The main purpose of this paper is using estimates for trigonometric sums and properties of congruence to study the computation of one kind of fourth power mean of a generalized three-term exponential sum, and give an ...The main purpose of this paper is using estimates for trigonometric sums and properties of congruence to study the computation of one kind of fourth power mean of a generalized three-term exponential sum, and give an interesting identity for it.展开更多
The computational problem of fourth power mean of generalized three-term exponential sums is studied by using the trigonometric identity and the properties of the reduced residue system. Some explicit formulas for the...The computational problem of fourth power mean of generalized three-term exponential sums is studied by using the trigonometric identity and the properties of the reduced residue system. Some explicit formulas for the fourth power mean of generalized three-term exponential sums under different conditions are given.展开更多
In this paper, we extend the three-term recurrence relation for orthogonal polynomials associated with a probability distribution having a finite moment of all orders to a class of orthogonal functions associated with...In this paper, we extend the three-term recurrence relation for orthogonal polynomials associated with a probability distribution having a finite moment of all orders to a class of orthogonal functions associated with an infinitely divisible probability distribution µ?having a finite moments of order less or equal to four. An explicit expression of these functions will be given in term of the Lévy-Khintchine function of the measure?µ.展开更多
In the paper, firstly, based on new non-tensor-product-typed partially inverse divided differences algorithms in a recursive form, scattered data interpolating schemes are constructed via bivariate continued fractions...In the paper, firstly, based on new non-tensor-product-typed partially inverse divided differences algorithms in a recursive form, scattered data interpolating schemes are constructed via bivariate continued fractions with odd and even nodes, respectively. And equivalent identities are also obtained between interpolated functions and bivariate continued fractions. Secondly, by means of three-term recurrence relations for continued fractions, the characterization theorem is presented to study on the degrees of the numerators and denominators of the interpolating continued fractions. Thirdly, some numerical examples show it feasible for the novel recursive schemes. Meanwhile, compared with the degrees of the numera- tors and denominators of bivariate Thiele-typed interpolating continued fractions, those of the new bivariate interpolating continued fractions are much low, respectively, due to the reduc- tion of redundant interpolating nodes. Finally, the operation count for the rational function interpolation is smaller than that for radial basis function interpolation.展开更多
In this paper, we review on a general theory of orthogonal polynomials in several variables (O.P.S.V) in which we present two different approaches for the three-term recurrence relation. We draw attention to the fact ...In this paper, we review on a general theory of orthogonal polynomials in several variables (O.P.S.V) in which we present two different approaches for the three-term recurrence relation. We draw attention to the fact that it is possible to take advantage of the orthogonal projection approach of the three-term recurrence relation towards the development of the algebraic theory of O.P.S.V.展开更多
This paper aims at extending our previous work on the solution of the one-dimensional Dirac equation using the Tridiagonal Representation Approach (TRA). In the approach, we expand the spinor wavefunction in terms of ...This paper aims at extending our previous work on the solution of the one-dimensional Dirac equation using the Tridiagonal Representation Approach (TRA). In the approach, we expand the spinor wavefunction in terms of suitable square integrable basis functions that support a tridiagonal matrix representation of the wave operator. This will transform the problem from solving a system of coupled first order differential equations to solving an algebraic three-term recursion relation for the expansion coefficients of the wavefunction. In some cases, solutions to this recursion relation can be related to well-known classes of orthogonal polynomials whereas in other situations solutions represent new class of polynomials. In this work, we will discuss various solvable potentials that obey the tridiagonal representation requirement with special emphasis on simple cases with spin-symmetric and pseudospin-symmetric potential couplings. We conclude by mentioning some potential applications in graphene.展开更多
In this paper, a new Wolfe-type line search and a new Armijo-type line searchare proposed, and some global convergence properties of a three-term conjugate gradient method withthe two line searches are proved.
In this paper,an adaptive three-term conjugate gradient method is proposed for solving unconstrained problems,which generates sufficient descent directions at each iteration.Different from the existent methods,a dynam...In this paper,an adaptive three-term conjugate gradient method is proposed for solving unconstrained problems,which generates sufficient descent directions at each iteration.Different from the existent methods,a dynamical adjustment between Hestenes–Stiefel and Dai–Liao conjugacy conditions in our proposed method is developed.Under mild condition,we show that the proposed method converges globally.Numerical experimentation with the new method indicates that it efficiently solves the test problems and therefore is promising.展开更多
Let {Pn},n≥0 denote the Catalan-Larcombe-French sequence, which naturally came from the series expansion of the complete elliptic integral of the first kind. In this paper, we prove the strict log-concavity of the se...Let {Pn},n≥0 denote the Catalan-Larcombe-French sequence, which naturally came from the series expansion of the complete elliptic integral of the first kind. In this paper, we prove the strict log-concavity of the sequence { n√Pn}n≥1, which was originally conjectured by Z. W. Sun. We also obtain the strict log-concavity of the sequence {n√Vn}n≥1, where {Vn}n≥0 is the Fennessey-Larcombe- French sequence arising from the series expansion of the complete elliptic integral of the second kind.展开更多
Two interesting sequences arose in the study of the series expansions of the complete elliptic integrals,which are called the Catalan-Larcombe-French sequence{Pn}n≥0 and the Fennessey-Larcombe-French sequence{Vn}n≥0...Two interesting sequences arose in the study of the series expansions of the complete elliptic integrals,which are called the Catalan-Larcombe-French sequence{Pn}n≥0 and the Fennessey-Larcombe-French sequence{Vn}n≥0 respectively.In this paper,we first establish some criteria for determining log-behavior of a sequence based on its three-term recurrence.Then we prove the log-convexity of{Vn^2-V(n-1)V(n+1)}n≥2 and{n!Vn}n≥1,the ratio log-concavity of{Pn}n≥0 and the sequence{An}n≥0 of Apéry numbers,and the ratio log-convexity of{Vn}n≥1.展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.1137129161202437)
文摘The main purpose of this paper is using estimates for trigonometric sums and properties of congruence to study the computation of one kind of fourth power mean of a generalized three-term exponential sum, and give an interesting identity for it.
基金Supported by the National Natural Science Foundation of China(Grant No.11571277)the Science and Technology Program of Shaanxi Province(Grant Nos.2014JM1007+2 种基金2014KJXX-612016GY-0802016GY-077)
文摘The computational problem of fourth power mean of generalized three-term exponential sums is studied by using the trigonometric identity and the properties of the reduced residue system. Some explicit formulas for the fourth power mean of generalized three-term exponential sums under different conditions are given.
文摘In this paper, we extend the three-term recurrence relation for orthogonal polynomials associated with a probability distribution having a finite moment of all orders to a class of orthogonal functions associated with an infinitely divisible probability distribution µ?having a finite moments of order less or equal to four. An explicit expression of these functions will be given in term of the Lévy-Khintchine function of the measure?µ.
基金Supported by the Special Funds Tianyuan for the National Natural Science Foundation of China(Grant No.11426086)the Fundamental Research Funds for the Central Universities(Grant No.2016B08714)the Natural Science Foundation of Jiangsu Province for the Youth(Grant No.BK20160853)
文摘In the paper, firstly, based on new non-tensor-product-typed partially inverse divided differences algorithms in a recursive form, scattered data interpolating schemes are constructed via bivariate continued fractions with odd and even nodes, respectively. And equivalent identities are also obtained between interpolated functions and bivariate continued fractions. Secondly, by means of three-term recurrence relations for continued fractions, the characterization theorem is presented to study on the degrees of the numerators and denominators of the interpolating continued fractions. Thirdly, some numerical examples show it feasible for the novel recursive schemes. Meanwhile, compared with the degrees of the numera- tors and denominators of bivariate Thiele-typed interpolating continued fractions, those of the new bivariate interpolating continued fractions are much low, respectively, due to the reduc- tion of redundant interpolating nodes. Finally, the operation count for the rational function interpolation is smaller than that for radial basis function interpolation.
文摘In this paper, we review on a general theory of orthogonal polynomials in several variables (O.P.S.V) in which we present two different approaches for the three-term recurrence relation. We draw attention to the fact that it is possible to take advantage of the orthogonal projection approach of the three-term recurrence relation towards the development of the algebraic theory of O.P.S.V.
文摘This paper aims at extending our previous work on the solution of the one-dimensional Dirac equation using the Tridiagonal Representation Approach (TRA). In the approach, we expand the spinor wavefunction in terms of suitable square integrable basis functions that support a tridiagonal matrix representation of the wave operator. This will transform the problem from solving a system of coupled first order differential equations to solving an algebraic three-term recursion relation for the expansion coefficients of the wavefunction. In some cases, solutions to this recursion relation can be related to well-known classes of orthogonal polynomials whereas in other situations solutions represent new class of polynomials. In this work, we will discuss various solvable potentials that obey the tridiagonal representation requirement with special emphasis on simple cases with spin-symmetric and pseudospin-symmetric potential couplings. We conclude by mentioning some potential applications in graphene.
基金This research is supported by the National Natural Science Foundation of China(10171055).
文摘In this paper, a new Wolfe-type line search and a new Armijo-type line searchare proposed, and some global convergence properties of a three-term conjugate gradient method withthe two line searches are proved.
基金This work was supported by First-Class Disciplines Foundation of Ningxia Hui Autonomous Region(No.NXYLXK2017B09)the National Natural Science Foundation of China(Nos.11601012,11861002,71771030)+3 种基金the Key Project of North Minzu University(No.ZDZX201804)Natural Science Foundation of Ningxia Hui Autonomous Region(Nos.NZ17103,2018AAC03253)Natural Science Foundation of Guangxi Zhuang Autonomous Region(No.2018GXNSFAA138169)Guangxi Key Laboratory of Cryptography and Information Security(No.GCIS201708).
文摘In this paper,an adaptive three-term conjugate gradient method is proposed for solving unconstrained problems,which generates sufficient descent directions at each iteration.Different from the existent methods,a dynamical adjustment between Hestenes–Stiefel and Dai–Liao conjugacy conditions in our proposed method is developed.Under mild condition,we show that the proposed method converges globally.Numerical experimentation with the new method indicates that it efficiently solves the test problems and therefore is promising.
基金Supported by the 863 Program and the National Science Foundation of China
文摘Let {Pn},n≥0 denote the Catalan-Larcombe-French sequence, which naturally came from the series expansion of the complete elliptic integral of the first kind. In this paper, we prove the strict log-concavity of the sequence { n√Pn}n≥1, which was originally conjectured by Z. W. Sun. We also obtain the strict log-concavity of the sequence {n√Vn}n≥1, where {Vn}n≥0 is the Fennessey-Larcombe- French sequence arising from the series expansion of the complete elliptic integral of the second kind.
基金partially supported by the National Science Foundation of Xinjiang Uygur Autonomous Region(No. 2017D01C084)the National Science Foundation of China (Nos. 11771330 and 11701491)
文摘Two interesting sequences arose in the study of the series expansions of the complete elliptic integrals,which are called the Catalan-Larcombe-French sequence{Pn}n≥0 and the Fennessey-Larcombe-French sequence{Vn}n≥0 respectively.In this paper,we first establish some criteria for determining log-behavior of a sequence based on its three-term recurrence.Then we prove the log-convexity of{Vn^2-V(n-1)V(n+1)}n≥2 and{n!Vn}n≥1,the ratio log-concavity of{Pn}n≥0 and the sequence{An}n≥0 of Apéry numbers,and the ratio log-convexity of{Vn}n≥1.