Requests distribution is an key technology for Web cluster server. This paper presents a throughput-driven scheduling algorithm (TDSA). The algorithm adopts the throughput of cluster back-ends to evaluate their load...Requests distribution is an key technology for Web cluster server. This paper presents a throughput-driven scheduling algorithm (TDSA). The algorithm adopts the throughput of cluster back-ends to evaluate their load and employs the neural network model to predict the future load so that the scheduling system features a self-learning capability and good adaptability to the change of load. Moreover, it separates static requests from dynamic requests to make full use of the CPU resources and takes the locality of requests into account to improve the cache hit ratio. Experimental re suits from the testing tool of WebBench^TM show better per formance for Web cluster server with TDSA than that with traditional scheduling algorithms.展开更多
Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are a...Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are accurate but computationally expensive and unsuitable for high-throughput screening. This study introduces a machine learning (ML) framework trained on high-dimensional data from the Open Quantum Materials Database (OQMD) to predict formation energy, a key stability metric. Among the evaluated models, deep learning outperformed Gradient Boosting Machines and Random Forest, achieving up to 0.88 R2 prediction accuracy. Feature importance analysis identified thermodynamic, electronic, and structural properties as the primary drivers of stability, offering interpretable insights into material behavior. Compared to DFT, the proposed ML framework significantly reduces computational costs, enabling the rapid screening of thousands of compounds. These results highlight ML’s transformative potential in materials discovery, with direct applications in energy storage, semiconductors, and catalysis.展开更多
基金Supported by the National Natural Science Funda-tion of China (60175015)
文摘Requests distribution is an key technology for Web cluster server. This paper presents a throughput-driven scheduling algorithm (TDSA). The algorithm adopts the throughput of cluster back-ends to evaluate their load and employs the neural network model to predict the future load so that the scheduling system features a self-learning capability and good adaptability to the change of load. Moreover, it separates static requests from dynamic requests to make full use of the CPU resources and takes the locality of requests into account to improve the cache hit ratio. Experimental re suits from the testing tool of WebBench^TM show better per formance for Web cluster server with TDSA than that with traditional scheduling algorithms.
文摘Predicting the material stability is essential for accelerating the discovery of advanced materials in renewable energy, aerospace, and catalysis. Traditional approaches, such as Density Functional Theory (DFT), are accurate but computationally expensive and unsuitable for high-throughput screening. This study introduces a machine learning (ML) framework trained on high-dimensional data from the Open Quantum Materials Database (OQMD) to predict formation energy, a key stability metric. Among the evaluated models, deep learning outperformed Gradient Boosting Machines and Random Forest, achieving up to 0.88 R2 prediction accuracy. Feature importance analysis identified thermodynamic, electronic, and structural properties as the primary drivers of stability, offering interpretable insights into material behavior. Compared to DFT, the proposed ML framework significantly reduces computational costs, enabling the rapid screening of thousands of compounds. These results highlight ML’s transformative potential in materials discovery, with direct applications in energy storage, semiconductors, and catalysis.