Capcity both in uplink and downlink of TD-SCDMA (time division-synchronous code division multiple access) system is studied in a multi-cell environment. The theoretical expressions of the mean of intercell interferenc...Capcity both in uplink and downlink of TD-SCDMA (time division-synchronous code division multiple access) system is studied in a multi-cell environment. The theoretical expressions of the mean of intercell interference in uplink and the mean of sum of power allocation in downlink are given, by which uplink and downlink capacity is analyzed. Furthermore, we give the simulation models for both uplink and downlink capacity. The results from theoretical analysis and simulation fit very well. In the end, the maximum number of users that TD-SCDMA system can serve for 12.2 k speech service is given.展开更多
A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM...A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM technology to guarantee the security, while the upstream traffics pass through the same optical fiber by the common time division multiple access (TDMA) technology to decrease the cost. This schemes are denoted as OCDM/TDMA-PON, which can be applied to an optical access network (OAN) with full services on demand, such as Internet protocol, video on demand, tele-presence and high quality audio. The proposed OCDM/TDMA-PON scheme combines advantages of PON, TDMA, and OCDM technology. Simulation results indicate that the designed scheme improves the OAN performance, and enhances flexibility and scalability of the system.展开更多
Time reversal mirror (TRM) can use the physical characteristics of the underwater acoustic (UWA) channel to focus on the desired user in multi-user UWA communication. The active average sound intensity (AASI) de...Time reversal mirror (TRM) can use the physical characteristics of the underwater acoustic (UWA) channel to focus on the desired user in multi-user UWA communication. The active average sound intensity (AASI) detector can estimate all azimuths of users with the same frequency band at the same time in order to achieve directional communication by vector combination. Space-division multiple access (SDMA) based on TRM combined with the AASI detector is proposed in this paper, which can make the capacity of the code division multiple access (CDMA) UWA system significantly increase. The simulation and lake test results show that the 7-user UWA multi-user system can achieve low bit error communication.展开更多
An important feature of the traffic in mobile networks is burstiness. Drawbacks of conventional power control algorithms for time division duplex (TDD)-code division multiple access (CDMA) systems are analyzed. A ...An important feature of the traffic in mobile networks is burstiness. Drawbacks of conventional power control algorithms for time division duplex (TDD)-code division multiple access (CDMA) systems are analyzed. A joint power control algorithm based on service factor is presented to address the TDD-CDMA mobile services in the burst mode according to the Markov modulated Bernoulli process. The joint power control equation is derived. A function model is developed to verify the new algorithm and evaluate its performance. Simulation results show that the new power control algorithm can estimate interference strength more precisely, speed up convergence of power control, and enhance power efficiency and system capacity. It is shown that the proposed algorithm is more robust against link gain changes, and outperforms the reference algorithms.展开更多
Achieving sound communication systems in Under Water Acoustic(UWA)environment remains challenging for researchers.The communication scheme is complex since these acoustic channels exhibit uneven characteristics such a...Achieving sound communication systems in Under Water Acoustic(UWA)environment remains challenging for researchers.The communication scheme is complex since these acoustic channels exhibit uneven characteristics such as long propagation delay and irregular Doppler shifts.The development of machine and deep learning algorithms has reduced the burden of achieving reli-able and good communication schemes in the underwater acoustic environment.This paper proposes a novel intelligent selection method between the different modulation schemes such as Code Division Multiple Access(CDMA),Time Divi-sion Multiple Access(TDMA),and Orthogonal Frequency Division Multiplexing(OFDM)techniques using the hybrid combination of the convolutional neural net-works(CNN)and ensemble single feedforward layers(SFL).The convolutional neural networks are used for channel feature extraction,and boosted ensembled feedforward layers are used for modulation selection based on the CNN outputs.The extensive experimentation is carried out and compared with other hybrid learning models and conventional methods.Simulation results demonstrate that the performance of the proposed hybrid learning model has achieved nearly 98%accuracy and a 30%increase in BER performance which outperformed the other learning models in achieving the communication schemes under dynamic underwater environments.展开更多
In digital video broadcasting and return channel via satellite (DVB-RCS) systems, the time slot location assigned to a given traffic in multiple frequency-time division multiple access (MF-TDMA) frame has significant ...In digital video broadcasting and return channel via satellite (DVB-RCS) systems, the time slot location assigned to a given traffic in multiple frequency-time division multiple access (MF-TDMA) frame has significant effects upon the traffic delay per- formance. This article proposes models to analyze the relationships among frame length, bandwidth assignment (assigned time slot count), time slot location in frame, and traffic delay performance for traffics of constant bit rate (CBR) and variable bit rate (...展开更多
针对混合天线模式的无人机(Unmanned Aerial Verial,UAV)自组网接入协议存在时钟内同步困难以及时隙利用率低的问题,提出一种基于扇区的混合天线模式时分多址接入协同优化协议(Sector-based Collaborative Optimized Protocol for Hybri...针对混合天线模式的无人机(Unmanned Aerial Verial,UAV)自组网接入协议存在时钟内同步困难以及时隙利用率低的问题,提出一种基于扇区的混合天线模式时分多址接入协同优化协议(Sector-based Collaborative Optimized Protocol for Hybrid Antenna Mode Time Division Multiple Access,SCOP-HTDMA)。该协议采用集中式网络架构,包含一个中心UAV节点和若干子节点,所有节点均配备相同的全向/定向双模智能天线。通过引入地磁场辅助扇区确认机制,有效支持混合天线模式下的时钟内同步,优化现有的时帧结构并设计全向-定向协同多播机制以提升时隙利用率。仿真结果表明,在不同业务负载和节点规模下,该协议在平均时延与丢包率方面均优于基于位置预测的定向媒体接入控制协议(Position-Prediction-based Directional Media Access Control Protocol,PPMAC)和固定帧长的集中式UAV媒体接入控制协议(Centralized UAV Media Access Control Protocol,CU-MAC)。展开更多
As the current medium access control protocols with Multiple Input Multiple Output (MIMO) links only bear point to point service, broadcast scheduling algorithm in ad hoc networks with MIMO links is proposed. The ke...As the current medium access control protocols with Multiple Input Multiple Output (MIMO) links only bear point to point service, broadcast scheduling algorithm in ad hoc networks with MIMO links is proposed. The key to the proposed broadcast scheduling algorithm is the time slot scheduling algorithm which guarantees collisi~)n-free transmissions for every node and the mini- mum frame length. The proposed algorithm increases the simultaneous transmissions of MIMO links efficiently. Due to the interference null capacity of MIMO links, the interference node set of each node can decrease from two-hop neighbors to one-hop neighbors possibly. Simulation results show that our algorithm can greatly improve network capacity and decrease average packet delay.展开更多
Many efforts have been made to develop time division multiple access (TDMA) slots allocation in a multi-hop converge-cast wireless sensor network (WSN), however, most of them either use complex algorithm or concer...Many efforts have been made to develop time division multiple access (TDMA) slots allocation in a multi-hop converge-cast wireless sensor network (WSN), however, most of them either use complex algorithm or concern frames only without simultaneous transmission in a single slot. In this paper, we present a timeslot assignment scheme for cluster-tree-based TDMA WSN, co:'ering three frequently used working modes in practical applications. The shortest frame formed can guarantee real-time conununication and is also facilitated for message and slot integration, since timeslots allocated to a single node are continuous. During allocation processes, the algorithms are distributed and light-weighted. The experiment resulted from a WSN prototype system shows that our scheme can achieve a good reliability.展开更多
High spectral efficiency is essential in design of multimedia communication systems such as L-band mobile in addition to various requirements of transmission quality. Time-interleaved A/D converter (TI-ADC) is an ef...High spectral efficiency is essential in design of multimedia communication systems such as L-band mobile in addition to various requirements of transmission quality. Time-interleaved A/D converter (TI-ADC) is an effective candidate to implement wide-band ADC with relatively slow circuits accounting for digital spectrum management. However, practical performance of TI-ADC is largely limited because of mismatches between different channels originated from manufacturing process variations. In this paper, a blind adaptive method is proposed to correct gain mismatch errors in TI-ADC, and it is verified through simulations on a two-channel TI-ADC. In proposed method, gain mismatch error is estimated and corrected in an adaptive scheme. Proposed compensated T1-ADC architecture is structurally very simple and hence suitable for realiza- tion in integrated circuits. Besides, proposed digital compensation algorithm not only is computationally efficient but also provides an improvement of 32.7 dB in the performance of two-channel TI ADC.展开更多
Call Admission Control (CAC) is one of the key traffic management mechanisms that must be deployed in order to meet the strict requirements for dependability imposed on the services provided by modern wireless network...Call Admission Control (CAC) is one of the key traffic management mechanisms that must be deployed in order to meet the strict requirements for dependability imposed on the services provided by modern wireless networks. In this paper, we develop an executable top-down hierarchical Colored Petri Net (CPN) model for multi-traffic CAC in Orthogonal Frequency Division Multiple Access (OFDMA) system. By theoretic analysis and CPN simulation, it is demonstrated that the CPN model is isomorphic to Markov Chain (MC) assuming that each data stream follows Poisson distribution and the corresponding arrival time interval is an exponential random variable, and it breaks through MC's explicit limitation, which includes MC's memoryless property and proneness to state space explosion in evaluating CAC process. Moreover, we present four CAC schemes based on CPN model taking into account call-level and packet-level Quality of Service (QoS). The simulation results show that CPN offers significant advantages over MC in modeling CAC strategies and evaluating their performance with less computational complexity in addition to its flexibility and adaptability to different scenarios.展开更多
In this paper, a theoretical analysis of Time Division Duplex-Code Division Multiple Access (TDD-CDMA) uplink capacity constraint is presented when employing the smart antenna techniques. The evaluation formulations o...In this paper, a theoretical analysis of Time Division Duplex-Code Division Multiple Access (TDD-CDMA) uplink capacity constraint is presented when employing the smart antenna techniques. The evaluation formulations of capacity and load for multi-services are proposed. In order to maximize the throughput, the objective of optimization is proposed, and an advanced uplink resource management algo-rithm is developed. The proposed algorithm based on the least interference admission control scheme focuses on the maximum throughput for the circuit switched multi-services. The simulation results show that the pro-posed strategy has a significant improvement in throughput when the optimum admission control threshold is set.展开更多
In this paper, a simple method is presented for multi-user space-time channel estimation in Time Division-Synchronized Code Division Multiple Access (TD-SCDMA) systems. The method is based on a spe- cific midamble ass...In this paper, a simple method is presented for multi-user space-time channel estimation in Time Division-Synchronized Code Division Multiple Access (TD-SCDMA) systems. The method is based on a spe- cific midamble assignment strategy, which results in a cyclic Toeplitz midamble-matrix in the linear equation of the received data vectors. A Fast Fourier Transform (FFT)-based algorithm is used to obtain the estimate of the uplink multi-user space-time channels. Furthermore, the estimated space-time channel is applied to the identification of multi-paths for each user, and Direction Of Arrival (DOA) estimation for each path is carried out by using the extracted spatial signature vector. Aside from the simplicity in computation, the proposed di- rection of arrival estimation method can effectively resolve multi-paths regardless of the correlation and angle separations of the multi-paths.展开更多
The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) la...The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) layer designs are naturally placed on the schedules.We focus on the optimal power load scheme,which is an integral part of the MAC layer protocol design,for UWB space-time coded (STC) orthogonal frequency-division multiplexing (OFDM) transmissions.Assumed the transmitter has perfect or partial channel stage information (CSI).Based on the optimization criteria of maximizing capacity,three kinds of power load schemes were presented with different tradeoff among performance,complexity and feedback bandwidth overhead.The proposed schemes are verified and compared under the channel prototype proposed by IEEE 802.15.3a Task Group.展开更多
The growth in wireless technologies applications makes the necessity of providing a reliable communication over wireless networks become obvious.Guaranteeing real time communication in wireless medium poses a signific...The growth in wireless technologies applications makes the necessity of providing a reliable communication over wireless networks become obvious.Guaranteeing real time communication in wireless medium poses a significant challenge due to its poor delivery reliability.In this study,a recovery and redundancy model based on sequential time division multiple access(S-TDMA)for wireless communication is developed.The media access control(MAC)layer of the S-TDMA determines which station should transmit at a given time slot based on channel state of the station.Simulations of the system models were carried out using MATLAB SIMULINK software.SIMULINK blocks from the signal processing and communication block sets were used to model the communication system.The S-TDMA performance is evaluated with total link reliability,system throughput,average probability of correct delivery before deadline and system latency.The evaluation results displayed in graphs when compared with instant retry and drop of frame were found to be reliable in recovering loss packets.展开更多
A multiple-input multiple-output interleave division multiple access (MIMO-IDMA) system with Triple Polarized Division Multiplexing (TPDM) is presented in this paper. The present methodology replaces three indepe...A multiple-input multiple-output interleave division multiple access (MIMO-IDMA) system with Triple Polarized Division Multiplexing (TPDM) is presented in this paper. The present methodology replaces three independent linearly polarized antennas with a single triple polarized antenna at both the transmitter and receiver. The users in the communication link are accommodated and separated using a user-specific interleaver combined with low rate spreading sequence. To eliminate the effects of multi-stream interference (MSI), minimum mean square error (MMSE) algorithm based on successive interference cancellation (SIC) Multi-user detection (MUD) technique is employed at the receiver. Furthermore, log-maximum a posteriori probability (MAPP) decoding algorithm is implemented at the mobile stations (MSs) to overcome the effects of multi-user interference (MUI) effects. The paper also evaluates the effects of coded MIMO-IDMA in the downlink communication by adopting the Stanford University Interim (SUI) and Long-term Evolution (LTE)channel model specifications. In comparison with the traditional uncoded system, the present solution considering turbo coded triple-polarized MIMO-IDMA system with iterative decoding algorithm provides better bit error rate (BER) with reduced signal to noise ratio (SNR). The simulation results also show that though the SNR requirement is higher for the proposed technique compared to the conventional uni-polarized antenna based MIMO-IDMA system, it gives the advantages of achieving higher data rate with reduced cost and space requirements in the context of a downlink (DL).展开更多
文摘Capcity both in uplink and downlink of TD-SCDMA (time division-synchronous code division multiple access) system is studied in a multi-cell environment. The theoretical expressions of the mean of intercell interference in uplink and the mean of sum of power allocation in downlink are given, by which uplink and downlink capacity is analyzed. Furthermore, we give the simulation models for both uplink and downlink capacity. The results from theoretical analysis and simulation fit very well. In the end, the maximum number of users that TD-SCDMA system can serve for 12.2 k speech service is given.
文摘A passive optical network (PON) scheme based on optical code division multiplexing (OCDM) for the downstream traffics is proposed and analyzed in detail. In the PON, the downstream traffics are broadcasted by OCDM technology to guarantee the security, while the upstream traffics pass through the same optical fiber by the common time division multiple access (TDMA) technology to decrease the cost. This schemes are denoted as OCDM/TDMA-PON, which can be applied to an optical access network (OAN) with full services on demand, such as Internet protocol, video on demand, tele-presence and high quality audio. The proposed OCDM/TDMA-PON scheme combines advantages of PON, TDMA, and OCDM technology. Simulation results indicate that the designed scheme improves the OAN performance, and enhances flexibility and scalability of the system.
基金supported by the National Natural Science Foundation of China(6147113751179034)+3 种基金the Ships Pre-research Support Technology Fund(13J3.1.5)the Natural Science Foundation of Heilongjiang Province(F201109)the Innovation Talents of Science and the Technology Research Projects of Harbin(2013RFQXJ101)the National Defense Basic Technology Research(JSJC2013604C012)
文摘Time reversal mirror (TRM) can use the physical characteristics of the underwater acoustic (UWA) channel to focus on the desired user in multi-user UWA communication. The active average sound intensity (AASI) detector can estimate all azimuths of users with the same frequency band at the same time in order to achieve directional communication by vector combination. Space-division multiple access (SDMA) based on TRM combined with the AASI detector is proposed in this paper, which can make the capacity of the code division multiple access (CDMA) UWA system significantly increase. The simulation and lake test results show that the 7-user UWA multi-user system can achieve low bit error communication.
基金Project supported by the National Science Foundation for Creative Research Groups (Grant No.60521002), and the National Key Technologies R&D Program (Grant No.2005BA908B02)
文摘An important feature of the traffic in mobile networks is burstiness. Drawbacks of conventional power control algorithms for time division duplex (TDD)-code division multiple access (CDMA) systems are analyzed. A joint power control algorithm based on service factor is presented to address the TDD-CDMA mobile services in the burst mode according to the Markov modulated Bernoulli process. The joint power control equation is derived. A function model is developed to verify the new algorithm and evaluate its performance. Simulation results show that the new power control algorithm can estimate interference strength more precisely, speed up convergence of power control, and enhance power efficiency and system capacity. It is shown that the proposed algorithm is more robust against link gain changes, and outperforms the reference algorithms.
文摘Achieving sound communication systems in Under Water Acoustic(UWA)environment remains challenging for researchers.The communication scheme is complex since these acoustic channels exhibit uneven characteristics such as long propagation delay and irregular Doppler shifts.The development of machine and deep learning algorithms has reduced the burden of achieving reli-able and good communication schemes in the underwater acoustic environment.This paper proposes a novel intelligent selection method between the different modulation schemes such as Code Division Multiple Access(CDMA),Time Divi-sion Multiple Access(TDMA),and Orthogonal Frequency Division Multiplexing(OFDM)techniques using the hybrid combination of the convolutional neural net-works(CNN)and ensemble single feedforward layers(SFL).The convolutional neural networks are used for channel feature extraction,and boosted ensembled feedforward layers are used for modulation selection based on the CNN outputs.The extensive experimentation is carried out and compared with other hybrid learning models and conventional methods.Simulation results demonstrate that the performance of the proposed hybrid learning model has achieved nearly 98%accuracy and a 30%increase in BER performance which outperformed the other learning models in achieving the communication schemes under dynamic underwater environments.
基金National Natural Science Foundation of China (60532030)National Natural Science Foundation for Distinguished Young Scholars (60625102)
文摘In digital video broadcasting and return channel via satellite (DVB-RCS) systems, the time slot location assigned to a given traffic in multiple frequency-time division multiple access (MF-TDMA) frame has significant effects upon the traffic delay per- formance. This article proposes models to analyze the relationships among frame length, bandwidth assignment (assigned time slot count), time slot location in frame, and traffic delay performance for traffics of constant bit rate (CBR) and variable bit rate (...
文摘针对混合天线模式的无人机(Unmanned Aerial Verial,UAV)自组网接入协议存在时钟内同步困难以及时隙利用率低的问题,提出一种基于扇区的混合天线模式时分多址接入协同优化协议(Sector-based Collaborative Optimized Protocol for Hybrid Antenna Mode Time Division Multiple Access,SCOP-HTDMA)。该协议采用集中式网络架构,包含一个中心UAV节点和若干子节点,所有节点均配备相同的全向/定向双模智能天线。通过引入地磁场辅助扇区确认机制,有效支持混合天线模式下的时钟内同步,优化现有的时帧结构并设计全向-定向协同多播机制以提升时隙利用率。仿真结果表明,在不同业务负载和节点规模下,该协议在平均时延与丢包率方面均优于基于位置预测的定向媒体接入控制协议(Position-Prediction-based Directional Media Access Control Protocol,PPMAC)和固定帧长的集中式UAV媒体接入控制协议(Centralized UAV Media Access Control Protocol,CU-MAC)。
基金supported by the National Natural Science Foundation of China(No.6037 2048)Microsoft Research Asia,TRAP0YT,Natural Science Foundation of China(No.60496 316)+1 种基金China"863"Project on cognitive radio(2005AA123910),M0E(104171)Research Fund for the Doctoral Program of Higher Education(20050701007).
文摘As the current medium access control protocols with Multiple Input Multiple Output (MIMO) links only bear point to point service, broadcast scheduling algorithm in ad hoc networks with MIMO links is proposed. The key to the proposed broadcast scheduling algorithm is the time slot scheduling algorithm which guarantees collisi~)n-free transmissions for every node and the mini- mum frame length. The proposed algorithm increases the simultaneous transmissions of MIMO links efficiently. Due to the interference null capacity of MIMO links, the interference node set of each node can decrease from two-hop neighbors to one-hop neighbors possibly. Simulation results show that our algorithm can greatly improve network capacity and decrease average packet delay.
基金Supported by the National High Technology Research and Development Programme of China ( No. 2006AA040302 2007AA041201 +1 种基金 2007AA041301 )the National Creative Research Groups Science Foundation of China (No. 60721062)
文摘Many efforts have been made to develop time division multiple access (TDMA) slots allocation in a multi-hop converge-cast wireless sensor network (WSN), however, most of them either use complex algorithm or concern frames only without simultaneous transmission in a single slot. In this paper, we present a timeslot assignment scheme for cluster-tree-based TDMA WSN, co:'ering three frequently used working modes in practical applications. The shortest frame formed can guarantee real-time conununication and is also facilitated for message and slot integration, since timeslots allocated to a single node are continuous. During allocation processes, the algorithms are distributed and light-weighted. The experiment resulted from a WSN prototype system shows that our scheme can achieve a good reliability.
基金Iran’s Telecommunication Research Center(ITRC)(No.500/3653)
文摘High spectral efficiency is essential in design of multimedia communication systems such as L-band mobile in addition to various requirements of transmission quality. Time-interleaved A/D converter (TI-ADC) is an effective candidate to implement wide-band ADC with relatively slow circuits accounting for digital spectrum management. However, practical performance of TI-ADC is largely limited because of mismatches between different channels originated from manufacturing process variations. In this paper, a blind adaptive method is proposed to correct gain mismatch errors in TI-ADC, and it is verified through simulations on a two-channel TI-ADC. In proposed method, gain mismatch error is estimated and corrected in an adaptive scheme. Proposed compensated T1-ADC architecture is structurally very simple and hence suitable for realiza- tion in integrated circuits. Besides, proposed digital compensation algorithm not only is computationally efficient but also provides an improvement of 32.7 dB in the performance of two-channel TI ADC.
基金Supported by the National Natural Science Foundation of China (No. 61271421)the Education Department of Henan Province (No. 2011GGJS-002 and No. 12A510023)
文摘Call Admission Control (CAC) is one of the key traffic management mechanisms that must be deployed in order to meet the strict requirements for dependability imposed on the services provided by modern wireless networks. In this paper, we develop an executable top-down hierarchical Colored Petri Net (CPN) model for multi-traffic CAC in Orthogonal Frequency Division Multiple Access (OFDMA) system. By theoretic analysis and CPN simulation, it is demonstrated that the CPN model is isomorphic to Markov Chain (MC) assuming that each data stream follows Poisson distribution and the corresponding arrival time interval is an exponential random variable, and it breaks through MC's explicit limitation, which includes MC's memoryless property and proneness to state space explosion in evaluating CAC process. Moreover, we present four CAC schemes based on CPN model taking into account call-level and packet-level Quality of Service (QoS). The simulation results show that CPN offers significant advantages over MC in modeling CAC strategies and evaluating their performance with less computational complexity in addition to its flexibility and adaptability to different scenarios.
基金Sponsored by the National Advanced Technologies Researching and Developing Programs (No.2004AA123160).
文摘In this paper, a theoretical analysis of Time Division Duplex-Code Division Multiple Access (TDD-CDMA) uplink capacity constraint is presented when employing the smart antenna techniques. The evaluation formulations of capacity and load for multi-services are proposed. In order to maximize the throughput, the objective of optimization is proposed, and an advanced uplink resource management algo-rithm is developed. The proposed algorithm based on the least interference admission control scheme focuses on the maximum throughput for the circuit switched multi-services. The simulation results show that the pro-posed strategy has a significant improvement in throughput when the optimum admission control threshold is set.
基金Supported by the Natural Foundation of Hubei Province, China (No.2005ABA224).
文摘In this paper, a simple method is presented for multi-user space-time channel estimation in Time Division-Synchronized Code Division Multiple Access (TD-SCDMA) systems. The method is based on a spe- cific midamble assignment strategy, which results in a cyclic Toeplitz midamble-matrix in the linear equation of the received data vectors. A Fast Fourier Transform (FFT)-based algorithm is used to obtain the estimate of the uplink multi-user space-time channels. Furthermore, the estimated space-time channel is applied to the identification of multi-paths for each user, and Direction Of Arrival (DOA) estimation for each path is carried out by using the extracted spatial signature vector. Aside from the simplicity in computation, the proposed di- rection of arrival estimation method can effectively resolve multi-paths regardless of the correlation and angle separations of the multi-paths.
基金This work was partially supported by NSF under Grant 60496315 and national "863" projects under Grant2003AA12331005
文摘The emerging ultra-wideband (UWB) system offers a great potential for the design of high-speed short-range communications.Compared with great progress at physical layer,the corresponding medium access control (MAC) layer designs are naturally placed on the schedules.We focus on the optimal power load scheme,which is an integral part of the MAC layer protocol design,for UWB space-time coded (STC) orthogonal frequency-division multiplexing (OFDM) transmissions.Assumed the transmitter has perfect or partial channel stage information (CSI).Based on the optimization criteria of maximizing capacity,three kinds of power load schemes were presented with different tradeoff among performance,complexity and feedback bandwidth overhead.The proposed schemes are verified and compared under the channel prototype proposed by IEEE 802.15.3a Task Group.
文摘The growth in wireless technologies applications makes the necessity of providing a reliable communication over wireless networks become obvious.Guaranteeing real time communication in wireless medium poses a significant challenge due to its poor delivery reliability.In this study,a recovery and redundancy model based on sequential time division multiple access(S-TDMA)for wireless communication is developed.The media access control(MAC)layer of the S-TDMA determines which station should transmit at a given time slot based on channel state of the station.Simulations of the system models were carried out using MATLAB SIMULINK software.SIMULINK blocks from the signal processing and communication block sets were used to model the communication system.The S-TDMA performance is evaluated with total link reliability,system throughput,average probability of correct delivery before deadline and system latency.The evaluation results displayed in graphs when compared with instant retry and drop of frame were found to be reliable in recovering loss packets.
文摘A multiple-input multiple-output interleave division multiple access (MIMO-IDMA) system with Triple Polarized Division Multiplexing (TPDM) is presented in this paper. The present methodology replaces three independent linearly polarized antennas with a single triple polarized antenna at both the transmitter and receiver. The users in the communication link are accommodated and separated using a user-specific interleaver combined with low rate spreading sequence. To eliminate the effects of multi-stream interference (MSI), minimum mean square error (MMSE) algorithm based on successive interference cancellation (SIC) Multi-user detection (MUD) technique is employed at the receiver. Furthermore, log-maximum a posteriori probability (MAPP) decoding algorithm is implemented at the mobile stations (MSs) to overcome the effects of multi-user interference (MUI) effects. The paper also evaluates the effects of coded MIMO-IDMA in the downlink communication by adopting the Stanford University Interim (SUI) and Long-term Evolution (LTE)channel model specifications. In comparison with the traditional uncoded system, the present solution considering turbo coded triple-polarized MIMO-IDMA system with iterative decoding algorithm provides better bit error rate (BER) with reduced signal to noise ratio (SNR). The simulation results also show that though the SNR requirement is higher for the proposed technique compared to the conventional uni-polarized antenna based MIMO-IDMA system, it gives the advantages of achieving higher data rate with reduced cost and space requirements in the context of a downlink (DL).