Cropland abandonment has become a global issue that poses significant threats to sustainable cropland management,national food security,and the ecological environment.Remote sensing technology is crucial for identifyi...Cropland abandonment has become a global issue that poses significant threats to sustainable cropland management,national food security,and the ecological environment.Remote sensing technology is crucial for identifying and monitoring abandoned cropland in large-scale areas.However,limited information is available on the effective identification methods and spatial distribution patterns of abandoned cropland in the hilly and gully regions.This study introduced two methods-the land-use trajectory and normalized difference vegetation index(NDVI)time series-for monitoring abandoned cropland and evaluating its spatial distribution in Yanhe River Basin using Landsat-8 images from 2019 to 2021.The results showed that using a random forest algorithm,high-precision annual land-use classifications were achieved with the generation of reliable land-cover samples and an optimized feature dataset.The overall accuracy(OA)and Kappa coefficient of the land-use maps exceeded 90% and 0.88,respectively,demonstrating the effectiveness of the classification over three years.These two distinct change detection methods were used to identify abandoned cropland in the study area,and their accuracy and effectiveness were evaluated.The land-use trajectory method performed better than the NDVI time series method for extracting abandoned cropland,with an OA of 83.5% and an F1 score of 84.7%.According to the land-use trajectory detection results,the study area had 164.6 km^(2) of abandoned cropland area in 2021,with an abandonment rate of 16.3%.Furthermore,cropland abandonment mainly occurred in the northwestern part of the region,which has harsh natural conditions,while abandonment was rare in the southern and eastern regions.Topography and landforms significantly influenced the spatial distribution of abandoned cropland,with most abandoned cropland located in mountainous regions with higher elevations and steeper slopes.The abandonment rate generally increased with the elevation and slope.These findings provide valuable references and guidance for selecting appropriate methods to identify abandoned cropland and analyze its spatial distribution in the hilly and gully regions.Our proposed methods offer robust solutions for monitoring abandoned cropland and optimizing land-use change detection in similar regions with complex landforms.展开更多
A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM (CGCM...A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM (CGCM) provides the boundary and initial conditions for driving the regional climate model (RegCM_NCC). The latter has a 60-km horizontal resolution and improved physical parameterization schemes including the mass flux cumulus parameterization scheme, the turbulent kinetic energy closure scheme (TKE) and an improved land process model (LPM). The large-scale terrain features such as the Tibetan Plateau are included in the larger domain to produce the topographic forcing on the rain-producing systems. A sensitivity study of the East Asian climate with regard to the above physical processes has been presented in the first part of the present paper. This is the second part, as a continuation of Part Ⅰ. In order to verify the performance of the nested regional climate model, a ten-year simulation driven by NCEP reanalysis datasets has been made to explore the performance of the East Asian climate simulation and to identify the model's systematic errors. At the same time, comparative simulation experiments for 5 years between the RegCM2 and RegCM_NCC have been done to further understand their differences in simulation performance. Also, a ten-year hindcast (1991-2000) for summer (June-August), the rainy season in China, has been undertaken. The preliminary results have shown that the RegCM_NCC is capable of predicting the major seasonal rain belts. The best predicted regions with high anomaly correlation coefficient (ACC) are located in the eastern part of West China, in Northeast China and in North China, where the CGCM has maximum prediction skill as well. This fact may reflect the importance of the largescale forcing. One significant improvement of the prediction derived from RegCM_NCC is the increase of ACC in the Yangtze River valley where the CGCM has a very low, even a negative, ACC. The reason behind this improvement is likely to be related to the more realistic representation of the large-scale terrain features of the Tibetan Plateau. Presumably, many rain-producing systems may be generated over or near the Tibetan Plateau and may then move eastward along the Yangtze River basin steered by upper-level westerly airflow, thus leading to enhancement of rainfalls in the mid and lower basins of the Yangtze River. The real-time experimental predictions for summer in 2001, 2002, 2003 and 2004 by using this nested RegCM-NCC were made. The results are basically reasonable compared with the observations.展开更多
The regional ocean circulation in the coastal areas of China (including a part of the western PacificOcean, the South China Sea and the Bay of Bengal et al.) is simulated by using the improved Princeton University oce...The regional ocean circulation in the coastal areas of China (including a part of the western PacificOcean, the South China Sea and the Bay of Bengal et al.) is simulated by using the improved Princeton University ocean circulation model (POM). Compared with the modeling results obtained by the large-scaleocean general circulation model (OGCM), the basic ocean circulation features simulated by the regionalocean circulation model al-e in good agreement with that simulated by OGCM and some detailed characteristics such as the regional ocean circulation, sea temperature, salinity and flee sea surface height have alsobeen obtained which are in good accord with the observations. These results indicate that the regional oceancirculation model has good capability to produce the legional ocean circulation characteristics and it can beused to develop coupled legional ocean-atmospheric model systems.展开更多
According to the theory of alternating magnetohydrodynamics and magnetic boundary renewal method,mathematical models were proposed for electromagnetic stirring in secondary cooling region( SEMS) of slab caster. The ma...According to the theory of alternating magnetohydrodynamics and magnetic boundary renewal method,mathematical models were proposed for electromagnetic stirring in secondary cooling region( SEMS) of slab caster. The magnetic fields and flow fields of melt were simulated with SEMS. It's shown that the electromagnetic forces with inward and sidelong components produced by travel magnetic field at the wide faces of slab make the melt whirling in horizontal section,and the convection of the melt is strengthened obviously there. In addition,magnetic flux density attenuates from the edge to the center of slab,and the profile of the melt velocity along slab thickness in the center of the horizontal section takes a two-opposite-peak configuration. Ultimately,the stirring intensity and features are determined by the electromagnetic parameters,coil arrangement and stirring types.展开更多
A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating p...A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating present climate over East Asia and China is investigated. Results show that RegCM3 can reproduce well the atmospheric circulation over East Asia. The simulation of the main distribution patterns of surface air temperature and precipitation over China and their seasonal cycle/evolution, are basically agree with that of the observation. Meanwhile a general cold bias is found in the simulation. As for the precipitation, the model tends to overestimate the precipitation in northern China while underestimate it in southern China, particularly in winter. In general, the model has better performance in simulating temperature than precipitation.展开更多
In many service delivery systems,the quantity of available resources is often a decisive factor of service quality.Resources can be personnel,offices,devices,supplies,and so on,depending on the nature of the services ...In many service delivery systems,the quantity of available resources is often a decisive factor of service quality.Resources can be personnel,offices,devices,supplies,and so on,depending on the nature of the services a system provides.Although service computing has been an active research topic for decades,general approaches that assess the impact of resource provisioning on service quality matrices in a rigorous way remain to be seen.Petri nets have been a popular formalism for modeling systems exhibiting behaviors of competition and concurrency for almost a half century.Stochastic timed Petri nets(STPN),an extension to regular Petri nets,are a powerful tool for system performance evaluation.However,we did not find any single existing STPN software tool that supports all timed transition firing policies and server types,not to mention resource provisioning and requirement analysis.This paper presents a generic and resource oriented STPN simulation engine that provides all critical features necessary for the analysis of service delivery system quality vs.resource provisioning.The power of the simulation system is illustrated by an application to emergency health care systems.展开更多
Based on the primitive equation model with p- σ incorporated coordinate system originally developed by Qian et al., a one-way nested fine mesh limited area model is developed. This model is nested with ECMWF T42 data...Based on the primitive equation model with p- σ incorporated coordinate system originally developed by Qian et al., a one-way nested fine mesh limited area model is developed. This model is nested with ECMWF T42 data to simulate the extra-intensive rainfall event occurring in the Changjiang and Huaihe River valleys in summer of 1991. The results show that the model has certain capacity to fairly reproduce the regional distribution and the movement of the main rainfall belts. Therefore it can be used as a regional climate model to simulate and predict the short-range regional climate changes.展开更多
Model simulation and scenario change analysis are the core contents of the future land-use change(LUC) study. In this paper, land use status data of the Three Gorges Reservoir Region(TGRR) in 1990 was used as base...Model simulation and scenario change analysis are the core contents of the future land-use change(LUC) study. In this paper, land use status data of the Three Gorges Reservoir Region(TGRR) in 1990 was used as base data. The relationship between driving factors and land-use change was analyzed by using binary logistic stepwise regression analysis, based on which land use in 2010 was simulated by CLUE-S model. After the inspection and determination of main parameters impacting on driving factors of land use in the TGRR, land use of this region in 2030 was simulated based on four scenarios, including natural growth, food security, migration-related construction and ecological conservation. The results were shown as follows:(1) The areas under ROC curves of land-use types(LUTs) were both greater than 0.8 under the analysis and inspection of binary logistic model. These LUTs include paddy field, dryland, woodland, grassland, construction land and water area. Therefore, it has a strong interpretation ability of driving factors on land use, which can be used in the estimation of land use probability distribution.(2) The Kappa coefficients, verified from the result of land-use simulation in 2010, were shown of paddy field 0.9, dryland 0.95, woodland 0.97, grassland 0.84, construction land 0.85 and water area 0.77. So the results of simulation could meet the needs of future simulation and prediction.(3) The results of multi-scenario simulation showed a spatial competitive relationship between different LUTs, and an influence on food security, migration-related construction and ecological conservation in the TGRR, including some land use actions such as the large-scale conversion from paddy field to dryland, the occupation on cultivated land, woodland and grassland for rapid expansion of construction land, the reclamation of woodland and grassland into cultivated land, returning steep sloping farmland back into woodland and grassland. Therefore, it is necessary to balance the needs of various aspects in land use optimization, to achieve the coordination between socio-economy and ecological environment.展开更多
This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC freq...This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC frequency was considerably overestimated. Additionally, the tracks of some TCs tended to have larger radii of curvature and were shifted eastward. The large-scale environments of westerly monsoon flows and subtropical Pacific highs were unreasonably simulated. The overestimated frequency of TC formation was attributed to a strengthened westerly wind field in the southern quadrants of the TC center. In comparison with the experiment with the spectral nudging method, the strengthened wind speed was mainly modulated by large-scale flow that was greater than approximately 1000 km in the model domain. The spurious formation and undesirable tracks of TCs in the CTL were considerably improved by reproducing realistic large-scale atmospheric monsoon circulation with substantial adjustment between large-scale flow in the model domain and large-scale boundary forcing modified by the spectral nudging method. The realistic monsoon circulation took a vital role in simulating realistic TCs. It revealed that, in the downscaling from large-scale fields for regional climate simulations, scale interaction between model-generated regional features and forced large-scale fields should be considered, and spectral nudging is a desirable method in the downscaling method.展开更多
It is believed that the microseismicity induced by mining effect and gas gradient disturbance stress is a precursor to the essential characteristics of roadway unstability. In order to effectively identify and evaluat...It is believed that the microseismicity induced by mining effect and gas gradient disturbance stress is a precursor to the essential characteristics of roadway unstability. In order to effectively identify and evaluate the stability of coal roadways in the process of mine development and extraction, a microseismic monitoring system was deployed for the study of the stress evolution process, damage degree and distribution characteristics in the tailgate and headgate. The mine under study is the 62113 outburst working face of Xin Zhuangzi coalmine in Huainan mining area. The whole process of microfractures initiation,extension, interaction and coalescence mechanisms during the progressive failure processes of the coal rock within the delineated and typical event clusters were investigated by means of a two dimensional realistic failure process analysis code(RFPA2D-Flow). The results show that the microseismic events gradually create different-sized event clusters. The microseismicity of the tailgate is significantly higher than that of the headgate. The study indicates that the greater anomalous stress region matches the area where microfractures continuously develop and finally connect to each other and form a fissure zone.Due to the mine layout and stress concentration, the ruptured area is mainly located on the left shoulder of the tailgate roof. The potential anomalous stress region of the coal roadway obtained by numerical simulation is relatively in good agreement with the trend of spatial macro evolution of coal rock microfractures captured by the microseismic monitoring system. The research results can provide important basis for understanding instability failure mechanism of deep roadway and microseismic activity law in complex geologic conditions, and it ultimately can be used to guide the selection and optimization of reinforcement and protection scheme.展开更多
Large eddy simulations (LES) of mixing process in a stirred tank of 0.476m diameter with a 3-narrow blade hydrofoil CBY impeller were reported. The turbulent flow field and mixing time were calculated using LES with S...Large eddy simulations (LES) of mixing process in a stirred tank of 0.476m diameter with a 3-narrow blade hydrofoil CBY impeller were reported. The turbulent flow field and mixing time were calculated using LES with Sma-gorinsky-Lilly subgrid scale model. The impeller rotation was modeled using the sliding mesh technique. Better agree-ment of power demand and mixing time was obtained between the experimental and the LES prediction than that by the traditional Reynolds-averaged Navier-Stokes (RANS) approach. The curve of tracer response predicted by LES was in good agreement with the experimental. The results show that LES is a reliable tool to investigate the unsteady and quasi-periodic behavior of the turbulent flow in stirred tanks.展开更多
POM97, an oceanic model, has been used for the first time to the numerical study on the tidal waves of the as Regions around Taiwan. In this paper, we have got the result that the semidiurnal tidal waves of these area...POM97, an oceanic model, has been used for the first time to the numerical study on the tidal waves of the as Regions around Taiwan. In this paper, we have got the result that the semidiurnal tidal waves of these area mainly are the co-operating tides which come from the south of 23'N of the western Pacific. Those semidiurnal tidal waves affecting the Taiwan Straits come respectively from the south and the north entrance of the channel, and the north tidal wave is stronger than the south one. The strongest tidal field is the area from the Meizhou Bay to the Xinhua Bay along the coast of Fujian Province, where the biggest amplitude of the M2 partial tide can reach 240 cm. The strongest tidal cur- rent fields lie in the Penghu watercourse, where the maximum velocity of the M2 partial tide can arrive at 196 m/s. In the horizontal structure of the tidal currets, we have found that there is a stream dot in the north of the channel, besides, there still exist four new ones. As for the vertical structure, it mainly is biassed to the right at the surface, and to the left near the bottom layer.展开更多
The "combined approach", which is suitable to represent subgrid land surface heterogeneity in both interpatch and intra-patch variabilities, is employed in the BiOsphere/Atmosphere Transfer Scheme (BATS) as a land...The "combined approach", which is suitable to represent subgrid land surface heterogeneity in both interpatch and intra-patch variabilities, is employed in the BiOsphere/Atmosphere Transfer Scheme (BATS) as a land surface component of the regional climate model RegCM3 to consider the heterogeneities in temperature and moisture at the land surface, and then annual-scale simulations for 5 years (1988-1992) were conducted. Results showed that on the annual scale, the model's response to the heterogeneities is quite sensitive, and that the effect of the temperature heterogeneity (TH) is more pronounced than the moisture heterogeneity (MH). On the intraannual scale, TH may lead to more (less) precipitation in warm (cold) seasons, and hence lead to larger intraannual variability in precipitation; the major MH effects may be lagged by about 1 month during the warm, rainy seasons, inducing -6% more precipitation for some sub-regions. Additionally, the modeled climate for the northern sub-regions shows larger sensitivities to the land surface heterogeneities than those for the southern sub-regions. Since state-of-art land surface models seldom account for surface intra-patch variabilities, this study emphasizes the importance of including this kind of variability in the land surface models.展开更多
The Issue of mixing efficiency in agitated tanks has drawn serious concern in many industrial processes. The turbulence model is very critical to predicting mixing process in agitated tanks. On the basis of computatio...The Issue of mixing efficiency in agitated tanks has drawn serious concern in many industrial processes. The turbulence model is very critical to predicting mixing process in agitated tanks. On the basis of computational fluid dynamics(CFD) software package Fluent 6.2, the mixing characteristics in a tank agitated by dual six-blade-Rushton-turbines(6-DT) are predicted using the detached eddy simulation(DES) method. A sliding mesh(SM) approach is adopted to solve the rotation of the impeller. The simulated flow patterns and liquid velocities in the agitated tank are verified by experimental data in the literature. The simulation results indicate that the DES method can obtain more flow details than Reynolds-averaged Navier-Stokes(RANS) model. Local and global mixing time in the agitated tank is predicted by solving a tracer concentration scalar transport equation. The simulated results show that feeding points have great influence on mixing process and mixing time. Mixing efficiency is the highest for the feeding point at location of midway of the two impellers. Two methods are used to determine global mixing time and get close result. Dimensionless global mixing time remains unchanged with increasing of impeller speed. Parallel, merging and diverging flow pattern form in the agitated tank, respectively, by changing the impeller spacing and clearance of lower impeller from the bottom of the tank. The global mixing time is the shortest for the merging flow, followed by diverging flow, and the longest for parallel flow. The research presents helpful references for design, optimization and scale-up of agitated tanks with multi-impeller.展开更多
Soil cracking is an important process influencing water and solutes transport in the Yuanmou Dry-hot Valley region of Southwest China. Studying the morphological development of soil cracks helps to further reveal the ...Soil cracking is an important process influencing water and solutes transport in the Yuanmou Dry-hot Valley region of Southwest China. Studying the morphological development of soil cracks helps to further reveal the close relationship between the soil cracking process and water movement in such semi-arid regions. Here we report regular changes on surface morphology of soil cracks with decreasing water in four different soils (Typ-Ustic Ferrisols,Ver-Ustic Ferrisols,Tru-Ustic Vertisols and Typ-Ustic Vertisols) through simulation experiments. Our results indicate the following: 1) Different soils ultimately have different development degrees of soil cracks,according to their various values of crack area density. Soil cracks in Typ-Ustic Ferrisols can only develop to the feeble degree,while those in the other three soils are capable of developing into the intensive degree,and even into the extremely intensive degree. 2) Soil crack complexity,as expressed by the value of the area-weighted mean of crack fractal dimension (AWMFRAC),is found to continuously decrease as a whole through the whole cracking process in all the studied soils. 3) Soil crack connectivity shows a uniform trend in the studied soils,that is to say,connectivity gradually increases with soil crack development.展开更多
Using the regional air-sea coupled climate model RegCM3-POM,a series of numerical experiments are performed to simulate the summer climate in 1997 and 1998 with different coupling time steps.The results show that the ...Using the regional air-sea coupled climate model RegCM3-POM,a series of numerical experiments are performed to simulate the summer climate in 1997 and 1998 with different coupling time steps.The results show that the coupled model has good performance on the simulation of the summer sea surface temperature(SST) in 1997 and 1998,and the simulation results of CPL1(with the coupling time step at 1 hour) are similar to those of CPL6(with the coupling time step at 6 hours).The coupled model can well simulate SST differences between 1997 and 1998.As for the simulation of the drought in 1997 and the flood in 1998,the results of CPL6 are more accurate.The coupled model can well simulate the drought in 1997 over North China,and compared with the results of the atmosphere model RegCM3,the simulation ability of the coupled model is improved.The coupling model has better ability in the simulation of the circulation in the middle and low levels,and the water vapor transportation in the coupling model is reasonable in both 1997 and 1998.RegCM3(an uncoupled model) cannot correctly simulate the transportation path differences between 1997 and 1998,but the coupled model can simulate the differences well.展开更多
Numerical simulation technology has been widely used in the foundry industry to analyze and improve casting processes.During the casting filling process,many filling-related defects form easily at the confluences of l...Numerical simulation technology has been widely used in the foundry industry to analyze and improve casting processes.During the casting filling process,many filling-related defects form easily at the confluences of liquid metal streams.The main filling-related defects are cold shut defects.To calculate the positions of casting defects,the characteristics of liquid metal confluences were analyzed.The flow front of liquid metal was captured by the volume-of-fluid algorithm to obtain a time field,which was used to calculate the time derivatives of the liquid front position and the confluences of liquid metal streams.To distinguish small confluences from the main confluences,the concept of confluent scale was developed,which was used to filter the small confluences based on a threshold.The calculation process was demonstrated through the post-processing of numerical simulation.A "W" shaped casting and a steering wheel casting were calculated to validate the accuracy of the method developed in this study.The positions of cold shut defects were predicted by calculating the confluences of liquid metal streams.The method was proved to be practical by comparing the calculation results with the positions of cold shut defects in an end cover casting.The computation of confluences and cold shut defects can improve the analysis efficiency and provide assurance for the optimization of a casting process plan.展开更多
The numerical simulation of modern aero-engine combustion chamber needs accurate description of the interaction between turbulence and chemical reaction mechanism. The Large Eddy Simulation(LES) method with the Transp...The numerical simulation of modern aero-engine combustion chamber needs accurate description of the interaction between turbulence and chemical reaction mechanism. The Large Eddy Simulation(LES) method with the Transported Probability Density Function(TPDF) turbulence combustion model is promising in engineering applications. In flame region, the impact of chemical reaction should be considered in TPDF molecular mixing model. Based on pioneer research, three new TPDF turbulence-chemistry dual time scale molecular mixing models were proposed tentatively by adding the chemistry time scale in molecular mixing model for nonpremixed flame. The Aero-Engine Combustor Simulation Code(AECSC) which is based on LES-TPDF method was combined with the three new models. Then the Sandia laboratory's methane-air jet flames: Flame D and Flame E were simulated. Transient simulation results show that all the three new models can predict the instantaneous combustion flow pattern of the jet flames. Furthermore,the average scalar statistical results were compared with the experimental data. The simulation result of the new TPDF arithmetic mean modification model is the closest to the experimental data:the average error in Flame D is 7.6% and 6.6% in Flame E. The extinction and re-ignition phenomena of the jet flames especially Flame E were captured. The turbulence time scale and the chemistry time scale are in different order in the whole flow field. The dual time scale TPDF combustion model has ability to deal with both the turbulence effect and the chemistry reaction effect, as well as their interaction more accurately for nonpremixed flames.展开更多
How to simulate land-cover change,driven by climate change and human activity,is not only a hot issue in the field of land-cover research but also in the field of sustainable urbanization.A surface-modeling method of ...How to simulate land-cover change,driven by climate change and human activity,is not only a hot issue in the field of land-cover research but also in the field of sustainable urbanization.A surface-modeling method of land cover scenario(SSMLC)driven by the coupling of natural and human factors was developed to overcome limitations in existing land-cover models.Based on the climatic scenario data of CMIP6 SSP1-2.6,SSP2-4.5,and SSP5-8.5 released by IPCC in 2020,which combines shared socioeconomic paths(SSPs)with typical concentration paths(RCPs),observation climatic data concerning meteorological stations,the population,GDP,transportation data,land-cover data from 2020,and related policy refences,are used to simulate scenarios of land-cover change in the Jing-Jin-Ji region using SSP1-2.6,SSP2-4.5,and SSP5-8.5 for the years 2040,2070 and 2100,respectively.The simulation results show that the total accuracy of SSMLC in the Jing-Jin-Ji region attains 93.52%.The change intensity of land cover in the Jing-Jin-Ji region is the highest(plus 3.12%per decade)between 2020 and 2040,gradually decreasing after 2040.Built-up land has the fastest increasing rate(plus 5.07%per decade),and wetland has the fastest decreasing rate(minus 3.10%per decade)between 2020 and 2100.The change intensity of land cover under scenario SSP5-8.5 is the highest among the abovementioned three scenarios in the Jing-Jin-Ji region between 2020 and 2100.The impacts of GDP,population,transportation,and policies on land-cover change are generally greater than those on other land-cover types.The results indicate that the SSMLC method can be used to project the change trend and intensity of land cover under the different scenarios.This will help to optimize the spatial allocation and planning of land cover,and could be used to obtain key data for carrying out eco-environmental conservation measures in the Jing-Jin-Ji region in the future.展开更多
基金supported by the National Key R&D Program of China(2023YFD1900300)the State Administration of Foreign Experts Affairs of China(B12007)+1 种基金the 111 Project of Chinathe support by the China Scholarship Council(202306300092).
文摘Cropland abandonment has become a global issue that poses significant threats to sustainable cropland management,national food security,and the ecological environment.Remote sensing technology is crucial for identifying and monitoring abandoned cropland in large-scale areas.However,limited information is available on the effective identification methods and spatial distribution patterns of abandoned cropland in the hilly and gully regions.This study introduced two methods-the land-use trajectory and normalized difference vegetation index(NDVI)time series-for monitoring abandoned cropland and evaluating its spatial distribution in Yanhe River Basin using Landsat-8 images from 2019 to 2021.The results showed that using a random forest algorithm,high-precision annual land-use classifications were achieved with the generation of reliable land-cover samples and an optimized feature dataset.The overall accuracy(OA)and Kappa coefficient of the land-use maps exceeded 90% and 0.88,respectively,demonstrating the effectiveness of the classification over three years.These two distinct change detection methods were used to identify abandoned cropland in the study area,and their accuracy and effectiveness were evaluated.The land-use trajectory method performed better than the NDVI time series method for extracting abandoned cropland,with an OA of 83.5% and an F1 score of 84.7%.According to the land-use trajectory detection results,the study area had 164.6 km^(2) of abandoned cropland area in 2021,with an abandonment rate of 16.3%.Furthermore,cropland abandonment mainly occurred in the northwestern part of the region,which has harsh natural conditions,while abandonment was rare in the southern and eastern regions.Topography and landforms significantly influenced the spatial distribution of abandoned cropland,with most abandoned cropland located in mountainous regions with higher elevations and steeper slopes.The abandonment rate generally increased with the elevation and slope.These findings provide valuable references and guidance for selecting appropriate methods to identify abandoned cropland and analyze its spatial distribution in the hilly and gully regions.Our proposed methods offer robust solutions for monitoring abandoned cropland and optimizing land-use change detection in similar regions with complex landforms.
文摘A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM (CGCM) provides the boundary and initial conditions for driving the regional climate model (RegCM_NCC). The latter has a 60-km horizontal resolution and improved physical parameterization schemes including the mass flux cumulus parameterization scheme, the turbulent kinetic energy closure scheme (TKE) and an improved land process model (LPM). The large-scale terrain features such as the Tibetan Plateau are included in the larger domain to produce the topographic forcing on the rain-producing systems. A sensitivity study of the East Asian climate with regard to the above physical processes has been presented in the first part of the present paper. This is the second part, as a continuation of Part Ⅰ. In order to verify the performance of the nested regional climate model, a ten-year simulation driven by NCEP reanalysis datasets has been made to explore the performance of the East Asian climate simulation and to identify the model's systematic errors. At the same time, comparative simulation experiments for 5 years between the RegCM2 and RegCM_NCC have been done to further understand their differences in simulation performance. Also, a ten-year hindcast (1991-2000) for summer (June-August), the rainy season in China, has been undertaken. The preliminary results have shown that the RegCM_NCC is capable of predicting the major seasonal rain belts. The best predicted regions with high anomaly correlation coefficient (ACC) are located in the eastern part of West China, in Northeast China and in North China, where the CGCM has maximum prediction skill as well. This fact may reflect the importance of the largescale forcing. One significant improvement of the prediction derived from RegCM_NCC is the increase of ACC in the Yangtze River valley where the CGCM has a very low, even a negative, ACC. The reason behind this improvement is likely to be related to the more realistic representation of the large-scale terrain features of the Tibetan Plateau. Presumably, many rain-producing systems may be generated over or near the Tibetan Plateau and may then move eastward along the Yangtze River basin steered by upper-level westerly airflow, thus leading to enhancement of rainfalls in the mid and lower basins of the Yangtze River. The real-time experimental predictions for summer in 2001, 2002, 2003 and 2004 by using this nested RegCM-NCC were made. The results are basically reasonable compared with the observations.
文摘The regional ocean circulation in the coastal areas of China (including a part of the western PacificOcean, the South China Sea and the Bay of Bengal et al.) is simulated by using the improved Princeton University ocean circulation model (POM). Compared with the modeling results obtained by the large-scaleocean general circulation model (OGCM), the basic ocean circulation features simulated by the regionalocean circulation model al-e in good agreement with that simulated by OGCM and some detailed characteristics such as the regional ocean circulation, sea temperature, salinity and flee sea surface height have alsobeen obtained which are in good accord with the observations. These results indicate that the regional oceancirculation model has good capability to produce the legional ocean circulation characteristics and it can beused to develop coupled legional ocean-atmospheric model systems.
基金Item Sponsored by National Key Fundamental Research Development Project of China(G1998061510)National High Technology Research and Development Project of China(2001AA337040)
文摘According to the theory of alternating magnetohydrodynamics and magnetic boundary renewal method,mathematical models were proposed for electromagnetic stirring in secondary cooling region( SEMS) of slab caster. The magnetic fields and flow fields of melt were simulated with SEMS. It's shown that the electromagnetic forces with inward and sidelong components produced by travel magnetic field at the wide faces of slab make the melt whirling in horizontal section,and the convection of the melt is strengthened obviously there. In addition,magnetic flux density attenuates from the edge to the center of slab,and the profile of the melt velocity along slab thickness in the center of the horizontal section takes a two-opposite-peak configuration. Ultimately,the stirring intensity and features are determined by the electromagnetic parameters,coil arrangement and stirring types.
基金Research supported by the National Key Program for Developing Basic Sciences(2006CB400506) of China Climate Change Study Fund of the China Meteorological Administration(CCSF2008-8)
文摘A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating present climate over East Asia and China is investigated. Results show that RegCM3 can reproduce well the atmospheric circulation over East Asia. The simulation of the main distribution patterns of surface air temperature and precipitation over China and their seasonal cycle/evolution, are basically agree with that of the observation. Meanwhile a general cold bias is found in the simulation. As for the precipitation, the model tends to overestimate the precipitation in northern China while underestimate it in southern China, particularly in winter. In general, the model has better performance in simulating temperature than precipitation.
文摘In many service delivery systems,the quantity of available resources is often a decisive factor of service quality.Resources can be personnel,offices,devices,supplies,and so on,depending on the nature of the services a system provides.Although service computing has been an active research topic for decades,general approaches that assess the impact of resource provisioning on service quality matrices in a rigorous way remain to be seen.Petri nets have been a popular formalism for modeling systems exhibiting behaviors of competition and concurrency for almost a half century.Stochastic timed Petri nets(STPN),an extension to regular Petri nets,are a powerful tool for system performance evaluation.However,we did not find any single existing STPN software tool that supports all timed transition firing policies and server types,not to mention resource provisioning and requirement analysis.This paper presents a generic and resource oriented STPN simulation engine that provides all critical features necessary for the analysis of service delivery system quality vs.resource provisioning.The power of the simulation system is illustrated by an application to emergency health care systems.
文摘Based on the primitive equation model with p- σ incorporated coordinate system originally developed by Qian et al., a one-way nested fine mesh limited area model is developed. This model is nested with ECMWF T42 data to simulate the extra-intensive rainfall event occurring in the Changjiang and Huaihe River valleys in summer of 1991. The results show that the model has certain capacity to fairly reproduce the regional distribution and the movement of the main rainfall belts. Therefore it can be used as a regional climate model to simulate and predict the short-range regional climate changes.
基金Chongqing University Innovation Team for 2016,No.CXTDX201601017Chongqing Research Program of Basic Research and Frontier Technology,No.cstc2017jcyjB0317
文摘Model simulation and scenario change analysis are the core contents of the future land-use change(LUC) study. In this paper, land use status data of the Three Gorges Reservoir Region(TGRR) in 1990 was used as base data. The relationship between driving factors and land-use change was analyzed by using binary logistic stepwise regression analysis, based on which land use in 2010 was simulated by CLUE-S model. After the inspection and determination of main parameters impacting on driving factors of land use in the TGRR, land use of this region in 2030 was simulated based on four scenarios, including natural growth, food security, migration-related construction and ecological conservation. The results were shown as follows:(1) The areas under ROC curves of land-use types(LUTs) were both greater than 0.8 under the analysis and inspection of binary logistic model. These LUTs include paddy field, dryland, woodland, grassland, construction land and water area. Therefore, it has a strong interpretation ability of driving factors on land use, which can be used in the estimation of land use probability distribution.(2) The Kappa coefficients, verified from the result of land-use simulation in 2010, were shown of paddy field 0.9, dryland 0.95, woodland 0.97, grassland 0.84, construction land 0.85 and water area 0.77. So the results of simulation could meet the needs of future simulation and prediction.(3) The results of multi-scenario simulation showed a spatial competitive relationship between different LUTs, and an influence on food security, migration-related construction and ecological conservation in the TGRR, including some land use actions such as the large-scale conversion from paddy field to dryland, the occupation on cultivated land, woodland and grassland for rapid expansion of construction land, the reclamation of woodland and grassland into cultivated land, returning steep sloping farmland back into woodland and grassland. Therefore, it is necessary to balance the needs of various aspects in land use optimization, to achieve the coordination between socio-economy and ecological environment.
基金funded by the Korea Meteorological Administration Research and Development Program under grant KMIPA 2015–2083
文摘This study investigated the simulations of three months of seasonal tropical cyclone (TC) activity over the western North Pacific using the Advanced Research WRF Model. In the control experiment (CTL), the TC frequency was considerably overestimated. Additionally, the tracks of some TCs tended to have larger radii of curvature and were shifted eastward. The large-scale environments of westerly monsoon flows and subtropical Pacific highs were unreasonably simulated. The overestimated frequency of TC formation was attributed to a strengthened westerly wind field in the southern quadrants of the TC center. In comparison with the experiment with the spectral nudging method, the strengthened wind speed was mainly modulated by large-scale flow that was greater than approximately 1000 km in the model domain. The spurious formation and undesirable tracks of TCs in the CTL were considerably improved by reproducing realistic large-scale atmospheric monsoon circulation with substantial adjustment between large-scale flow in the model domain and large-scale boundary forcing modified by the spectral nudging method. The realistic monsoon circulation took a vital role in simulating realistic TCs. It revealed that, in the downscaling from large-scale fields for regional climate simulations, scale interaction between model-generated regional features and forced large-scale fields should be considered, and spectral nudging is a desirable method in the downscaling method.
基金Financial support for this work, provided by the National Natural Science Foundation of China (Nos.51674189,51304154,and 51327007)the Youth Science and technology new star of Shaanxi Province (No.2016KJXX-37)the Scientific research plan of Shaanxi Education Department (No.16JK1487)
文摘It is believed that the microseismicity induced by mining effect and gas gradient disturbance stress is a precursor to the essential characteristics of roadway unstability. In order to effectively identify and evaluate the stability of coal roadways in the process of mine development and extraction, a microseismic monitoring system was deployed for the study of the stress evolution process, damage degree and distribution characteristics in the tailgate and headgate. The mine under study is the 62113 outburst working face of Xin Zhuangzi coalmine in Huainan mining area. The whole process of microfractures initiation,extension, interaction and coalescence mechanisms during the progressive failure processes of the coal rock within the delineated and typical event clusters were investigated by means of a two dimensional realistic failure process analysis code(RFPA2D-Flow). The results show that the microseismic events gradually create different-sized event clusters. The microseismicity of the tailgate is significantly higher than that of the headgate. The study indicates that the greater anomalous stress region matches the area where microfractures continuously develop and finally connect to each other and form a fissure zone.Due to the mine layout and stress concentration, the ruptured area is mainly located on the left shoulder of the tailgate roof. The potential anomalous stress region of the coal roadway obtained by numerical simulation is relatively in good agreement with the trend of spatial macro evolution of coal rock microfractures captured by the microseismic monitoring system. The research results can provide important basis for understanding instability failure mechanism of deep roadway and microseismic activity law in complex geologic conditions, and it ultimately can be used to guide the selection and optimization of reinforcement and protection scheme.
文摘Large eddy simulations (LES) of mixing process in a stirred tank of 0.476m diameter with a 3-narrow blade hydrofoil CBY impeller were reported. The turbulent flow field and mixing time were calculated using LES with Sma-gorinsky-Lilly subgrid scale model. The impeller rotation was modeled using the sliding mesh technique. Better agree-ment of power demand and mixing time was obtained between the experimental and the LES prediction than that by the traditional Reynolds-averaged Navier-Stokes (RANS) approach. The curve of tracer response predicted by LES was in good agreement with the experimental. The results show that LES is a reliable tool to investigate the unsteady and quasi-periodic behavior of the turbulent flow in stirred tanks.
文摘POM97, an oceanic model, has been used for the first time to the numerical study on the tidal waves of the as Regions around Taiwan. In this paper, we have got the result that the semidiurnal tidal waves of these area mainly are the co-operating tides which come from the south of 23'N of the western Pacific. Those semidiurnal tidal waves affecting the Taiwan Straits come respectively from the south and the north entrance of the channel, and the north tidal wave is stronger than the south one. The strongest tidal field is the area from the Meizhou Bay to the Xinhua Bay along the coast of Fujian Province, where the biggest amplitude of the M2 partial tide can reach 240 cm. The strongest tidal cur- rent fields lie in the Penghu watercourse, where the maximum velocity of the M2 partial tide can arrive at 196 m/s. In the horizontal structure of the tidal currets, we have found that there is a stream dot in the north of the channel, besides, there still exist four new ones. As for the vertical structure, it mainly is biassed to the right at the surface, and to the left near the bottom layer.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(IAP09306)the National Natural Science Foundation of China under Grant Nos. 40875067 and 40675040the National Basic Research Program of China under Grant No.2006CB400505
文摘The "combined approach", which is suitable to represent subgrid land surface heterogeneity in both interpatch and intra-patch variabilities, is employed in the BiOsphere/Atmosphere Transfer Scheme (BATS) as a land surface component of the regional climate model RegCM3 to consider the heterogeneities in temperature and moisture at the land surface, and then annual-scale simulations for 5 years (1988-1992) were conducted. Results showed that on the annual scale, the model's response to the heterogeneities is quite sensitive, and that the effect of the temperature heterogeneity (TH) is more pronounced than the moisture heterogeneity (MH). On the intraannual scale, TH may lead to more (less) precipitation in warm (cold) seasons, and hence lead to larger intraannual variability in precipitation; the major MH effects may be lagged by about 1 month during the warm, rainy seasons, inducing -6% more precipitation for some sub-regions. Additionally, the modeled climate for the northern sub-regions shows larger sensitivities to the land surface heterogeneities than those for the southern sub-regions. Since state-of-art land surface models seldom account for surface intra-patch variabilities, this study emphasizes the importance of including this kind of variability in the land surface models.
基金Supported by Key Scientific Research Project of Sichuan Provincial Education Department(Grant No.15ZA0107)Doctor Foundation of Southwest University of Science and Technology(Grant No.11zx7162)
文摘The Issue of mixing efficiency in agitated tanks has drawn serious concern in many industrial processes. The turbulence model is very critical to predicting mixing process in agitated tanks. On the basis of computational fluid dynamics(CFD) software package Fluent 6.2, the mixing characteristics in a tank agitated by dual six-blade-Rushton-turbines(6-DT) are predicted using the detached eddy simulation(DES) method. A sliding mesh(SM) approach is adopted to solve the rotation of the impeller. The simulated flow patterns and liquid velocities in the agitated tank are verified by experimental data in the literature. The simulation results indicate that the DES method can obtain more flow details than Reynolds-averaged Navier-Stokes(RANS) model. Local and global mixing time in the agitated tank is predicted by solving a tracer concentration scalar transport equation. The simulated results show that feeding points have great influence on mixing process and mixing time. Mixing efficiency is the highest for the feeding point at location of midway of the two impellers. Two methods are used to determine global mixing time and get close result. Dimensionless global mixing time remains unchanged with increasing of impeller speed. Parallel, merging and diverging flow pattern form in the agitated tank, respectively, by changing the impeller spacing and clearance of lower impeller from the bottom of the tank. The global mixing time is the shortest for the merging flow, followed by diverging flow, and the longest for parallel flow. The research presents helpful references for design, optimization and scale-up of agitated tanks with multi-impeller.
基金Under the auspices of National Natural Science Foundation of China (No. 40901009)National Key Technologies Research and Development Program in the Eleventh Five-Year Plan of China (No. 2008BAD98B02, 2006BAC01A11)+1 种基金the Western Light Program of Talents Cultivating of Chinese Academy of Sciences (2008)the Foundation of Key Laboratory of Mountain Hazards and Surface Process, Chinese Academy of Sciences
文摘Soil cracking is an important process influencing water and solutes transport in the Yuanmou Dry-hot Valley region of Southwest China. Studying the morphological development of soil cracks helps to further reveal the close relationship between the soil cracking process and water movement in such semi-arid regions. Here we report regular changes on surface morphology of soil cracks with decreasing water in four different soils (Typ-Ustic Ferrisols,Ver-Ustic Ferrisols,Tru-Ustic Vertisols and Typ-Ustic Vertisols) through simulation experiments. Our results indicate the following: 1) Different soils ultimately have different development degrees of soil cracks,according to their various values of crack area density. Soil cracks in Typ-Ustic Ferrisols can only develop to the feeble degree,while those in the other three soils are capable of developing into the intensive degree,and even into the extremely intensive degree. 2) Soil crack complexity,as expressed by the value of the area-weighted mean of crack fractal dimension (AWMFRAC),is found to continuously decrease as a whole through the whole cracking process in all the studied soils. 3) Soil crack connectivity shows a uniform trend in the studied soils,that is to say,connectivity gradually increases with soil crack development.
基金Natural Science Foundation for Young Scientist (40805047,41105058,40805039)Foundation project of Nanjing University of Information Science & Technology (20070100)Priority Academic Program Development of Jiangsu Province Higher Education Institutions (PAPD)
文摘Using the regional air-sea coupled climate model RegCM3-POM,a series of numerical experiments are performed to simulate the summer climate in 1997 and 1998 with different coupling time steps.The results show that the coupled model has good performance on the simulation of the summer sea surface temperature(SST) in 1997 and 1998,and the simulation results of CPL1(with the coupling time step at 1 hour) are similar to those of CPL6(with the coupling time step at 6 hours).The coupled model can well simulate SST differences between 1997 and 1998.As for the simulation of the drought in 1997 and the flood in 1998,the results of CPL6 are more accurate.The coupled model can well simulate the drought in 1997 over North China,and compared with the results of the atmosphere model RegCM3,the simulation ability of the coupled model is improved.The coupling model has better ability in the simulation of the circulation in the middle and low levels,and the water vapor transportation in the coupling model is reasonable in both 1997 and 1998.RegCM3(an uncoupled model) cannot correctly simulate the transportation path differences between 1997 and 1998,but the coupled model can simulate the differences well.
基金supported by the National Key Research and Development Program of China(Nos.2020YFB2008300 and 2020YFB2008302)the Program of Key Research and Development Program of Guangdong Province(No.2019B090921001)。
文摘Numerical simulation technology has been widely used in the foundry industry to analyze and improve casting processes.During the casting filling process,many filling-related defects form easily at the confluences of liquid metal streams.The main filling-related defects are cold shut defects.To calculate the positions of casting defects,the characteristics of liquid metal confluences were analyzed.The flow front of liquid metal was captured by the volume-of-fluid algorithm to obtain a time field,which was used to calculate the time derivatives of the liquid front position and the confluences of liquid metal streams.To distinguish small confluences from the main confluences,the concept of confluent scale was developed,which was used to filter the small confluences based on a threshold.The calculation process was demonstrated through the post-processing of numerical simulation.A "W" shaped casting and a steering wheel casting were calculated to validate the accuracy of the method developed in this study.The positions of cold shut defects were predicted by calculating the confluences of liquid metal streams.The method was proved to be practical by comparing the calculation results with the positions of cold shut defects in an end cover casting.The computation of confluences and cold shut defects can improve the analysis efficiency and provide assurance for the optimization of a casting process plan.
基金co-supported by the National Key R&D Program of China(Nos.2017YFB0202400 and 2017YFB0202402)the National Natural Science Foundation of China(No.91741125)the Project of Newton International Fellowship Alumnus from Royal Society(No.AL120003)
文摘The numerical simulation of modern aero-engine combustion chamber needs accurate description of the interaction between turbulence and chemical reaction mechanism. The Large Eddy Simulation(LES) method with the Transported Probability Density Function(TPDF) turbulence combustion model is promising in engineering applications. In flame region, the impact of chemical reaction should be considered in TPDF molecular mixing model. Based on pioneer research, three new TPDF turbulence-chemistry dual time scale molecular mixing models were proposed tentatively by adding the chemistry time scale in molecular mixing model for nonpremixed flame. The Aero-Engine Combustor Simulation Code(AECSC) which is based on LES-TPDF method was combined with the three new models. Then the Sandia laboratory's methane-air jet flames: Flame D and Flame E were simulated. Transient simulation results show that all the three new models can predict the instantaneous combustion flow pattern of the jet flames. Furthermore,the average scalar statistical results were compared with the experimental data. The simulation result of the new TPDF arithmetic mean modification model is the closest to the experimental data:the average error in Flame D is 7.6% and 6.6% in Flame E. The extinction and re-ignition phenomena of the jet flames especially Flame E were captured. The turbulence time scale and the chemistry time scale are in different order in the whole flow field. The dual time scale TPDF combustion model has ability to deal with both the turbulence effect and the chemistry reaction effect, as well as their interaction more accurately for nonpremixed flames.
基金National Key R&D Program of China(2017YFA0603702)National Key R&D Program of China(2018YFC0507202)+3 种基金National Natural Science Foundation of China(41971358)National Natural Science Foundation of China(41930647)Strategic Priority Research Program(A)of the Chinese Academy of Sciences(XDA20030203)Innovation Research Project of State Key Laboratory of Resources and Environment Information System,CAS。
文摘How to simulate land-cover change,driven by climate change and human activity,is not only a hot issue in the field of land-cover research but also in the field of sustainable urbanization.A surface-modeling method of land cover scenario(SSMLC)driven by the coupling of natural and human factors was developed to overcome limitations in existing land-cover models.Based on the climatic scenario data of CMIP6 SSP1-2.6,SSP2-4.5,and SSP5-8.5 released by IPCC in 2020,which combines shared socioeconomic paths(SSPs)with typical concentration paths(RCPs),observation climatic data concerning meteorological stations,the population,GDP,transportation data,land-cover data from 2020,and related policy refences,are used to simulate scenarios of land-cover change in the Jing-Jin-Ji region using SSP1-2.6,SSP2-4.5,and SSP5-8.5 for the years 2040,2070 and 2100,respectively.The simulation results show that the total accuracy of SSMLC in the Jing-Jin-Ji region attains 93.52%.The change intensity of land cover in the Jing-Jin-Ji region is the highest(plus 3.12%per decade)between 2020 and 2040,gradually decreasing after 2040.Built-up land has the fastest increasing rate(plus 5.07%per decade),and wetland has the fastest decreasing rate(minus 3.10%per decade)between 2020 and 2100.The change intensity of land cover under scenario SSP5-8.5 is the highest among the abovementioned three scenarios in the Jing-Jin-Ji region between 2020 and 2100.The impacts of GDP,population,transportation,and policies on land-cover change are generally greater than those on other land-cover types.The results indicate that the SSMLC method can be used to project the change trend and intensity of land cover under the different scenarios.This will help to optimize the spatial allocation and planning of land cover,and could be used to obtain key data for carrying out eco-environmental conservation measures in the Jing-Jin-Ji region in the future.