Exit delamination is excessive drilling thrust force.Therefore,it is necessary to investigate the critical thrust force which cause exit delamination when carbon fibre reinforced plastics(CRFP)is drilled.According to ...Exit delamination is excessive drilling thrust force.Therefore,it is necessary to investigate the critical thrust force which cause exit delamination when carbon fibre reinforced plastics(CRFP)is drilled.According to the linear elastic fracture mechanics,the mechanics of composite material and the classical thin plate bending theory,a common theoretical model of the critical drilling thrust force for CFRP plates is established.Compared with the experimental data of previous studies,the results show that the theoretical values agree well with the experimental values.This model can be used to forecast the critical thrust force for the drilling-induced delamination of CFRP.展开更多
Drilling is indispensable process and it cannot be avoided for joining composite structures used in various engineering applications. In this research article, the influence of drilling parameters on thrust force and ...Drilling is indispensable process and it cannot be avoided for joining composite structures used in various engineering applications. In this research article, the influence of drilling parameters on thrust force and torque of silica (SiO2) and alumina (Al2O3) filled into glass fabric reinforced epoxy (G-E) composites are analyzed. Drilling experiments are conducted on these composite materials using BATLIBOI make radial drilling machine. Two different drill bits (HSS and cemented carbide) are used for the experimentation. The influence of drilling parameters like cutting speed and feed on thrust force and torque on drilling of particulate filled G-E composites has been carried out. The experimental results indicated that the thrust force and torque were increased with increasing feed and cutting speed for all the composites tested. Further, it is observed that the carbide drill performed better than HSS drill during drilling of particulate filled G-E composites. The drilled surfaces are examined using scanning electron microscopy (SEM) and damage mechanisms are discussed.展开更多
The submarine pipelines that are buried in the Yellow River subaqueous delta can be subject to fluctuant local-liquefied soil caused by storm wave action, possibly causing pipeline damage. An experimental investigatio...The submarine pipelines that are buried in the Yellow River subaqueous delta can be subject to fluctuant local-liquefied soil caused by storm wave action, possibly causing pipeline damage. An experimental investigation was carried out in a wave flume to study the horizontal normal force on buried rigid pipelines in fluctuant liquefied soil. In this experiment, the soil bed was made of silt from the Yellow River Delta, whereas a steel pipe served as pipeline. Under the experimental conditions, the normal force range on the pipeline in fluctuant liquefied soil was several times higher than that in stable soil, specifically on the side of the pipeline exposed to the wave direction. The resultant force of the horizontal normal forces on the buried pipeline grew by about one order of magnitude after soil liquefaction.展开更多
The effect of normal force on fretting wear behavior of zirconium alloy tube mated with grid dimple in simulated primary water of pressurized water reactor nuclear power plant was investigated.Results showed that the ...The effect of normal force on fretting wear behavior of zirconium alloy tube mated with grid dimple in simulated primary water of pressurized water reactor nuclear power plant was investigated.Results showed that the maximum wear depth,wear volume and wear coefficient of Zr alloy tube in simulated primary water at 315℃ gradually increased with increasing normal force,while the friction coefficient gradually decreased.Fretting process could be divided into four stages according to the variation of friction coefficient during test.When normal force exceeds 30 N,the fretting regime would transition from gross slip regime to partial slip regime after 3×10^(7 )cycles.Delamination was aggravated with increasing normal force,while abrasive wear became slighter.A thicker third-body layer with monoclinic ZrO_(2) was formed by the tribo-sintering mechanism under higher normal force.In addition,the schematic evolution processes of delamination and third-body layer formation were displayed according to morphology observation.展开更多
In this work,a comparative study is performed to investigate the influence of time-varying normal forces on the friction properties and friction-induced stick-slip vibration(FIV)by experimental and theoretical methods...In this work,a comparative study is performed to investigate the influence of time-varying normal forces on the friction properties and friction-induced stick-slip vibration(FIV)by experimental and theoretical methods.In the experiments,constant and harmonic-varying normal forces are applied,respectively.The measured vibration signals under two loading forms are compared in both time and frequency domains.In addition,mathematical tools such as phase space reconstruction and Fourier spectra are used to reveal the science behind the complicated dynamic behavior.It can be found that the friction system shows steady stick-slip vibration,and the main frequency does not vary with the magnitude of the constant normal force,but the size of limit cycle increases with the magnitude of the constant normal force.In contrast,the friction system under the harmonic normal force shows complicated behavior,for example,higher-frequency larger-amplitude vibration occurs and looks chaotic as the frequency of the normal force increases.The interesting findings offer a new way for controlling FIV in engineering applications.展开更多
It is shown that an impulsive force acting on a particle perpendicular to its velocity vector cannot change its direction of motion without increasing its kinetic energy. If the particle’s kinetic energy is to remain...It is shown that an impulsive force acting on a particle perpendicular to its velocity vector cannot change its direction of motion without increasing its kinetic energy. If the particle’s kinetic energy is to remain unchanged, the impulsive force must have a component in the direction opposite to the direction of motion. This situation is also realized in the case of a continuous force acting perpendicular to the velocity vector of the particle, when the particle's motion is viewed as a sequence of infinitesimal steps.展开更多
The western segment of the East Kunlun Mountains is one of the poorly studied regions in northwestern China. Through a structural analysis of the typical sections, we have the following views: (1) There is a very well...The western segment of the East Kunlun Mountains is one of the poorly studied regions in northwestern China. Through a structural analysis of the typical sections, we have the following views: (1) There is a very well developed fault system in the western segment of the East Kunlun Mountains and thrust propagation, normal slip and decoupling are the chief deformation events in this area. (2) Although the thrusting started in the Late Carboniferous and Late Triassic-Early Jurassic, strong activity took place in the Miocene-Quaternary when the Kumkol basin was strongly downwarped. (3) The tectonic pattern of coexistence of N-directed thrust propagation and S-directed normal slip in this area is consistent with the general tectonic pattern of the northern Qinghai-Tibet plateau and also very similar to that of the Himalayan region on the southern margin of the Qinghai-Tibet plateau, but their directions between the thrust propagation are opposite and all the strong thrust propagations occurred from the Miocene-Pliocene to Quaternary, a period featuring strong collision between the Indian plate and the Eurasian plate and abrupt uplift of the Qinghai-Tibet plateau. This oppositely directed thrust propagation and normal slip reveal such kinematic characteristics as symmetric propagations of deep-seated materials towards the north and south beneath the Qinghai-Tibet plateau and gravitational sliding of superficial materials towards the interior of the plateau. Therefore, the establishment of the fault system in the study area may provide an approach to the study of deep processes of the northern Qinghai-Tibet plateau and the construction of a unified geodynamic model for the uplift of the Qinghai-Tibet plateau.展开更多
Considering the serious coal and rock dynamic disasters around the main slip plane called F16 in the coal mining area) of Henan Yima(China) thrust nappe structure,the mechanical genesis of the Yima thrust nappe struct...Considering the serious coal and rock dynamic disasters around the main slip plane called F16 in the coal mining area) of Henan Yima(China) thrust nappe structure,the mechanical genesis of the Yima thrust nappe structure was studied comprehensively using geomechanics,fault mechanics,elastic mechanics,and Coulomb's law of friction.First,using the centrifugal inertia force of Earth's rotation as a source,a mechanical model of N-S compression superimposed with W-E reverse torsion was established to explain the formation of the early Yima coal basin and Jurassic Yima Group coal measures.Second,an equation for the ultimate stress in the forming stage of F16 was derived using the plastic slip-line field theory and the parabolic Mohr failure criterion.Moreover,the distribution of ultimate stress and the geometric characteristics of the fault profile were obtained using the field model parameters.Finally,the stress field of F16 and the mechanical genesis of the large-scale reverse thrust sheet were discussed based on elastic mechanics theory and Coulomb's law of friction.The results show that the tectonic framework of the early Yima coal basin and the formation pattern of Jurassic Yima Group coal measures given by the model are consistent with the in-situ explorations.The geometric characteristics of the fault profile obtained by numerical calculation can better reflect the shape of F16 in its forming stage,and the mechanical genesis of the large-scale reverse thrust sheet also concurred with the field situations.Thus,this work can provide a foundation for further studies on the genesis of the thrust nappe structure,the mechanism of rock bursts induced by F16,and the characteristics of the residual stress field in the Yima mining area.展开更多
A simplified model of the thrust force is proposed based on a caudal fin oscillation of an underwater bionic robot. The caudal fin oscillation is generalized by cen- tral pattern generators (CPGs). In this model, th...A simplified model of the thrust force is proposed based on a caudal fin oscillation of an underwater bionic robot. The caudal fin oscillation is generalized by cen- tral pattern generators (CPGs). In this model, the drag coefficient and lift coefficient are the two critical parameters which are obtained by the digital particle image velocimetry (DPIV) and the force transducer experiment. Numerical simulation and physical experi- ments have been performed to verify this dynamic model.展开更多
The Aegean area of the western Anatolian region of Turkey,controlled by the low-angle detachment normal fault system,forms an extensional province,the West Anatolian Extensional Province(WAEP).The tectonic deformation...The Aegean area of the western Anatolian region of Turkey,controlled by the low-angle detachment normal fault system,forms an extensional province,the West Anatolian Extensional Province(WAEP).The tectonic deformation which occurred in the Miocene Period,including the Plio–Quaternary Period has created different structures in both the basement rocks and intra-basin deposits of the crust.One of these structures,high-angle normal faults,controls the supradetachment Soke-Kusadasi Basin(SKB).Within this basin,there are folds with different axes and thrust faults with a north-northwestnortheast(N,NW,NE)trend.These folds and thrust faults in the SKB deformed the sedimentary structures of intra-basin deposits.The folds and thrust faults,which caused the rotation of beddings and imbrications in the SKB,are mainly associated with the tectonic process of the low angle detachment normal fault,which affected the SKB and the Aegean part of western Anatolia.In the SKB,during the process of extensional deformation associated with primary low angle detachment normal faulting,the ramp-flat and inversion geometry observed in the basement rocks and basin deposits of the crust caused folds and thrust faults in only intra-basin deposits.In the WAEP,it is determined for the first time that the folds and thrust faults causing limited shortening deformed the Plio–Quaternary sediments.展开更多
The purpose of this article is to provide,from the perspective of deformable solid mechanics,a correct justification for the expressions of all forces acting on the surface of a ferromagnetic material in a magnetic fi...The purpose of this article is to provide,from the perspective of deformable solid mechanics,a correct justification for the expressions of all forces acting on the surface of a ferromagnetic material in a magnetic field,initiated only by this field.It is shown that the moment of force applied to any closed body surface S,corresponding to the asymmetric part TAof the stress tensor T(denoted as the force pA),balances the mass magnetic moment Lmagacting in the volume V bounded by the surface S.The emergence of the asymmetric part TAof the stress tensor arises as a consequence of a special case within the moment theory of elasticity,the use of which is necessary for accurately describing the behavior of a ferromagnetic material in a magnetic field.The force pa acts in a plane tangential to the surface S at any point,while,in addition to this force,the normal force pn also acts on the body surface.It is shown in the article that the latter force arises as a result of a jump in the normal component of the magnetic field strength appearing at the body surface,and its expression is defined by the mass' s(ponderomotive) magnetic forces Fmag.Usually,this force is introduced based on the Maxwell stress tensor,which is used in the classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum.However,as we believe and justify this in the article,such an approach is unacceptable in deformable solid mechanics.展开更多
A two-way adaptive Kalman filter is proposed by combining a two-way filter with an adaptive filter for orbit determination of a maneuvered GEO satellite.A method of using Newton's high-resolution differential form...A two-way adaptive Kalman filter is proposed by combining a two-way filter with an adaptive filter for orbit determination of a maneuvered GEO satellite.A method of using Newton's high-resolution differential formula and polynomial fitting for modeling the thrust force of a maneuvered GEO satellite is developed.The adaptive factor,which balances the contributions of the measurements and the dynamic model information,is determined by using a two-segment function and predicted residual statistics.Simulations with a maneuvered GEO satellite tracked by the Chinese ground tracking network were conducted to verify the performance of the proposed orbit determination technique and the method of thrust force modeling.The results show that refining the thrust force model is beneficial for the orbit determination of a maneuvered GEO satellite;the two-way adaptive Kalman filter can efficiently control the influence of the dynamic model errors on the orbit state estimate.展开更多
Objective To supply a scientific basis for standardizing the normal reference value of forced vital capacity(FVC)of Chinese younger women.Methods We studied the relationship between the normal reference value of 21767...Objective To supply a scientific basis for standardizing the normal reference value of forced vital capacity(FVC)of Chinese younger women.Methods We studied the relationship between the normal reference value of 21767 samples of FVC of younger women and eight geographical factors in 157 areas in China.Results It was found that the correlation between geographical factors and the normal reference value of FVC of younger women was quite significant(F=5.884,P=0.000).By adopting the method of mathematical regression analysis,one regression equation was inferred:=3.146+0.00006919X1+0.01315X4-0.006966X6+0.09524X8±0.254.In the above equation,is the normal reference value of younger women’ FVC(L);X1 is the altitude(m);X4 is the annual mean air temperature(℃);X6 is the annual mean relative humidity(%);X8 is the annual mean wind speed(m/s);0.254 is the value of the residual standard deviation.Conclusion If geographical values are obtained in a certain area,the normal reference value of FVC of younger women in this area can be obtained by using the regression equation.Furthermore,according to the geographical factors,China can be divided into eight regions:Northeast China Region,North China Region,Shanxi-Shaanxi-Inner Mongolia Region,middle and lower reaches of the Yangzte River Region,Southeast China Region,Northwest China Region,Southwest China Region,and Qinghai-Tibet Plateau Region.展开更多
Pipe belt conveyor is a new type of environmentally friendly and efficient bulk conveying equipment.In the design of the roller,the belt and the driving motor of pipe belt conveyor,the sag resistance is a key paramete...Pipe belt conveyor is a new type of environmentally friendly and efficient bulk conveying equipment.In the design of the roller,the belt and the driving motor of pipe belt conveyor,the sag resistance is a key parameter.Meanwhile,the normal force between the conveyor belt and the roller group is the other important factor need be considered and has a great influence on the sag resistance.This paper analyzes a pipe belt conveyor with a diameter of 150 mm to study the calculation method of normal force.And the relationship between the normal force and the sag resistance is explored.Firstly,the normal force is decomposed into three components related to the forming force of belt,material gravity and belt gravity.So it can be expressed as a linear combination of these three quantities,and the coefficients of each component are obtained based on the dynamic analysis of belt-roller.The results show that the coefficient is mainly affected by the material filling rate,and is almost not affected by the distance between the rollers and the density of the material.The calculation method of the normal force is eventually obtained.Secondly,the normal force in the case of different material filling rates is tested by experiments,and the calculation method of the normal force is verified.Thirdly,the variation law of the sag resistance in the case of different roller group spacing and material filling rate is studied by the dynamic model.It is found that the roller group spacing and material filling rate affects the sag resistance by changing the normal force.There is a power function relationship between the sag resistance and the normal force.In the case of different roller group spacing and material filling rate,the relationship among the sag resistance and the normal force remains unchanged.This study results are of great significance to the design of pipe belt conveyor.展开更多
Accurately forecasting the operational performance of a tunnel boring machine(TBM)in advance is useful for making timely adjustments to boring parameters,thereby enhancing overall boring efficiency.In this study,we us...Accurately forecasting the operational performance of a tunnel boring machine(TBM)in advance is useful for making timely adjustments to boring parameters,thereby enhancing overall boring efficiency.In this study,we used the Informer model to predict a critical performance parameter of the TBM,namely thrust.Leveraging data from the Guangzhou Metro Line 22 project on the big data platform in China,the model’s performance was validated,while data from Line 18 were used to assess its generalization capability.Results revealed that the Informer model surpasses random forest(RF),extreme gradient boosting(XGB),support vector regression(SVR),k-nearest neighbors(KNN),back propagation(BP),and long short-term memory(LSTM)models in both prediction accuracy and generalization performance.In addition,the optimal input lengths for maximizing accuracy in the single-time-step output model are within the range of 8–24,while for the multiple-time-step output model,the optimal input length is 8.Furthermore,the last predicted value in the case of multiple-time-step outputs showed the highest accuracy.It was also found that relaxation of the Pearson analysis method metrics to 0.95 improved the performance of the model.Finally,the prediction results were most affected by earth pressure,rotation speed,torque,boring speed,and the surrounding rock grade.The model can provide useful guidance for constructors when adjusting TBM operation parameters.展开更多
基金the financial support of Aeronautical Science Foundations of China(No.2013ZE52067,No.2014ZE52057)
文摘Exit delamination is excessive drilling thrust force.Therefore,it is necessary to investigate the critical thrust force which cause exit delamination when carbon fibre reinforced plastics(CRFP)is drilled.According to the linear elastic fracture mechanics,the mechanics of composite material and the classical thin plate bending theory,a common theoretical model of the critical drilling thrust force for CFRP plates is established.Compared with the experimental data of previous studies,the results show that the theoretical values agree well with the experimental values.This model can be used to forecast the critical thrust force for the drilling-induced delamination of CFRP.
文摘Drilling is indispensable process and it cannot be avoided for joining composite structures used in various engineering applications. In this research article, the influence of drilling parameters on thrust force and torque of silica (SiO2) and alumina (Al2O3) filled into glass fabric reinforced epoxy (G-E) composites are analyzed. Drilling experiments are conducted on these composite materials using BATLIBOI make radial drilling machine. Two different drill bits (HSS and cemented carbide) are used for the experimentation. The influence of drilling parameters like cutting speed and feed on thrust force and torque on drilling of particulate filled G-E composites has been carried out. The experimental results indicated that the thrust force and torque were increased with increasing feed and cutting speed for all the composites tested. Further, it is observed that the carbide drill performed better than HSS drill during drilling of particulate filled G-E composites. The drilled surfaces are examined using scanning electron microscopy (SEM) and damage mechanisms are discussed.
基金funded by the National Natural Science Foundation of China (No. 41576039)
文摘The submarine pipelines that are buried in the Yellow River subaqueous delta can be subject to fluctuant local-liquefied soil caused by storm wave action, possibly causing pipeline damage. An experimental investigation was carried out in a wave flume to study the horizontal normal force on buried rigid pipelines in fluctuant liquefied soil. In this experiment, the soil bed was made of silt from the Yellow River Delta, whereas a steel pipe served as pipeline. Under the experimental conditions, the normal force range on the pipeline in fluctuant liquefied soil was several times higher than that in stable soil, specifically on the side of the pipeline exposed to the wave direction. The resultant force of the horizontal normal forces on the buried pipeline grew by about one order of magnitude after soil liquefaction.
基金supported by the CNNC Science Fund for Talented Young Scholars,Youth Innovation Promotion Assessment CAS(2022187)the IMR Innovation Fund(No.2021-PY10)the open-ended fund of the CAS Key laboratory of Nuclear Materials and Safety Assessment(Institute of Metal Research,Chinese Academy of Sciences,China)(No.2020NMSAKF01).
文摘The effect of normal force on fretting wear behavior of zirconium alloy tube mated with grid dimple in simulated primary water of pressurized water reactor nuclear power plant was investigated.Results showed that the maximum wear depth,wear volume and wear coefficient of Zr alloy tube in simulated primary water at 315℃ gradually increased with increasing normal force,while the friction coefficient gradually decreased.Fretting process could be divided into four stages according to the variation of friction coefficient during test.When normal force exceeds 30 N,the fretting regime would transition from gross slip regime to partial slip regime after 3×10^(7 )cycles.Delamination was aggravated with increasing normal force,while abrasive wear became slighter.A thicker third-body layer with monoclinic ZrO_(2) was formed by the tribo-sintering mechanism under higher normal force.In addition,the schematic evolution processes of delamination and third-body layer formation were displayed according to morphology observation.
基金The authors would like to acknowledge the support from the National Natural Science Foundation of China(11672052 and 51822508)111 Project(B20008)and Natural Science Foundation of Zhejiang province(LQ22E050012).
文摘In this work,a comparative study is performed to investigate the influence of time-varying normal forces on the friction properties and friction-induced stick-slip vibration(FIV)by experimental and theoretical methods.In the experiments,constant and harmonic-varying normal forces are applied,respectively.The measured vibration signals under two loading forms are compared in both time and frequency domains.In addition,mathematical tools such as phase space reconstruction and Fourier spectra are used to reveal the science behind the complicated dynamic behavior.It can be found that the friction system shows steady stick-slip vibration,and the main frequency does not vary with the magnitude of the constant normal force,but the size of limit cycle increases with the magnitude of the constant normal force.In contrast,the friction system under the harmonic normal force shows complicated behavior,for example,higher-frequency larger-amplitude vibration occurs and looks chaotic as the frequency of the normal force increases.The interesting findings offer a new way for controlling FIV in engineering applications.
文摘It is shown that an impulsive force acting on a particle perpendicular to its velocity vector cannot change its direction of motion without increasing its kinetic energy. If the particle’s kinetic energy is to remain unchanged, the impulsive force must have a component in the direction opposite to the direction of motion. This situation is also realized in the case of a continuous force acting perpendicular to the velocity vector of the particle, when the particle's motion is viewed as a sequence of infinitesimal steps.
文摘The western segment of the East Kunlun Mountains is one of the poorly studied regions in northwestern China. Through a structural analysis of the typical sections, we have the following views: (1) There is a very well developed fault system in the western segment of the East Kunlun Mountains and thrust propagation, normal slip and decoupling are the chief deformation events in this area. (2) Although the thrusting started in the Late Carboniferous and Late Triassic-Early Jurassic, strong activity took place in the Miocene-Quaternary when the Kumkol basin was strongly downwarped. (3) The tectonic pattern of coexistence of N-directed thrust propagation and S-directed normal slip in this area is consistent with the general tectonic pattern of the northern Qinghai-Tibet plateau and also very similar to that of the Himalayan region on the southern margin of the Qinghai-Tibet plateau, but their directions between the thrust propagation are opposite and all the strong thrust propagations occurred from the Miocene-Pliocene to Quaternary, a period featuring strong collision between the Indian plate and the Eurasian plate and abrupt uplift of the Qinghai-Tibet plateau. This oppositely directed thrust propagation and normal slip reveal such kinematic characteristics as symmetric propagations of deep-seated materials towards the north and south beneath the Qinghai-Tibet plateau and gravitational sliding of superficial materials towards the interior of the plateau. Therefore, the establishment of the fault system in the study area may provide an approach to the study of deep processes of the northern Qinghai-Tibet plateau and the construction of a unified geodynamic model for the uplift of the Qinghai-Tibet plateau.
基金Project(2010CB226805) supported by the National Basic Research Program of ChinaProject(CXLX13-949) supported by the Research and Innovation Project for College Graduates of Jiangsu Province,China+1 种基金Project(51174285) supported by the National Natural Science Foundation of ChinaProject(SZBF2011-6-B35) supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Considering the serious coal and rock dynamic disasters around the main slip plane called F16 in the coal mining area) of Henan Yima(China) thrust nappe structure,the mechanical genesis of the Yima thrust nappe structure was studied comprehensively using geomechanics,fault mechanics,elastic mechanics,and Coulomb's law of friction.First,using the centrifugal inertia force of Earth's rotation as a source,a mechanical model of N-S compression superimposed with W-E reverse torsion was established to explain the formation of the early Yima coal basin and Jurassic Yima Group coal measures.Second,an equation for the ultimate stress in the forming stage of F16 was derived using the plastic slip-line field theory and the parabolic Mohr failure criterion.Moreover,the distribution of ultimate stress and the geometric characteristics of the fault profile were obtained using the field model parameters.Finally,the stress field of F16 and the mechanical genesis of the large-scale reverse thrust sheet were discussed based on elastic mechanics theory and Coulomb's law of friction.The results show that the tectonic framework of the early Yima coal basin and the formation pattern of Jurassic Yima Group coal measures given by the model are consistent with the in-situ explorations.The geometric characteristics of the fault profile obtained by numerical calculation can better reflect the shape of F16 in its forming stage,and the mechanical genesis of the large-scale reverse thrust sheet also concurred with the field situations.Thus,this work can provide a foundation for further studies on the genesis of the thrust nappe structure,the mechanism of rock bursts induced by F16,and the characteristics of the residual stress field in the Yima mining area.
基金Project supported by the National Natural Science Foundation of China(Nos.61503008 and 51575005)the China Postdoctoral Science Foundation(No.2015M570013)
文摘A simplified model of the thrust force is proposed based on a caudal fin oscillation of an underwater bionic robot. The caudal fin oscillation is generalized by cen- tral pattern generators (CPGs). In this model, the drag coefficient and lift coefficient are the two critical parameters which are obtained by the digital particle image velocimetry (DPIV) and the force transducer experiment. Numerical simulation and physical experi- ments have been performed to verify this dynamic model.
文摘The Aegean area of the western Anatolian region of Turkey,controlled by the low-angle detachment normal fault system,forms an extensional province,the West Anatolian Extensional Province(WAEP).The tectonic deformation which occurred in the Miocene Period,including the Plio–Quaternary Period has created different structures in both the basement rocks and intra-basin deposits of the crust.One of these structures,high-angle normal faults,controls the supradetachment Soke-Kusadasi Basin(SKB).Within this basin,there are folds with different axes and thrust faults with a north-northwestnortheast(N,NW,NE)trend.These folds and thrust faults in the SKB deformed the sedimentary structures of intra-basin deposits.The folds and thrust faults,which caused the rotation of beddings and imbrications in the SKB,are mainly associated with the tectonic process of the low angle detachment normal fault,which affected the SKB and the Aegean part of western Anatolia.In the SKB,during the process of extensional deformation associated with primary low angle detachment normal faulting,the ramp-flat and inversion geometry observed in the basement rocks and basin deposits of the crust caused folds and thrust faults in only intra-basin deposits.In the WAEP,it is determined for the first time that the folds and thrust faults causing limited shortening deformed the Plio–Quaternary sediments.
基金supported by the Ministry of Science and Higher Education of the Russian Federation(No.075-15-2024-535)。
文摘The purpose of this article is to provide,from the perspective of deformable solid mechanics,a correct justification for the expressions of all forces acting on the surface of a ferromagnetic material in a magnetic field,initiated only by this field.It is shown that the moment of force applied to any closed body surface S,corresponding to the asymmetric part TAof the stress tensor T(denoted as the force pA),balances the mass magnetic moment Lmagacting in the volume V bounded by the surface S.The emergence of the asymmetric part TAof the stress tensor arises as a consequence of a special case within the moment theory of elasticity,the use of which is necessary for accurately describing the behavior of a ferromagnetic material in a magnetic field.The force pa acts in a plane tangential to the surface S at any point,while,in addition to this force,the normal force pn also acts on the body surface.It is shown in the article that the latter force arises as a result of a jump in the normal component of the magnetic field strength appearing at the body surface,and its expression is defined by the mass' s(ponderomotive) magnetic forces Fmag.Usually,this force is introduced based on the Maxwell stress tensor,which is used in the classical electromagnetism to represent the interaction between electromagnetic forces and mechanical momentum.However,as we believe and justify this in the article,such an approach is unacceptable in deformable solid mechanics.
基金supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 2007B51)National Natural Science Foundation of China (Grant Nos. 41174008 and 41020144004)China Postdoctoral Science Foundation (Grant Nos. 20080430148 and200902444)
文摘A two-way adaptive Kalman filter is proposed by combining a two-way filter with an adaptive filter for orbit determination of a maneuvered GEO satellite.A method of using Newton's high-resolution differential formula and polynomial fitting for modeling the thrust force of a maneuvered GEO satellite is developed.The adaptive factor,which balances the contributions of the measurements and the dynamic model information,is determined by using a two-segment function and predicted residual statistics.Simulations with a maneuvered GEO satellite tracked by the Chinese ground tracking network were conducted to verify the performance of the proposed orbit determination technique and the method of thrust force modeling.The results show that refining the thrust force model is beneficial for the orbit determination of a maneuvered GEO satellite;the two-way adaptive Kalman filter can efficiently control the influence of the dynamic model errors on the orbit state estimate.
基金supported by the National Natural Science Foundation of China(No.40671005)
文摘Objective To supply a scientific basis for standardizing the normal reference value of forced vital capacity(FVC)of Chinese younger women.Methods We studied the relationship between the normal reference value of 21767 samples of FVC of younger women and eight geographical factors in 157 areas in China.Results It was found that the correlation between geographical factors and the normal reference value of FVC of younger women was quite significant(F=5.884,P=0.000).By adopting the method of mathematical regression analysis,one regression equation was inferred:=3.146+0.00006919X1+0.01315X4-0.006966X6+0.09524X8±0.254.In the above equation,is the normal reference value of younger women’ FVC(L);X1 is the altitude(m);X4 is the annual mean air temperature(℃);X6 is the annual mean relative humidity(%);X8 is the annual mean wind speed(m/s);0.254 is the value of the residual standard deviation.Conclusion If geographical values are obtained in a certain area,the normal reference value of FVC of younger women in this area can be obtained by using the regression equation.Furthermore,according to the geographical factors,China can be divided into eight regions:Northeast China Region,North China Region,Shanxi-Shaanxi-Inner Mongolia Region,middle and lower reaches of the Yangzte River Region,Southeast China Region,Northwest China Region,Southwest China Region,and Qinghai-Tibet Plateau Region.
基金Supported by National Natural Science Foundation of China (Grant No. 51705144)Hunan Provincial Science and Technology Major Project of China (Grant No. 2015GK1003)Jiangsu Provincial Mine Electromechanical Equipment Key Laboratory Development Fund of China (Grant No. JSKL-MMEE-2018-2)
文摘Pipe belt conveyor is a new type of environmentally friendly and efficient bulk conveying equipment.In the design of the roller,the belt and the driving motor of pipe belt conveyor,the sag resistance is a key parameter.Meanwhile,the normal force between the conveyor belt and the roller group is the other important factor need be considered and has a great influence on the sag resistance.This paper analyzes a pipe belt conveyor with a diameter of 150 mm to study the calculation method of normal force.And the relationship between the normal force and the sag resistance is explored.Firstly,the normal force is decomposed into three components related to the forming force of belt,material gravity and belt gravity.So it can be expressed as a linear combination of these three quantities,and the coefficients of each component are obtained based on the dynamic analysis of belt-roller.The results show that the coefficient is mainly affected by the material filling rate,and is almost not affected by the distance between the rollers and the density of the material.The calculation method of the normal force is eventually obtained.Secondly,the normal force in the case of different material filling rates is tested by experiments,and the calculation method of the normal force is verified.Thirdly,the variation law of the sag resistance in the case of different roller group spacing and material filling rate is studied by the dynamic model.It is found that the roller group spacing and material filling rate affects the sag resistance by changing the normal force.There is a power function relationship between the sag resistance and the normal force.In the case of different roller group spacing and material filling rate,the relationship among the sag resistance and the normal force remains unchanged.This study results are of great significance to the design of pipe belt conveyor.
基金supported by the National Natural Science Foundation of China(No.41827807)the Foundation of the Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology(No.2021B1212040003),China.
文摘Accurately forecasting the operational performance of a tunnel boring machine(TBM)in advance is useful for making timely adjustments to boring parameters,thereby enhancing overall boring efficiency.In this study,we used the Informer model to predict a critical performance parameter of the TBM,namely thrust.Leveraging data from the Guangzhou Metro Line 22 project on the big data platform in China,the model’s performance was validated,while data from Line 18 were used to assess its generalization capability.Results revealed that the Informer model surpasses random forest(RF),extreme gradient boosting(XGB),support vector regression(SVR),k-nearest neighbors(KNN),back propagation(BP),and long short-term memory(LSTM)models in both prediction accuracy and generalization performance.In addition,the optimal input lengths for maximizing accuracy in the single-time-step output model are within the range of 8–24,while for the multiple-time-step output model,the optimal input length is 8.Furthermore,the last predicted value in the case of multiple-time-step outputs showed the highest accuracy.It was also found that relaxation of the Pearson analysis method metrics to 0.95 improved the performance of the model.Finally,the prediction results were most affected by earth pressure,rotation speed,torque,boring speed,and the surrounding rock grade.The model can provide useful guidance for constructors when adjusting TBM operation parameters.