期刊文献+
共找到99,758篇文章
< 1 2 250 >
每页显示 20 50 100
Defect image segmentation using multilevel thresholding based on firefly algorithm with opposition-learning 被引量:3
1
作者 陈恺 戴敏 +2 位作者 张志胜 陈平 史金飞 《Journal of Southeast University(English Edition)》 EI CAS 2014年第4期434-438,共5页
To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is ex... To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods. 展开更多
关键词 quad flat non-lead QFN surface defects opposition-learning firefly algorithm multilevel Otsu thresholding algorithm
在线阅读 下载PDF
TFM imaging of aeroengine casing ring forgings with curved surfaces using acoustic field threshold segmentation and vector coherence factor 被引量:2
2
作者 Shanyue GUAN Xiaokai WANG +1 位作者 Lin HUA Yixuan LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第11期401-415,共15页
The aeroengine casing ring forgings have complex cross-section shapes,when the conventional ultrasonic or phased array is applied to detect such curved surfaces,the inspection images always have low resolution and eve... The aeroengine casing ring forgings have complex cross-section shapes,when the conventional ultrasonic or phased array is applied to detect such curved surfaces,the inspection images always have low resolution and even artifacts due to the distortion of the wave beam.In this article,taking a type of aeroengine casing ring forging as an example,the Total Focusing Method(TFM)algorithms for curved surfaces are investigated.First,the Acoustic Field Threshold Segmentation(AFTS)algorithm is proposed to reduce background noise and data calculation.Furthermore,the Vector Coherence Factor(VCF)is adopted to improve the lateral resolution of the TFM imaging.Finally,a series of 0.8 mm diameter Side-Drilled Holes(SDHs)are machined below convex and concave surfaces of the specimen.The quantitative comparison of the detection images using the conventional TFM,AFTS-TFM,VCF-TFM,and AFTS-VCF-TFM is implemented in terms of data volume,imaging Signal-to-Noise Ratio(SNR),and defect echo width.The results show that compared with conventional TFM,the data volume of AFTS-VCF-TFM algorithm for convex and concave is decreased by 32.39%and 73.40%,respectively.Moreover,the average SNR of the AFTS-VCF-TFM is gained up to 40.0 dB,while the average 6 dB-drop echo width of defects is reduced to 0.74 mm. 展开更多
关键词 Aeroengine casing Acoustic Field threshold segmentation(AFTS) Curved surfaces Total Focusing Method(TFM) Vector Coherence Factor(VCF)
原文传递
Multi-verse Optimizer with Rosenbrock and Diffusion Mechanisms for Multilevel Threshold Image Segmentation from COVID-19 Chest X-Ray Images 被引量:1
3
作者 Yan Han Weibin Chen +1 位作者 Ali Asghar Heidari Huiling Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第3期1198-1262,共65页
Coronavirus Disease 2019(COVID-19)is the most severe epidemic that is prevalent all over the world.How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidem... Coronavirus Disease 2019(COVID-19)is the most severe epidemic that is prevalent all over the world.How quickly and accurately identifying COVID-19 is of great significance to controlling the spread speed of the epidemic.Moreover,it is essential to accurately and rapidly identify COVID-19 lesions by analyzing Chest X-ray images.As we all know,image segmentation is a critical stage in image processing and analysis.To achieve better image segmentation results,this paper proposes to improve the multi-verse optimizer algorithm using the Rosenbrock method and diffusion mechanism named RDMVO.Then utilizes RDMVO to calculate the maximum Kapur’s entropy for multilevel threshold image segmentation.This image segmentation scheme is called RDMVO-MIS.We ran two sets of experiments to test the performance of RDMVO and RDMVO-MIS.First,RDMVO was compared with other excellent peers on IEEE CEC2017 to test the performance of RDMVO on benchmark functions.Second,the image segmentation experiment was carried out using RDMVO-MIS,and some meta-heuristic algorithms were selected as comparisons.The test image dataset includes Berkeley images and COVID-19 Chest X-ray images.The experimental results verify that RDMVO is highly competitive in benchmark functions and image segmentation experiments compared with other meta-heuristic algorithms. 展开更多
关键词 COVID-19 Multilevel threshold image segmentation Kapur’s entropy Multi-verse optimizer Meta-heuristic algorithm Bionic algorithm
在线阅读 下载PDF
Hand segmentation from a single depth image based on histogram threshold selection and shallow CNN 被引量:1
4
作者 XU Zhengze ZHANG Wenjun 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第5期675-685,共11页
Real-time hand gesture recognition technology significantly improves the user's experience for virtual reality/augmented reality(VR/AR) applications, which relies on the identification of the orientation of the ha... Real-time hand gesture recognition technology significantly improves the user's experience for virtual reality/augmented reality(VR/AR) applications, which relies on the identification of the orientation of the hand in captured images or videos. A new three-stage pipeline approach for fast and accurate hand segmentation for the hand from a single depth image is proposed. Firstly, a depth frame is segmented into several regions by histogrambased threshold selection algorithm and by tracing the exterior boundaries of objects after thresholding. Secondly, each segmentation proposal is evaluated by a three-layers shallow convolutional neural network(CNN) to determine whether or not the boundary is associated with the hand. Finally, all hand components are merged as the hand segmentation result. Compared with algorithms based on random decision forest(RDF), the experimental results demonstrate that the approach achieves better performance with high-accuracy(88.34% mean intersection over union, mIoU) and a shorter processing time(≤8 ms). 展开更多
关键词 HAND segmentation HISTOGRAM threshold selection convolutional neural network(CNN) depth map
在线阅读 下载PDF
Segmentation of Vessels by Morphological Filters and Dynamic Thresholding 被引量:1
5
作者 袁慧晶 肖杰 +1 位作者 王涌天 刘越 《Journal of Beijing Institute of Technology》 EI CAS 2006年第3期327-330,共4页
A method of segmenting vessels by morphological filters and dynamic thresholding for digital subtraction angiography (DSA) images is presented. The first step is to reduce the noise and enhance the details of image ... A method of segmenting vessels by morphological filters and dynamic thresholding for digital subtraction angiography (DSA) images is presented. The first step is to reduce the noise and enhance the details of image by using morpholngical operators. The second is to segment vessels by dynamic thresholding combined with global thresholding based on the properties of DSA images. Artificial images and actual images have been tested. Experiment results show that the proposed method is efficient and is of great potential for the segmentation of vessels in medical images. 展开更多
关键词 mathematical morphology segmentation thresholdING VESSELS
在线阅读 下载PDF
Novel Method to Determine the Image Segmentation Threshold during the Quantitative Test on Meso-structure of Geo-material 被引量:1
6
作者 胡启军 CAI Qijie +3 位作者 HE Leping ZHAO Xiang SHI Rendan YE Tao 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第6期1408-1412,共5页
As a kind of special material in geotechnical engineering, the mudded weak interlayer plays a crucial part in slope stability. In this paper, we presented a method to determine the threshold value of section micrograp... As a kind of special material in geotechnical engineering, the mudded weak interlayer plays a crucial part in slope stability. In this paper, we presented a method to determine the threshold value of section micrographs of the mudded weak interlayer in slope during its meso-structure qualification process. Some soil tests, scanning electron microscopy(SEM) and image segmentation technology were performed to fulfill our purpose. Specifically, the relation between 3 D-porosity and the threshold was obtained by least square fitting of the threshold-porosity curves and a simplified pore equivalent model. Using this relation and the 3 D-porosity determined by soil experiments, we can figure out the polynomial equation of the threshold value. The threshold values obtained by the other existing methods in literature were employed to validate our present results. 展开更多
关键词 mudded weak interlayer threshold value SEM image segmentation 3D-porosity
原文传递
A New Multilevel Thresholding Method Using Swarm Intelligence Algorithm for Image Segmentation 被引量:2
7
作者 Sathya P. Duraisamy Ramanujam Kayalvizhi 《Journal of Intelligent Learning Systems and Applications》 2010年第3期126-138,共13页
Thresholding is a popular image segmentation method that converts gray-level image into binary image. The selection of optimum thresholds has remained a challenge over decades. In order to determine thresholds, most m... Thresholding is a popular image segmentation method that converts gray-level image into binary image. The selection of optimum thresholds has remained a challenge over decades. In order to determine thresholds, most methods analyze the histogram of the image. The optimal thresholds are often found by either minimizing or maximizing an objective function with respect to the values of the thresholds. In this paper, a new intelligence algorithm, particle swarm opti-mization (PSO), is presented for multilevel thresholding in image segmentation. This algorithm is used to maximize the Kapur’s and Otsu’s objective functions. The performance of the PSO has been tested on ten sample images and it is found to be superior as compared with genetic algorithm (GA). 展开更多
关键词 Image segmentation MULTILEVEL thresholdING PARTICLE SWARM Optimization
在线阅读 下载PDF
Fuzzy C Mean Thresholding based Level Set for Automated Segmentation of Skin Lesions 被引量:2
8
作者 Ammara Masood Adel Ali Al-Jumaily 《Journal of Signal and Information Processing》 2013年第3期66-71,共6页
Accurate segmentation is an important and challenging task in any computer vision system. It also plays a vital role in computerized analysis of skin lesion images. This paper presents a new segmentation method that c... Accurate segmentation is an important and challenging task in any computer vision system. It also plays a vital role in computerized analysis of skin lesion images. This paper presents a new segmentation method that combines the advan-tages of fuzzy C mean algorithm, thresholding and level set method. 3-class Fuzzy C mean thresholding is applied to initialize level set automatically and also for estimating controlling parameters for level set evolution. Parameters for performance evaluation are presented and segmentation results are compared with some other state-of-the-art segmentation methods. Increased true detection rate and reduced false positive and false negative errors confirm the effectiveness of proposed method for skin cancer detection. 展开更多
关键词 SKIN Cancer segmentation Diagnosis FUZZY thresholdING Level SETS
在线阅读 下载PDF
An enhanced artificial bee colony optimizer and its application to multi-level threshold image segmentation 被引量:13
9
作者 GAO Yang LI Xu +1 位作者 DONG Ming LI He-peng 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第1期107-120,共14页
A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrich... A modified artificial bee colony optimizer(MABC)is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff.The main idea of MABC is to enrichartificial bee foraging behaviors by combining local search and comprehensive learning using multi-dimensional PSO-based equation.With comprehensive learning,the bees incorporate the information of global best solution into the solution search equation to improve the exploration while the local search enables the bees deeply exploit around the promising area,which provides a proper balance between exploration and exploitation.The experimental results on comparing the MABC to several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm.Furthermore,we applied the MABC algorithm to image segmentation problem.Experimental results verify the effectiveness of the proposed algorithm. 展开更多
关键词 artificial bee colony local search swarm intelligence image segmentation
在线阅读 下载PDF
Defocus Blur Segmentation Using Local Binary Patterns with Adaptive Threshold 被引量:1
10
作者 Usman Ali Muhammad Tariq Mahmood 《Computers, Materials & Continua》 SCIE EI 2022年第4期1597-1611,共15页
Enormousmethods have been proposed for the detection and segmentation of blur and non-blur regions of the images.Due to the limited available information about blur type,scenario and the level of blurriness,detection ... Enormousmethods have been proposed for the detection and segmentation of blur and non-blur regions of the images.Due to the limited available information about blur type,scenario and the level of blurriness,detection and segmentation is a challenging task.Hence,the performance of the blur measure operator is an essential factor and needs improvement to attain perfection.In this paper,we propose an effective blur measure based on local binary pattern(LBP)with adaptive threshold for blur detection.The sharpness metric developed based on LBP used a fixed threshold irrespective of the type and level of blur,that may not be suitable for images with variations in imaging conditions,blur amount and type.Contrarily,the proposed measure uses an adaptive threshold for each input image based on the image and blur properties to generate improved sharpness metric.The adaptive threshold is computed based on the model learned through support vector machine(SVM).The performance of the proposed method is evaluated using two different datasets and is compared with five state-of-the-art methods.Comparative analysis reveals that the proposed method performs significantly better qualitatively and quantitatively against all of the compared methods. 展开更多
关键词 Adaptive threshold blur measure defocus blur segmentation local binary pattern support vector machine
在线阅读 下载PDF
Deer Body Adaptive Threshold Segmentation Algorithm Based on Color Space 被引量:6
11
作者 Yuheng Sun Ye Mu +4 位作者 Qin Feng Tianli Hu He Gong Shijun Li Jing Zhou 《Computers, Materials & Continua》 SCIE EI 2020年第8期1317-1328,共12页
In large-scale deer farming image analysis,K-means or maximum between-class variance(Otsu)algorithms can be used to distinguish the deer from the background.However,in an actual breeding environment,the barbed wire or... In large-scale deer farming image analysis,K-means or maximum between-class variance(Otsu)algorithms can be used to distinguish the deer from the background.However,in an actual breeding environment,the barbed wire or chain-link fencing has a certain isolating effect on the deer which greatly interferes with the identification of the individual deer.Also,when the target and background grey values are similar,the multiple background targets cannot be completely separated.To better identify the posture and behaviour of deer in a deer shed,we used digital image processing to separate the deer from the background.To address the problems mentioned above,this paper proposes an adaptive threshold segmentation algorithm based on color space.First,the original image is pre-processed and optimized.On this basis,the data are enhanced and contrasted.Next,color space is used to extract the several backgrounds through various color channels,then the adaptive space segmentation of the extracted part of the color space is performed.Based on the segmentation effect of the traditional Otsu algorithm,we designed a comparative experiment that divided the four postures of turning,getting up,lying,and standing,and successfully separated multiple target deer from the background.Experimental results show that compared with K-means,Otsu and hue saturation value(HSV)+K-means,this method is better in performance and accuracy for adaptive segmentation of deer in artificial breeding scenes and can be used to separate artificially cultivated deer from their backgrounds.Both the subjective and objective aspects achieved good segmentation results.This article lays a foundation for the effective identification of abnormal behaviour in sika deer. 展开更多
关键词 Artificial breeding color space deer body recognition image segmentation K-MEANS multi-target recognition OTSU
在线阅读 下载PDF
A Semi-Vectorial Hybrid Morphological Segmentation of Multicomponent Images Based on Multithreshold Analysis of Multidimensional Compact Histogram 被引量:1
12
作者 Adles Kouassi Sié Ouattara +2 位作者 Jean-Claude Okaingni Wognin J. Vangah Alain Clement 《Open Journal of Applied Sciences》 2017年第11期597-610,共14页
In this work, we propose an original approach of semi-vectorial hybrid morphological segmentation for multicomponent images or multidimensional data by analyzing compact multidimensional histograms based on different ... In this work, we propose an original approach of semi-vectorial hybrid morphological segmentation for multicomponent images or multidimensional data by analyzing compact multidimensional histograms based on different orders. Its principle consists first of segment marginally each component of the multicomponent image into different numbers of classes fixed at K. The segmentation of each component of the image uses a scalar segmentation strategy by histogram analysis;we mainly count the methods by searching for peaks or modes of the histogram and those based on a multi-thresholding of the histogram. It is the latter that we have used in this paper, it relies particularly on the multi-thresholding method of OTSU. Then, in the case where i) each component of the image admits exactly K classes, K vector thresholds are constructed by an optimal pairing of which each component of the vector thresholds are those resulting from the marginal segmentations. In addition, the multidimensional compact histogram of the multicomponent image is computed and the attribute tuples or ‘colors’ of the histogram are ordered relative to the threshold vectors to produce (K + 1) intervals in the partial order giving rise to a segmentation of the multidimensional histogram into K classes. The remaining colors of the histogram are assigned to the closest class relative to their center of gravity. ii) In the contrary case, a vectorial spatial matching between the classes of the scalar components of the image is produced to obtain an over-segmentation, then an interclass fusion is performed to obtain a maximum of K classes. Indeed, the relevance of our segmentation method has been highlighted in relation to other methods, such as K-means, using unsupervised and supervised quantitative segmentation evaluation criteria. So the robustness of our method relatively to noise has been tested. 展开更多
关键词 MORPHOLOGICAL segmentation Vectorial Orders Semi-Vectorial segmentation MULTIDIMENSIONAL COMPACT HISTOGRAM Multi-thresholds Fusion Inter-Class Classification
暂未订购
Semi-automated segmentation of magnetic resonance images for thigh skeletal muscle and fat using threshold technique after spinal cord injury 被引量:1
13
作者 Mina P.Ghatas Robert M.Lester +1 位作者 M.Rehan Khan Ashraf S.Gorgey 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第10期1787-1795,共9页
Magnetic resonance imaging is considered the "gold standard" technique for quantifying thigh muscle and fat cross-sectional area. We have developed a semi-automated technique to segment seven thigh compartments in p... Magnetic resonance imaging is considered the "gold standard" technique for quantifying thigh muscle and fat cross-sectional area. We have developed a semi-automated technique to segment seven thigh compartments in persons with spinal cord injury. Thigh magnetic resonance images from 18 men(18–50 years old) with traumatic motor-complete spinal cord injury were analyzed in a blinded fashion using the threshold technique. The cross-sectional area values acquired by thresholding were compared to the manual tracing technique. The percentage errors for thigh circumference were(threshold: 170.71 ± 38.67; manual: 169.45 ± 38.27 cm2) 0.74%, subcutaneous adipose tissue(threshold: 65.99±30.79; manual: 62.68 ± 30.22) 5.2%, whole muscle(threshold: 98.18 ± 20.19; manual: 98.20 ± 20.08 cm2) 0.13%, femoral bone(threshold: 6.53 ± 1.09; manual: 6.53 ± 1.09 cm2) 0.64%, bone marrow fat(threshold: 3.12 ± 1.12; manual: 3.1 ± 1.11 cm2) 0.36%, knee extensor(threshold: 43.98 ± 7.66; manual: 44.61 ± 7.81 cm2) 1.78% and % intramuscular fat(threshold: 10.45 ± 4.29; manual: 10.92 ± 8.35%) 0.47%. Collectively, these results suggest that the threshold technique provided a robust accuracy in measuring the seven main thigh compartments, while greatly reducing the analysis time. 展开更多
关键词 spinal cord injury magnetic resonance imaging semi-automated segmentation subcutaneous adipose tissue intramuscular fat
暂未订购
Quantum watermarking based on threshold segmentation using quantum informational entropy
14
作者 Jia Luo Ri-Gui Zhou +2 位作者 Wen-Wen Hu YaoChong Li Gao-Feng Luo 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期116-122,共7页
We propose a new quantum watermarking scheme based on threshold selection using informational entropy of quantum image.The core idea of this scheme is to embed information into object and background of cover image in ... We propose a new quantum watermarking scheme based on threshold selection using informational entropy of quantum image.The core idea of this scheme is to embed information into object and background of cover image in different ways.First,a threshold method adopting the quantum informational entropy is employed to determine a threshold value.The threshold value can then be further used for segmenting the cover image to a binary image,which is an authentication key for embedding and extraction information.By a careful analysis of the quantum circuits of the scheme,that is,translating into the basic gate sequences which show the low complexity of the scheme.One of the simulation-based experimental results is entropy difference which measures the similarity of two images by calculating the difference in quantum image informational entropy between watermarked image and cover image.Furthermore,the analyses of peak signal-to-noise ratio,histogram and capacity of the scheme are also provided. 展开更多
关键词 quantum image watermarking threshold segmentation quantum informational entropy quantum circuit
原文传递
An Improved Jellyfish Algorithm for Multilevel Thresholding of Magnetic Resonance Brain Image Segmentations 被引量:5
15
作者 Mohamed Abdel-Basset Reda Mohamed +3 位作者 Mohamed Abouhawwash Ripon K.Chakrabortty Michael J.Ryan Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2021年第9期2961-2977,共17页
Image segmentation is vital when analyzing medical images,especially magnetic resonance(MR)images of the brain.Recently,several image segmentation techniques based on multilevel thresholding have been proposed for med... Image segmentation is vital when analyzing medical images,especially magnetic resonance(MR)images of the brain.Recently,several image segmentation techniques based on multilevel thresholding have been proposed for medical image segmentation;however,the algorithms become trapped in local minima and have low convergence speeds,particularly as the number of threshold levels increases.Consequently,in this paper,we develop a new multilevel thresholding image segmentation technique based on the jellyfish search algorithm(JSA)(an optimizer).We modify the JSA to prevent descents into local minima,and we accelerate convergence toward optimal solutions.The improvement is achieved by applying two novel strategies:Rankingbased updating and an adaptive method.Ranking-based updating is used to replace undesirable solutions with other solutions generated by a novel updating scheme that improves the qualities of the removed solutions.We develop a new adaptive strategy to exploit the ability of the JSA to find a best-so-far solution;we allow a small amount of exploration to avoid descents into local minima.The two strategies are integrated with the JSA to produce an improved JSA(IJSA)that optimally thresholds brain MR images.To compare the performances of the IJSA and JSA,seven brain MR images were segmented at threshold levels of 3,4,5,6,7,8,10,15,20,25,and 30.IJSA was compared with several other recent image segmentation algorithms,including the improved and standard marine predator algorithms,the modified salp and standard salp swarm algorithms,the equilibrium optimizer,and the standard JSA in terms of fitness,the Structured Similarity Index Metric(SSIM),the peak signal-to-noise ratio(PSNR),the standard deviation(SD),and the Features Similarity Index Metric(FSIM).The experimental outcomes and the Wilcoxon rank-sum test demonstrate the superiority of the proposed algorithm in terms of the FSIM,the PSNR,the objective values,and the SD;in terms of the SSIM,IJSA was competitive with the others. 展开更多
关键词 Magnetic resonance imaging brain image segmentation artificial jellyfish search algorithm ranking method local minima Otsu method
在线阅读 下载PDF
A Method of Cracks Image Segmentation Based on the Means of Multiple Thresholds 被引量:4
16
作者 Youquan He Hanxing Qiu 《通讯和计算机(中英文版)》 2012年第10期1147-1151,共5页
关键词 图像分割方法 路面裂缝 多阈值 数学形态学 分割阈值 最小误差法 分割算法 最大熵法
在线阅读 下载PDF
A Multi-Level Threshold Method for Edge Detection and Segmentation Based on Entropy 被引量:1
17
作者 Mohamed A.El-Sayed Abdelmgeid A.Ali +1 位作者 Mohamed E.Hussien Hameda A.Sennary 《Computers, Materials & Continua》 SCIE EI 2020年第4期1-16,共16页
The essential tool in image processing,computer vision and machine vision is edge detection,especially in the fields of feature extraction and feature detection.Entropy is a basic area in information theory.The entrop... The essential tool in image processing,computer vision and machine vision is edge detection,especially in the fields of feature extraction and feature detection.Entropy is a basic area in information theory.The entropy,in image processing field has a role associated with image settings.As an initial step in image processing,the entropy is always used the image’s segmentation to determine the regions of image which is used to separate the background and objects in image.Image segmentation known as the process which divides the image into multiple regions or sets of pixels.Many applications have been development to enhance the image processing.This paper utilizes the Shannon entropy to achieve edge detection process and segmentation of the image.It introduces a new method of edge detection for 2-D histogram and Shannon entropy based on multilevel threshold.The method utilizes the gray value and the average gray value of the pixels to achieve the two dimensional histogram.The current method has apriority in comparison to some upper classical methods.The experimental results exhibited that the proposed method could capture a moderate quality and execution time better than other comparative methods,particularly in the largest images size.The proposed method offers good results when applied with images of different sizes from the civilization of ancient Egyptians. 展开更多
关键词 Multi-level threshold edge detection 2D histogram ENTROPY
在线阅读 下载PDF
Quantitatively characterizing sandy soil structure altered by MICP using multi-level thresholding segmentation algorithm 被引量:1
18
作者 Jianjun Zi Tao Liu +3 位作者 Wei Zhang Xiaohua Pan Hu Ji Honghu Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4285-4299,共15页
The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmenta... The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm. 展开更多
关键词 Soil structure MICRO-CT Multi-level thresholding MICP Genetic algorithm(GA)
在线阅读 下载PDF
Modified Gray Level Difference-Based Thresholding Segmentation and its Application in X-Ray Welding Image 被引量:1
19
作者 佟彤 蔡艳 +1 位作者 孙大为 吴毅雄 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第4期448-453,共6页
Thresholding is a popular image segmentation method that often requires as a preliminary and indis- pensable stage in the computer aided image process, particularly in the analysis of X-ray welding images. In this pap... Thresholding is a popular image segmentation method that often requires as a preliminary and indis- pensable stage in the computer aided image process, particularly in the analysis of X-ray welding images. In this paper, a modified gray level difference-based transition region extraction and thresholding algorithm is presented for segmentation of the images that have been corrupted by intensity inhomogeneities or noise. Classical gray level difference algorithm is improved by selective output of the result of the maximum or the minimum of the gray level with the pixels in the surrounding, and multi-structuring of neighborhood window is used to represent the essence of transition region. The proposed algorithm could robustly measure the gray level changes, and accurately extract transition region of an image. Comparisons with other approaches demonstrate the superior performance of the proposed algorithm. K 展开更多
关键词 image segmentation transition region gray level difference welding image
原文传递
Two-dimensional cross entropy multi-threshold image segmentation based on improved BBO algorithm 被引量:2
20
作者 LI Wei HU Xiao-hui WANG Hong-chuang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期42-49,共8页
In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.Whe... In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm. 展开更多
关键词 two-dimensional cross entropy biogeography-based optimization(BBO)algorithm multi-threshold image segmentation
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部