drawback of this method is the unfavorable scaling of the number of required empty bands as the wavenumber increases,making LR-TDDFT impractical for modeling XRTS measurements over large energy scales,such as in backward scattering geometry.In this work,we consider and test an alternative approach to LR-TDDFT that employs the Liouville–Lanczos(LL)method for simulating the DSF of WDM.This approach does not require empty states and allows the DSF at large momentum transfer values and over a broad frequency range to be accessed.We compare the results obtained from the LL method with those from the solution of Dyson’s equation using the standard LR-TDDFT within the projector augmented-wave formalism for isochorically heated aluminum and warm dense hydrogen.Additionally,we utilize exact path integral Monte Carlo results for the imaginary-time density-density correlation function(ITCF)of warm dense hydrogen to rigorously benchmark the LL approach.We discuss the application of the LL method for calculating DSFs and ITCFs at different wavenumbers,the effects of pseudopotentials,and the role of Lorentzian smearing.The successful validation of the LL method under WDM conditions makes it a valuable addition to the ab initio simulation landscape,supporting experimental efforts and advancing WDM theory.
基金financially supported by the Scientific Research Foundation of North China University of Technology(Grant Nos.11005136024XN147-87 and 110051360024XN151-86).
文摘With respect to oceanic fluid dynamics,certain models have appeared,e.g.,an extended time-dependent(3+1)-dimensional shallow water wave equation in an ocean or a river,which we investigate in this paper.Using symbolic computation,we find out,on one hand,a set of bilinear auto-Backlund transformations,which could connect certain solutions of that equation with other solutions of that equation itself,and on the other hand,a set of similarity reductions,which could go from that equation to a known ordinary differential equation.The results in this paper depend on all the oceanic variable coefficients in that equation.
基金supported by the National Natural Science Foundation of China(Grant Nos.41877267,41877260)the Priority Research Program of the Chinese Academy of Science(Grant No.XDA13010201).
文摘Catastrophic failure in engineering structures of island reefs would occur when the tertiary creep initiates in coral reef limestone with a transition from short-to long-term load.Due to the complexity of biological structures,the underlying micro-behaviors involving time-dependent deformation are poorly understood.For this,an abnormal phenomenon was observed where the axial and lateral creep deformations were mutually independent by a series of triaxial tests under constant stress and strain rate conditions.The significantly large lateral creep deformation implies that the creep process cannot be described in continuum mechanics regime.Herein,it is hypothesized that sliding mechanism of crystal cleavages dominates the lateral creep deformation in coral reef limestone.Then,approaches of polarizing microscope(PM)and scanning electronic microscope(SEM)are utilized to validate the hypothesis.It shows that the sliding behavior of crystal cleavages combats with conventional creep micro-mechanisms at certain condition.The former is sensitive to time and strain rate,and is merely activated in the creep regime.
基金Projects(U24B20113,42477162) supported by the National Natural Science Foundation of ChinaProject(2025C02228) supported by the Primary Research and Development Plan of Zhejiang Province,China。
文摘Heat transfers at the interface of adjacent saturated soil primarily through the soil particles and the water in the voids.The presence of water induces the contraction of heat flow lines at the interface,leading to the emergence of the thermal contact resistance effect.In this paper,four thermal contact models were developed to predict the thermal contact resistance at the interface of multilayered saturated soils.Based on the theory of thermal-hydro-mechanical coupling,semi-analytical solutions of thermal consolidation subjected to time-dependent heating and loading were obtained by employing Laplace transform and its inverse transformation.Thermal consolidation characteristics of multilayered saturated soils under four different thermal contact models were discussed,and the effects of thermal resistance coefficient,partition thermal contact coefficient,and temperature amplitude on the thermal consolidation process were investigated.The outcomes indicate that the general thermal contact model results in the most pronounced thermal gradient at the interface,which can be degenerated to the other three thermal contact models.The perfect thermal contact model overestimates the deformation of the saturated soil during the thermal consolidation.Moreover,the effect of temperature on consolidation properties decreases gradually with increasing interfacial contact thermal resistance.
文摘The Zagros Basin in southwestern Iran is a significant source of coal,with numerous coal mines operating in the region.Ensuring the stability of coal mines is crucial for safe and efficient mining operations.This study investigates the time-varying response of rocks and roof resistance in coal mines in the Zagros Mountains using a novel approach that combines numerical simulation,relaxation testing,and rock displacement studies.The results show that rocks exhibit significant time-dependent behavior,with changes in rock mechanical properties over time.A comprehensive viscoelastic-plastic model is devel-oped to accurately describe the time-varying strain-softening response of rocks and simulate laboratory tests.The model integrates the Burgers and strain-softening models,simulating stress relaxation curves and rock displacement over time.The study reveals that the rock mass displays significant nonlinear behavior,with changes in rock mechanical properties over time.The findings of this study highlight the importance of considering the time-varying response of rocks and roof resistance in coal mine stability analysis.The results provide valuable insights into the time-dependent behavior of rock mass in coal mines in Iran,which can inform mining practices and mitigate potential hazards.Results in this study can contribute to developing strategies for improving roof stability and reducing the likelihood of roof collapses.
基金supported by the National Natural Science Foundation of China(12126318,12126302).
文摘This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
文摘The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method.
基金supported by the Ministry of Science and Technology of the People’s Republic of China(No.2021ZD0200202)the National Natural Science Foundation of China(No.82122032)the Science and Technology Department of Zhejiang Province(Nos.202006140 and 2022C03057).
文摘Increasingly,attention is being directed towards time-dependent diffusion magnetic resonance imaging(TDDMRI),a method that reveals time-related changes in the diffusional behavior of water molecules in biological tissues,thereby enabling us to probe related microstructure events.With ongoing improvements in hardware and advanced pulse sequences,significant progress has been made in applying TDDMRI to clinical research.The development of accurate mathematical models and computational methods has bolstered theoretical support for TDDMRI and elevated our understanding of molecular diffusion.In this review,we introduce the concept and basic physics of TDDMRI,and then focus on the measurement strategies and modeling approaches in short-and long-diffusion-time domains.Finally,we discuss the challenges in this field,including the requirement for efficient scanning and data processing technologies,the development of more precise models depicting time-dependent molecular diffusion,and critical clinical applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.41972284 and 42090054)This work was also supported by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(Grant No.SKLGP2020Z005).
文摘Geomorphological features are commonly used to identify potential landslides.Nevertheless,overemphasis on these features could lead to misjudgment.This research proposes a process-oriented approach for potential landslide identification that considers time-dependent behaviors.The method integrates comprehensive remote sensing and geological analysis to qualitatively assess slope stability,and employs numerical analysis to quantitatively calculate aging stability.Specifically,a time-dependent stability calculation method for anticlinal slopes is developed and implemented in discrete element software,incorporating time-dependent mechanical and strength reduction calculations.By considering the time-dependent evolution of slopes,this method highlights the importance of both geomorphological features and time-dependent behaviors in landslide identification.This method has been applied to the Jiarishan slope(JRS)on the Qinghai-Tibet Plateau as a case study.The results show that the JRS,despite having landslide geomorphology,is a stable slope,highlighting the risk of misjudgment when relying solely on geomorphological features.This work provides insights into the geomorphological characterization and evolution history of the JRS and offers valuable guidance for studying slopes with similar landslide geomorphology.Furthermore,the process-oriented method incorporating timedependent evolution provides a means to evaluate potential landslides,reducing misjudgment due to excessive reliance on geomorphological features.
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
基金Project supported by National Natural Science Foundation of China and China State Key project for Basic Researchcs.
文摘In this paper, two finite difference streamline diffusion (FDSD) schemes for solving two-dimensional time-dependent convection-diffusion equations are constructed. Stability and optimal order error estimati-ions for considered schemes are derived in the norm stronger than L^2-norm.
文摘In this paper a meshless method of lines is proposed for the numerical solution of time-dependent nonlinear coupled partial differential equations. Contrary to mesh oriented methods of lines using the finite-difference and finite element methods to approximate spatial derivatives, this new technique does not require a mesh in the problem domain, and a set of scattered nodes provided by initial data is required for the solution of the problem using some radial basis functions. Accuracy of the method is assessed in terms of the error norms L2, L∞ and the three invariants C1, C2, C3. Numerical experiments are performed to demonstrate the accuracy and easy implementation of this method for the three classes of time-dependent nonlinear coupled partial differential equations.
基金supported by the National Natural Science Foundation of China(No.10771150)the National Basic Research Program of China(No.2005CB321701)+1 种基金the Program for New Century Excellent Talents in University(No.NCET-07-0584)the Natural Science Foundation of Sichuan Province(No.07ZB087)
文摘A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms.
基金supported by the National Natural Science Foundation of China(grant numbers 42172312,52211540395)support from the Institut Universitaire de France(IUF).
文摘A brittle creep and time-dependent fracturing process model of rock is established by incorporating the stress corrosion model into discrete element method to analyze the creep behavior and microcrack evolution in brittle rocks at a micro-scale level.Experimental validation of the model is performed,followed by numerical simu-lations to investigate the creep properties and microcrack evolution in rocks under single-stage loading,multi-stage loading,and confining pressure,at various constant stress levels.The results demonstrate that as the stress level increases in single-stage creep simulations,the time-to-failure progressively decreases.The growth of microcracks during uniaxial creep occurs in three stages,with tensile microcracks being predominant and the spatial distribution of microcracks becoming more dispersed at higher stress levels.In multi-stage loadingunloading simulations,microcracks continue to form during the unloading stage,indicating cumulative damage resulting from increased axial stress.Additionally,the creep behaviour of rocks under confining pressure is not solely determined by the magnitude of the confining pressure,but is also influenced by the magnitude of the axial stress.The findings contribute to a better understanding of rock deformation and failure processes under different loading conditions,and they can be valuable for applications in rock mechanics and rock engineering.
基金supported by the National Natural Science Foundation of China (Nos.11572134 and 11832013).
文摘In practical engineering, many uncertain factors in loading or degradation of material properties may vary with time. Stochastic process modeling constitutes a suitable approach for describing these time-dependent uncertainties. By adopting this approach, however, the timedependent reliability calculation is a great challenge owing to the complexity and the huge computational burden. This paper presents a new instantaneous response surface method t-IRS for time-dependent reliability analysis. Different from the adaptive extreme response surface approach, the proposed method does not need to build and update surrogate models separately at each time node. It first uses the expansion optimal linear estimation method to discretize the stochastic processes into a set of independent standard normal variables together with some deterministic functions of time. Time is then treated as an independent one-dimensional variable. Next, initial samples are generated by Latin hypercube sampling, and the corresponding response values are calculated and utilized to construct an instantaneous response surrogate model of the Kriging type. The active learning method is applied to update the Kriging surrogate model until satisfactory accuracy is achieved. Finally, the instantaneous response surrogate model is used to compute the time-dependent reliability via Monte Carlo simulation. Four case studies are utilized to demonstrate the effectiveness of the ^-IRS method for time-dependent reliability analysis.
基金This work was supported by the National Natural Science Foundation of China(Grant No.12072340)the China Postdoctoral Science Foundation(Grant No.2022M720727)the Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2022ZB130).
文摘We investigate the impact of pairwise and group interactions on the spread of epidemics through an activity-driven model based on time-dependent networks.The effects of pairwise/group interaction proportion and pairwise/group interaction intensity are explored by extensive simulation and theoretical analysis.It is demonstrated that altering the group interaction proportion can either hinder or enhance the spread of epidemics,depending on the relative social intensity of group and pairwise interactions.As the group interaction proportion decreases,the impact of reducing group social intensity diminishes.The ratio of group and pairwise social intensity can affect the effect of group interaction proportion on the scale of infection.A weak heterogeneous activity distribution can raise the epidemic threshold,and reduce the scale of infection.These results benefit the design of epidemic control strategy.
基金supported by the National Natural Science Foundation of China(Nos.21825106,92061201,22105175)Postdoctoral Research Grant in Henan Province(No.202102001)。
文摘It remains a big challenge to develop solid-state stimuli-responsive materials for time-dependent information encryption and inkless erasable printing with long retention times.Herein,a 2D Cu_(2)I_(2)-based MOF with photoresponsive spiropyran(SP)groups orderly installed on its skeleton is developed.The structural isomerization from SP to colored merocyanine(MC)form can be triggered by removing the CH_(3)CN vips.Besides,the degree of structural isomerization and the retention time can be adjusted by controlling the amount of CH_(3)CN vips,exhibiting dynamic photochromic behavior with multicolor states and tunable retention time.Based on these advantages,time-dependent information encryption is successfully achieved.Furthermore,the long retention time(>72 h)of the MC form under daylight conditions in the CH_(3)CN-removed Cu_(2)I_(2)-based MOF and good repeatability make it promising in various applications,such as temporary calendars,price-cards,billboards,and reusable identity cards.This work provides a novel design strategy to fabricate multi-functional MOF-based smart materials for challenging applications of time-dependent information encryption and inkless erasable printing.
基金supported by the Foundation of National Key Laboratory of Reactor System Design Technology(No.HT-LW-02-2014003)the State Key Program of National Natural Science of China(No.51436009)
文摘In this paper, a novel model is proposed to investigate the neutron transport in scattering and absorbing medium. This solution to the linear Boltzmann equation is expanded from the idea of lattice Boltzmann method(LBM) with the collision and streaming process. The theoretical derivation of lattice Boltzmann model for transient neutron transport problem is proposed for the first time.The fully implicit backward difference scheme is used to ensure the numerical stability, and relaxation time and equilibrium particle distribution function are obtained. To validate the new lattice Boltzmann model, the LBM formulation is tested for a homogenous media with different sources, and both transient and steady-state LBM results get a good agreement with the benchmark solutions.
基金supported by the National Natural Science Foundation of China(Nos.22220102004,22025503)Shanghai Municipal Science and Technology Major Project(No.2018SHZDZX03)+4 种基金the Innovation Program of Shanghai Municipal Education Commission(No.2023ZKZD40)the Fundamental Research Funds for the Central Universitiesthe Programme of Introducing Talents of Discipline to Universities(No.B16017)Science and Technology Commission of Shanghai Municipality(No.21JC1401700)the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study(No.SN-ZJU-SIAS-006)。
文摘Dynamic assembly on time scale is common in biological systems but rare for artificial materials,especially for smart luminescent materials.Programming molecular assembly in a spatio-temporal manner and resulting in white-light-including multicolor fluorescence with time-dynamic features remains challenging.Herein,controlling molecular assembly on time scale is achieved by integrating a pH-responsive motif to a transient alkaline solution which is fabricated by activators(NaOH)and deactivators(esters),leading to automatic assembly on time scale and time-dependent multicolor fluorescence changing from blue to white and yellow.The kinetics of the assembly process is dependent on the ester hydrolysis process,which can be controlled by varying ester concentrations,temperature,initial pH,stirring rate and ester structures.This dynamic fluorescent system can be further developed for intelligent fluorescent materials such as fluorescent ink,three-dimension(3D)codes and even four-dimension(4D)codes,exhibiting a promising potential for information encryption.