期刊文献+
共找到98,864篇文章
< 1 2 250 >
每页显示 20 50 100
Quantitatively characterizing sandy soil structure altered by MICP using multi-level thresholding segmentation algorithm 被引量:1
1
作者 Jianjun Zi Tao Liu +3 位作者 Wei Zhang Xiaohua Pan Hu Ji Honghu Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4285-4299,共15页
The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmenta... The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm. 展开更多
关键词 Soil structure MICRO-CT Multi-level thresholding MICP Genetic algorithm(GA)
在线阅读 下载PDF
An Efficient Smoothing and Thresholding Image Segmentation Framework with Weighted Anisotropic-Isotropic Total Variation 被引量:2
2
作者 Kevin Bui Yifei Lou +1 位作者 Fredrick Park Jack Xin 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1369-1405,共37页
In this paper,we design an efficient,multi-stage image segmentation framework that incorporates a weighted difference of anisotropic and isotropic total variation(AITV).The segmentation framework generally consists of... In this paper,we design an efficient,multi-stage image segmentation framework that incorporates a weighted difference of anisotropic and isotropic total variation(AITV).The segmentation framework generally consists of two stages:smoothing and thresholding,thus referred to as smoothing-and-thresholding(SaT).In the first stage,a smoothed image is obtained by an AITV-regularized Mumford-Shah(MS)model,which can be solved efficiently by the alternating direction method of multipliers(ADMMs)with a closed-form solution of a proximal operator of the l_(1)-αl_(2) regularizer.The convergence of the ADMM algorithm is analyzed.In the second stage,we threshold the smoothed image by K-means clustering to obtain the final segmentation result.Numerical experiments demonstrate that the proposed segmentation framework is versatile for both grayscale and color images,effcient in producing high-quality segmentation results within a few seconds,and robust to input images that are corrupted with noise,blur,or both.We compare the AITV method with its original convex TV and nonconvex TVP(O<p<1)counterparts,showcasing the qualitative and quantitative advantages of our proposed method. 展开更多
关键词 Image segmentation Non-convex optimization Mumford-Shah(MS)model Alternating direction method of multipliers(ADMMs) Proximal operator
在线阅读 下载PDF
MG-SLAM: RGB-D SLAM Based on Semantic Segmentation for Dynamic Environment in the Internet of Vehicles 被引量:1
3
作者 Fengju Zhang Kai Zhu 《Computers, Materials & Continua》 2025年第2期2353-2372,共20页
The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology play... The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2, MG-SLAM incorporates a dynamic target detection process that enables the detection of both known and unknown moving objects. In this process, a separate semantic segmentation thread is required to segment dynamic target instances, and the Mask R-CNN algorithm is applied on the Graphics Processing Unit (GPU) to accelerate segmentation. To reduce computational cost, only key frames are segmented to identify known dynamic objects. Additionally, a multi-view geometry method is adopted to detect unknown moving objects. The results demonstrate that MG-SLAM achieves higher precision, with an improvement from 0.2730 m to 0.0135 m in precision. Moreover, the processing time required by MG-SLAM is significantly reduced compared to other dynamic scene SLAM algorithms, which illustrates its efficacy in locating objects in dynamic scenes. 展开更多
关键词 Visual SLAM dynamic scene semantic segmentation GPU acceleration key segmentation frame
在线阅读 下载PDF
Electropolymerized dopamine-based memristors using threshold switching behaviors for artificial current-activated spiking neurons 被引量:1
4
作者 Bowen Zhong Xiaokun Qin +4 位作者 Zhexin Li Yiqiang Zheng Lingchen Liu Zheng Lou Lili Wang 《Journal of Semiconductors》 2025年第2期98-103,共6页
Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely us... Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely used for artificial spiking synapses due to their relatively poor memrisitve performance.Here,for the first time,we present an organic memristor based on an electropolymerized dopamine-based memristive layer.This polydopamine-based memristor demonstrates the improve-ments in key performance,including a low threshold voltage of 0.3 V,a thin thickness of 16 nm,and a high parasitic capaci-tance of about 1μF·mm^(-2).By leveraging these properties in combination with its stable threshold switching behavior,we con-struct a capacitor-free and low-power artificial spiking neuron capable of outputting the oscillation voltage,whose spiking fre-quency increases with the increase of current stimulation analogous to a biological neuron.The experimental results indicate that our artificial spiking neuron holds potential for applications in neuromorphic computing and systems. 展开更多
关键词 ELECTROPOLYMERIZATION POLYDOPAMINE MEMRISTOR threshold switching spiking voltage artificial neuron
在线阅读 下载PDF
A Trusted Distributed Oracle Scheme Based on Share Recovery Threshold Signature 被引量:1
5
作者 Shihao Wang Xuehui Du +4 位作者 Xiangyu Wu Qiantao Yang Wenjuan Wang Yu Cao Aodi Liu 《Computers, Materials & Continua》 2025年第2期3355-3379,共25页
With the increasing popularity of blockchain applications, the security of data sources on the blockchain is gradually receiving attention. Providing reliable data for the blockchain safely and efficiently has become ... With the increasing popularity of blockchain applications, the security of data sources on the blockchain is gradually receiving attention. Providing reliable data for the blockchain safely and efficiently has become a research hotspot, and the security of the oracle responsible for providing reliable data has attracted much attention. The most widely used centralized oracles in blockchain, such as Provable and Town Crier, all rely on a single oracle to obtain data, which suffers from a single point of failure and limits the large-scale development of blockchain. To this end, the distributed oracle scheme is put forward, but the existing distributed oracle schemes such as Chainlink and Augur generally have low execution efficiency and high communication overhead, which leads to their poor applicability. To solve the above problems, this paper proposes a trusted distributed oracle scheme based on a share recovery threshold signature. First, a data verification method of distributed oracles is designed based on threshold signature. By aggregating the signatures of oracles, data from different data sources can be mutually verified, leading to a more efficient data verification and aggregation process. Then, a credibility-based cluster head election algorithm is designed, which reduces the communication overhead by clarifying the function distribution and building a hierarchical structure. Considering the good performance of the BLS threshold signature in large-scale applications, this paper combines it with distributed oracle technology and proposes a BLS threshold signature algorithm that supports share recovery in distributed oracles. The share recovery mechanism enables the proposed scheme to solve the key loss issue, and the setting of the threshold value enables the proposed scheme to complete signature aggregation with only a threshold number of oracles, making the scheme more robust. Finally, experimental results indicate that, by using the threshold signature technology and the cluster head election algorithm, our scheme effectively improves the execution efficiency of oracles and solves the problem of a single point of failure, leading to higher scalability and robustness. 展开更多
关键词 Blockchain threshold signature distributed oracle data submission share recovery
在线阅读 下载PDF
High-Precision Brain Tumor Segmentation using a Progressive Layered U-Net(PLU-Net)with Multi-Scale Data Augmentation and Attention Mechanisms on Multimodal Magnetic Resonance Imaging 被引量:1
6
作者 Noman Ahmed Siddiqui Muhammad Tahir Qadri +1 位作者 Muhammad Ovais Akhter Zain Anwar Ali 《Instrumentation》 2025年第1期77-92,共16页
Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progr... Brain tumors present significant challenges in medical diagnosis and treatment,where early detection is crucial for reducing morbidity and mortality rates.This research introduces a novel deep learning model,the Progressive Layered U-Net(PLU-Net),designed to improve brain tumor segmentation accuracy from Magnetic Resonance Imaging(MRI)scans.The PLU-Net extends the standard U-Net architecture by incorporating progressive layering,attention mechanisms,and multi-scale data augmentation.The progressive layering involves a cascaded structure that refines segmentation masks across multiple stages,allowing the model to capture features at different scales and resolutions.Attention gates within the convolutional layers selectively focus on relevant features while suppressing irrelevant ones,enhancing the model's ability to delineate tumor boundaries.Additionally,multi-scale data augmentation techniques increase the diversity of training data and boost the model's generalization capabilities.Evaluated on the BraTS 2021 dataset,the PLU-Net achieved state-of-the-art performance with a dice coefficient of 0.91,specificity of 0.92,sensitivity of 0.89,Hausdorff95 of 2.5,outperforming other modified U-Net architectures in segmentation accuracy.These results underscore the effectiveness of the PLU-Net in improving brain tumor segmentation from MRI scans,supporting clinicians in early diagnosis,treatment planning,and the development of new therapies. 展开更多
关键词 brain tumor segmentation MRI machine learning BraTS deep learning model PLU-Net
原文传递
Stochastic Augmented-Based Dual-Teaching for Semi-Supervised Medical Image Segmentation
7
作者 Hengyang Liu Yang Yuan +2 位作者 Pengcheng Ren Chengyun Song Fen Luo 《Computers, Materials & Continua》 SCIE EI 2025年第1期543-560,共18页
Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)t... Existing semi-supervisedmedical image segmentation algorithms use copy-paste data augmentation to correct the labeled-unlabeled data distribution mismatch.However,current copy-paste methods have three limitations:(1)training the model solely with copy-paste mixed pictures from labeled and unlabeled input loses a lot of labeled information;(2)low-quality pseudo-labels can cause confirmation bias in pseudo-supervised learning on unlabeled data;(3)the segmentation performance in low-contrast and local regions is less than optimal.We design a Stochastic Augmentation-Based Dual-Teaching Auxiliary Training Strategy(SADT),which enhances feature diversity and learns high-quality features to overcome these problems.To be more precise,SADT trains the Student Network by using pseudo-label-based training from Teacher Network 1 and supervised learning with labeled data,which prevents the loss of rare labeled data.We introduce a bi-directional copy-pastemask with progressive high-entropy filtering to reduce data distribution disparities and mitigate confirmation bias in pseudo-supervision.For the mixed images,Deep-Shallow Spatial Contrastive Learning(DSSCL)is proposed in the feature spaces of Teacher Network 2 and the Student Network to improve the segmentation capabilities in low-contrast and local areas.In this procedure,the features retrieved by the Student Network are subjected to a random feature perturbation technique.On two openly available datasets,extensive trials show that our proposed SADT performs much better than the state-ofthe-art semi-supervised medical segmentation techniques.Using only 10%of the labeled data for training,SADT was able to acquire a Dice score of 90.10%on the ACDC(Automatic Cardiac Diagnosis Challenge)dataset. 展开更多
关键词 SEMI-SUPERVISED medical image segmentation contrastive learning stochastic augmented
在线阅读 下载PDF
Non-contact radar-based HRV monitoring method using adaptive cycle segmentation and peak extraction
8
作者 GAO Yixuan ZHU Xinxing +5 位作者 LI Mingchao WU Enkang GU Xiaofeng WANG Cong YU Tian LIANG Junge 《Journal of Measurement Science and Instrumentation》 2025年第2期161-172,共12页
Heart rate variability(HRV),as a key indicator for evaluating autonomic nervous system function,has significant value in areas such as cardiovascular disease screening and emotion monitoring.Although traditional conta... Heart rate variability(HRV),as a key indicator for evaluating autonomic nervous system function,has significant value in areas such as cardiovascular disease screening and emotion monitoring.Although traditional contact-based measurement methods offer high precision,they suffer from issues such as poor comfort and low user compliance.This paper proposes a non-contact HRV monitoring method using frequency modulated continuous wave(FMCW)radar,highlighting adaptive cycle segmentation and peak extraction as core innovations.Key advantages of this method include:1)effective suppression of motion artifacts and respiratory harmonics by leveraging cardiac energy concentration;2)precise heartbeat cycle identification across physiological states via adaptive segmentation,addressing time-varying differences;3)adaptive threshold adjustment using discrete energy signals and a support vector machine(SVM)model based on morphological-temporal-spectral characteristics,reducing complexity while maintaining precision.Previous approaches predominantly process radar signals holistically through algorithms to uniformly extract inter-beat intervals(IBIs),which may result in high computational complexity and inadequate dynamic adaptability.In contrast,our method achieved higher precision than conventional holistic processing approaches,while maintaining comparable precision with lower computational complexity than previous optimization algorithms.Experimental results demonstrate that the system achieves an average IBI error of 8.28 ms(RMSE of 15.3 ms),which is reduced by about 66%compared with the traditional holistically peak seeking method.The average errors of SDNN and RMSSD are 2.65 ms and 4.33 ms,respectively.More than 92%of the IBI errors are controlled within 20 ms.The distance adaptability test showed that although the accuracy of long-distance measurement decreased slightly(<6 ms),the overall detection performance remained robust at different distances.This study provided a novel estimation algorithm for non-contact HRV detection,offering new perspectives for future health monitoring. 展开更多
关键词 HRV FMCW radar cycle segmentation adaptive threshold non-contact monitoring
暂未订购
Impact of Hard Segment Structures on Fatigue Threshold of Casting Polyurethane Using Cutting Method
9
作者 Guang-Zhi Jin Le-Hang Chen +4 位作者 Yu-Zhen Gong Peng Li Run-Guo Wang Fan-Zhu Li Yong-Lai Lu 《Chinese Journal of Polymer Science》 2025年第2期303-315,共13页
The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of ... The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of CPU.This study employed an advanced Intrinsic Strength Analyzer(ISA)to evaluate the fatigue threshold of CPUs,systematically exploring the effects of three types of isocyanates(PPDI,NDI,TDI)that contribute to hard segment structures based on the cutting method.Employing multiple advanced characterization techniques(XRD,TEM,DSC,AFM),the results indicate that PPDI-based polyurethane exhibits the highest fatigue threshold(182.89 J/m^(2))due to a highest phase separation and a densely packed spherulitic structure,although the hydrogen bonding degree is the lowest(48.3%).Conversely,NDI-based polyurethane,despite having the high hydrogen bonding degree(53.6%),exhibits moderate fatigue performance(122.52 J/m^(2)),likely due to a more scattered microstructure.TDI-based polyurethane,with the highest hydrogen bonding degree(59.1%)but absence of spherulitic structure,shows the lowest fatigue threshold(46.43 J/m^(2)).Compared to common rubbers(NR,NBR,EPDM,BR),the superior fatigue performance of CPU is attributed to its well-organized microstructure,polyurethane possesses a higher fatigue threshold due to its high phase separation degree and orderly and dense spherulitic structure which enhances energy dissipation and reduces crack propagation. 展开更多
关键词 Casting polyurethane Fatigue threshold Cutting method Hard segment structures Materials characterization
原文传递
Relationship between Cortical Auditory Evoked Potential (CAEP) Responses and Behavioral Thresholds in Children with Sensorineural Hearing Loss
10
作者 Hee Yen Tan Wendi Shi Yonghua Wang 《Journal of Biosciences and Medicines》 2025年第2期480-490,共11页
Objective: To study the relationship between cortical auditory evoked potential (CAEP) thresholds and behavioral thresholds in pediatric populations with sensorineural hearing loss (SNHL). Methods: Fifteen children (m... Objective: To study the relationship between cortical auditory evoked potential (CAEP) thresholds and behavioral thresholds in pediatric populations with sensorineural hearing loss (SNHL). Methods: Fifteen children (mean age 6.8 years) with bilateral SNHL underwent behavioral pure-tone audiometry and CAEP testing at 0.5, 1, 2, and 4 kHz. CAEP thresholds were determined using tone bursts, and correlations between CAEP and pure-tone thresholds were analyzed using Pearson correlation and t-tests. Results: A strong positive correlation was observed between P1 thresholds and behavioral thresholds across all test frequencies: 0.5 kHz (r = 0.765, p Conclusion: The strong correlation between P1 and behavioral thresholds demonstrates the reliability of CAEP testing for estimating auditory thresholds in children. These findings support the use of CAEP testing as a reliable objective tool for threshold estimation, particularly in cases where behavioral responses cannot be reliably obtained. When adjusted with frequency-specific correction values, CAEP testing provides a reliable method for assessing hearing thresholds in pediatric populations. 展开更多
关键词 Cortical Auditory Evoked Potentials Behavioral thresholds Sensorineural Hearing Loss Hearing threshold Estimation
暂未订购
Semantic Segmentation of Lumbar Vertebrae Using Meijering U-Net(MU-Net)on Spine Magnetic Resonance Images
11
作者 Lakshmi S V V Shiloah Elizabeth Darmanayagam Sunil Retmin Raj Cyril 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期733-757,共25页
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the s... Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the spine.The semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar diseases.It is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation accuracy.This work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra S1.Pseudo-colour mask images were generated and used as ground truth for training the model.The work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley Data.The proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset. 展开更多
关键词 Computer aided diagnosis(CAD) magnetic resonance imaging(MRI) semantic segmentation lumbar vertebrae deep learning U-Net model
在线阅读 下载PDF
Dual encoding feature filtering generalized attention UNET for retinal vessel segmentation
12
作者 ISLAM Md Tauhidul WU Da-Wen +6 位作者 TANG Qing-Qing ZHAO Kai-Yang YIN Teng LI Yan-Fei SHANG Wen-Yi LIU Jing-Yu ZHANG Hai-Xian 《四川大学学报(自然科学版)》 北大核心 2025年第1期79-95,共17页
Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited t... Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization. 展开更多
关键词 Vessel segmentation Data balancing Data augmentation Dual encoder Attention Mechanism Model generalization
在线阅读 下载PDF
CableSAM:an efficient automatic segmentation method for aircraft cabin cables
13
作者 LING Aihua WANG Junwen +1 位作者 LU Jiaming LIU Ruyu 《Optoelectronics Letters》 2025年第3期183-187,共5页
Cabin cables,as critical components of an aircraft's electrical system,significantly impact the operational efficiency and safety of the aircraft.The existing cable segmentation methods in civil aviation cabins ar... Cabin cables,as critical components of an aircraft's electrical system,significantly impact the operational efficiency and safety of the aircraft.The existing cable segmentation methods in civil aviation cabins are limited,especially in automation,heavily dependent on large amounts of data and resources,lacking the flexibility to adapt to different scenarios.To address these challenges,this paper introduces a novel image segmentation model,CableSAM,specifically designed for automated segmentation of cabin cables.CableSAM improves segmentation efficiency and accuracy using knowledge distillation and employs a context ensemble strategy.It accurately segments cables in various scenarios with minimal input prompts.Comparative experiments on three cable datasets demonstrate that CableSAM surpasses other advanced cable segmentation methods in performance. 展开更多
关键词 image segmentation aircraft cabin automatic segmentation automated segmentation cabin cablesas civil aviation cabins cable segmentation knowledge distillation
原文传递
Optimized algorithm for image semantic segmentation compression algorithm in video surveillance scenarios
14
作者 ZHANG Yangmei ZHANG Xishan +1 位作者 ZHANG Shuo LI Jintao 《High Technology Letters》 2025年第2期194-203,共10页
In recent years,video coding has been widely applied in the field of video image processing to remove redundant information and improve data transmission efficiency.However,during the video coding process,irrelevant o... In recent years,video coding has been widely applied in the field of video image processing to remove redundant information and improve data transmission efficiency.However,during the video coding process,irrelevant objects such as background elements are often encoded due to environmental disturbances,resulting in the wastage of computational resources.Existing research on video coding efficiency optimization primarily focuses on optimizing encoding units during intra-frame or inter frame prediction after the generation of coding units,neglecting the optimization of video images before coding unit generation.To address this challenge,This work proposes an image semantic segmentation compression algorithm based on macroblock encoding,called image semantic segmentation compression algorithm based on macroblock encoding(ISSC-ME),which consists of three modules.(1)The semantic label generation module generates interesting object labels using a grid-based approach to reduce redundant coding of consecutive frames.(2)The image segmentation network module generates a semantic segmentation image using U-Net.(3)The macroblock coding module,is a block segmentation-based video encoding and decoding algorithm used to compress images and improve video transmission efficiency.Experimental results show that the proposed image semantic segmentation optimization algorithm can reduce the computational costs,and improve the overall accuracy by 1.00%and the mean intersection over union(IoU)by 1.20%.In addition,the proposed compression algorithm utilizes macroblock fusion,resulting in the image compression rate achieving 80.64%.It has been proven that the proposed algorithm greatly reduces data storage and transmission,and enables fast image compression processing at the millisecond level. 展开更多
关键词 macroblock encoding semantic segmentation segmentation compression
在线阅读 下载PDF
U-Net-Based Medical Image Segmentation:A Comprehensive Analysis and Performance Review
15
作者 Aliyu Abdulfatah Zhang Sheng Yirga Eyasu Tenawerk 《Journal of Electronic Research and Application》 2025年第1期202-208,共7页
Medical image segmentation has become a cornerstone for many healthcare applications,allowing for the automated extraction of critical information from images such as Computed Tomography(CT)scans,Magnetic Resonance Im... Medical image segmentation has become a cornerstone for many healthcare applications,allowing for the automated extraction of critical information from images such as Computed Tomography(CT)scans,Magnetic Resonance Imaging(MRIs),and X-rays.The introduction of U-Net in 2015 has significantly advanced segmentation capabilities,especially for small datasets commonly found in medical imaging.Since then,various modifications to the original U-Net architecture have been proposed to enhance segmentation accuracy and tackle challenges like class imbalance,data scarcity,and multi-modal image processing.This paper provides a detailed review and comparison of several U-Net-based architectures,focusing on their effectiveness in medical image segmentation tasks.We evaluate performance metrics such as Dice Similarity Coefficient(DSC)and Intersection over Union(IoU)across different U-Net variants including HmsU-Net,CrossU-Net,mResU-Net,and others.Our results indicate that architectural enhancements such as transformers,attention mechanisms,and residual connections improve segmentation performance across diverse medical imaging applications,including tumor detection,organ segmentation,and lesion identification.The study also identifies current challenges in the field,including data variability,limited dataset sizes,and issues with class imbalance.Based on these findings,the paper suggests potential future directions for improving the robustness and clinical applicability of U-Net-based models in medical image segmentation. 展开更多
关键词 U-Net architecture Medical image segmentation DSC IOU Transformer-based segmentation
在线阅读 下载PDF
Pre-trained SAM as data augmentation for image segmentation
16
作者 Junjun Wu Yunbo Rao +1 位作者 Shaoning Zeng Bob Zhang 《CAAI Transactions on Intelligence Technology》 2025年第1期268-282,共15页
Data augmentation plays an important role in training deep neural model by expanding the size and diversity of the dataset.Initially,data augmentation mainly involved some simple transformations of images.Later,in ord... Data augmentation plays an important role in training deep neural model by expanding the size and diversity of the dataset.Initially,data augmentation mainly involved some simple transformations of images.Later,in order to increase the diversity and complexity of data,more advanced methods appeared and evolved to sophisticated generative models.However,these methods required a mass of computation of training or searching.In this paper,a novel training-free method that utilises the Pre-Trained Segment Anything Model(SAM)model as a data augmentation tool(PTSAM-DA)is proposed to generate the augmented annotations for images.Without the need for training,it obtains prompt boxes from the original annotations and then feeds the boxes to the pre-trained SAM to generate diverse and improved annotations.In this way,annotations are augmented more ingenious than simple manipulations without incurring huge computation for training a data augmentation model.Multiple comparative experiments on three datasets are conducted,including an in-house dataset,ADE20K and COCO2017.On this in-house dataset,namely Agricultural Plot Segmentation Dataset,maximum improvements of 3.77%and 8.92%are gained in two mainstream metrics,mIoU and mAcc,respectively.Consequently,large vision models like SAM are proven to be promising not only in image segmentation but also in data augmentation. 展开更多
关键词 data augmentation image segmentation large model segment anything model
在线阅读 下载PDF
CW-HRNet:Constrained Deformable Sampling and Wavelet-Guided Enhancement for Lightweight Crack Segmentation
17
作者 Dewang Ma 《Journal of Electronic Research and Application》 2025年第5期269-280,共12页
This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two ke... This paper presents CW-HRNet,a high-resolution,lightweight crack segmentation network designed to address challenges in complex scenes with slender,deformable,and blurred crack structures.The model incorporates two key modules:Constrained Deformable Convolution(CDC),which stabilizes geometric alignment by applying a tanh limiter and learnable scaling factor to the predicted offsets,and the Wavelet Frequency Enhancement Module(WFEM),which decomposes features using Haar wavelets to preserve low-frequency structures while enhancing high-frequency boundaries and textures.Evaluations on the CrackSeg9k benchmark demonstrate CW-HRNet’s superior performance,achieving 82.39%mIoU with only 7.49M parameters and 10.34 GFLOPs,outperforming HrSegNet-B48 by 1.83% in segmentation accuracy with minimal complexity overhead.The model also shows strong cross-dataset generalization,achieving 60.01%mIoU and 66.22%F1 on Asphalt3k without fine-tuning.These results highlight CW-HRNet’s favorable accuracyefficiency trade-off for real-world crack segmentation tasks. 展开更多
关键词 Crack segmentation Lightweight semantic segmentation Deformable convolution Wavelet transform Road infrastructure
在线阅读 下载PDF
Global-Local Hybrid Modulation Network for Retinal Vessel and Coronary Angiograph Segmentation
18
作者 Pengfei Cai Biyuan Li +2 位作者 Jinying Ma Xiao Tian Jun Yan 《Journal of Bionic Engineering》 2025年第4期2050-2074,共25页
The segmentation of retinal vessels and coronary angiographs is essential for diagnosing conditions such as glaucoma,diabetes,hypertension,and coronary artery disease.However,retinal vessels and coronary angiographs a... The segmentation of retinal vessels and coronary angiographs is essential for diagnosing conditions such as glaucoma,diabetes,hypertension,and coronary artery disease.However,retinal vessels and coronary angiographs are characterized by low contrast and complex structures,posing challenges for vessel segmentation.Moreover,CNN-based approaches are limited in capturing long-range pixel relationships due to their focus on local feature extraction,while ViT-based approaches struggle to capture fine local details,impacting tasks like vessel segmentation that require precise boundary detection.To address these issues,in this paper,we propose a Global–Local Hybrid Modulation Network(GLHM-Net),a dual-encoder architecture that combines the strengths of CNNs and ViTs for vessel segmentation.First,the Hybrid Non-Local Transformer Block(HNLTB)is proposed to efficiently consolidate long-range spatial dependencies into a compact feature representation,providing a global perspective while significantly reducing computational overhead.Second,the Collaborative Attention Fusion Block(CAFB)is proposed to more effectively integrate local and global vessel features at the same hierarchical level during the encoding phase.Finally,the proposed Feature Cross-Modulation Block(FCMB)better complements the local and global features in the decoding stage,effectively enhancing feature learning and minimizing information loss.The experiments conducted on the DRIVE,CHASEDB1,DCA1,and XCAD datasets,achieving AUC values of 0.9811,0.9864,0.9915,and 0.9919,F1 scores of 0.8288,0.8202,0.8040,and 0.8150,and IOU values of 0.7076,0.6952,0.6723,and 0.6878,respectively,demonstrate the strong performance of our proposed network for vessel segmentation. 展开更多
关键词 Non-local transformer Feature fusion Collaborative attention Retinal vessel segmentation Coronary angiograph segmentation
在线阅读 下载PDF
CAMSNet:Few-Shot Semantic Segmentation via Class Activation Map and Self-Cross Attention Block
19
作者 Jingjing Yan Xuyang Zhuang +2 位作者 Xuezhuan Zhao Xiaoyan Shao Jiaqi Han 《Computers, Materials & Continua》 2025年第3期5363-5386,共24页
The key to the success of few-shot semantic segmentation(FSS)depends on the efficient use of limited annotated support set to accurately segment novel classes in the query set.Due to the few samples in the support set... The key to the success of few-shot semantic segmentation(FSS)depends on the efficient use of limited annotated support set to accurately segment novel classes in the query set.Due to the few samples in the support set,FSS faces challenges such as intra-class differences,background(BG)mismatches between query and support sets,and ambiguous segmentation between the foreground(FG)and BG in the query set.To address these issues,The paper propose a multi-module network called CAMSNet,which includes four modules:the General Information Module(GIM),the Class Activation Map Aggregation(CAMA)module,the Self-Cross Attention(SCA)Block,and the Feature Fusion Module(FFM).In CAMSNet,The GIM employs an improved triplet loss,which concatenates word embedding vectors and support prototypes as anchors,and uses local support features of FG and BG as positive and negative samples to help solve the problem of intra-class differences.Then for the first time,the Class Activation Map(CAM)from the Weakly Supervised Semantic Segmentation(WSSS)is applied to FSS within the CAMA module.This method replaces the traditional use of cosine similarity to locate query information.Subsequently,the SCA Block processes the support and query features aggregated by the CAMA module,significantly enhancing the understanding of input information,leading to more accurate predictions and effectively addressing BG mismatch and ambiguous FG-BG segmentation.Finally,The FFM combines general class information with the enhanced query information to achieve accurate segmentation of the query image.Extensive Experiments on PASCAL and COCO demonstrate that-5i-20ithe CAMSNet yields superior performance and set a state-of-the-art. 展开更多
关键词 Few-shot semantic segmentation semantic segmentation meta learning
在线阅读 下载PDF
A 3D semantic segmentation network for accurate neuronal soma segmentation
20
作者 Li Ma Qi Zhong +2 位作者 Yezi Wang Xiaoquan Yang Qian Du 《Journal of Innovative Optical Health Sciences》 2025年第1期67-83,共17页
Neuronal soma segmentation plays a crucial role in neuroscience applications.However,the fine structure,such as boundaries,small-volume neuronal somata and fibers,are commonly present in cell images,which pose a chall... Neuronal soma segmentation plays a crucial role in neuroscience applications.However,the fine structure,such as boundaries,small-volume neuronal somata and fibers,are commonly present in cell images,which pose a challenge for accurate segmentation.In this paper,we propose a 3D semantic segmentation network for neuronal soma segmentation to address this issue.Using an encoding-decoding structure,we introduce a Multi-Scale feature extraction and Adaptive Weighting fusion module(MSAW)after each encoding block.The MSAW module can not only emphasize the fine structures via an upsampling strategy,but also provide pixel-wise weights to measure the importance of the multi-scale features.Additionally,a dynamic convolution instead of normal convolution is employed to better adapt the network to input data with different distributions.The proposed MSAW-based semantic segmentation network(MSAW-Net)was evaluated on three neuronal soma images from mouse brain and one neuronal soma image from macaque brain,demonstrating the efficiency of the proposed method.It achieved an F1 score of 91.8%on Fezf2-2A-CreER dataset,97.1%on LSL-H2B-GFP dataset,82.8%on Thy1-EGFP-Mline dataset,and 86.9%on macaque dataset,achieving improvements over the 3D U-Net model by 3.1%,3.3%,3.9%,and 2.3%,respectively. 展开更多
关键词 Neuronal soma segmentation semantic segmentation network multi-scale feature extraction adaptive weighting fusion
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部